
CHAPTER 4

MATERNAL EFFECTS AND PARTITIONING OF THE PHENOTYPIC

VARIANCE FOR GROWTH, FEED INTAKE, FEED EFFICIENCY

AND ESTIMATES OF PARAMETERS OF NONE INEAR GROWTH MODELS

4.1	 INTRODUCTION

The maternal influence that a dam has on her offspring may

be partitioned into direct genetic effects and indirect components.

Direct genetic effects are due to the sample of genes she contributes

to her offspring through the eggs.	 The indirect component is

determined by paternal contributions (direct genetic effects from

the dam's sire) and the maternal contributions (the maternal

environmental effect and the covariance between maternal and genetic

effects).	 Maternal environmental effects can include intra-uterine

environmental factors (the prenatal effect) and the dam's mothering

ability and milk production (the postnatal environment) (Baker,

1980).	 These indirect effects are expressed in the phenotype of

the offspring as environmental factors in relation to the dam.

Geneticists and animal breeders have been aware for a number

of years that maternal effects may bias heritability estimates (Lush,

1945; Dickerson, 1947; Koch and Clark, 1955). 	 Although considerable

theoretical research has been undertaken to elucidate the various

expectations of the components of variance for maternally affected

J68.
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characters (Eisen, 1967; Hanrahan, 1976; Hanrahan and Eisen,

1973; Koch, 1972; Wiliham, 1963, 1972, 1980) little direct

application has been attempted to domestic farm species. 	 Recent

reviews by Baker (1980), Foulley and Lefort (1978) and Wiliham

(1980) have suggested alternative strategies for utilising maternal

components in animal breeding programmes. 	 Of particular importance

for consideration in programmes designed to utilise maternal effects,

has been the substantial evidence available of a negative genetic

correlation between direct genetic and maternal effects. 	 Van Vleck

(1976) and Baker (1980) have examined predicted responses to selection

when considering the role of a negative genetic correlation between

maternal and direct genetic effect.	 Both concluded there could be

considerable lon g -term advantages in selecting either males or

females or both on maternal and direct genetic effects when considering

selection for weaning weight.	 Baker (1980) also suggested that

consideration should be given to, when utilising antagonistic

selection index procedures, offsetting the undesirable changes

associated with negative genetic correlations between the two

economically desirable characters, maternal ability and weaning

weight.

There have been few reports in the literature of the role of

maternal effects on growth, feed intake and efficiency from birth

to maturity in either laboratory species or domestic farm animals.

No reports appear to be available on the role of maternal effects

on parameters of growth models used to describe the weight age

relationship or the weight feed intake relationship in animals.

As many analyses using growth models include data points prior to

weaning, it is essential that some attempt be made to investigate
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the extent of variation due to the maternal environment on para-

meters of growth models.	 This fact could be of particular

importance when considering the rate parameters of the models

described in Chapter 3, for example k of the generalised Richards'

function and its special cases, or t* and (AB) of the Parks'

function.

The aim of this study was two-fold:

1. to investigate the role of maternal effects on weight, feed

intake and feed efficiency from birth to 84 days old in the

Quakenbush mouse strain.

2. to study the role of maternal effects on the parameters of

Models I to VI considered in Chapter 3.

4.2	 MATERIALS AND METHODS

The second group of mice of the three studied was utilised

to investigate the role of maternal effects on growth.

4.2.1 Preweaning Growth 

The cross-fostering design utilised to enable partitioning of

the maternal effects was as suggested by Rutledge et aZ. (1972) and

is shown in Table 4.1.

Eighty females and twenty males were taken at random from the

unselected line established at the University of New England. 	 Each



TABLE 4.1

CROSS-FOSTERING DESIGNa

Progeny
No.

Cross-foster Dam

Dam 1	 Dam 2	 Darn 3

1
b

1 2 3

2 1 2 3

3 2 3 1

4 3 1 2

5 1 2

6 1 2

7 2 3 1

8 3 1 2

a
Adapted from Rutledge et al. (1972).

b
Numbers refer to actual dam number within set.
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male was randomly assigned to four females with careful avoidance

of full and half sib matings.	 In no instances were full sib or

half sib females allocated to the one sire. 	 Both males and

females were 11 - 12 weeks old at joining.

Dams were checked daily and birth weights of progeny were

recorded within 24 hours of birth. 	 Although some suckling may have

occurred prior to the first weighing, this was considered to have

a minimal effect on birth weight.

Progeny were sexed and identified by toe-notching. 	 Litters

were standardised to 12 for the first 24 hours to help stimulate

maximum lactation yields of the dam (Bateman, 1957).	 Dams were

required to have a total of eight offspring after 24 hours to be

included in the cross-fostering experiment.

After 24 hours, the litter size was reduced to eight and

cross-fostering sets were established between three dams with off-

spring born in the previous 24 hours.	 Each dam retained four of

her own offspring and received two progeny from each of the other

two dams (Table 4.1).	 Assignment was at random, with the proviso

that a male and female were cross-fostered together wherever

possible.	 Of the initial matings, 48 litters satisfied the above

design requirements and were arranged into 16 cross-fostered sets.

A total of 19 sires were represented in the experiment.

From birth to weaning, litters were housed in individual

cages with their natural or cross-foster mother.
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Mice were weighed individually at 0, 3, 6, 9, 12, 15, 18 and

21 days of age to the nearest 0.1 gms.

4.2.2 Postweaning Growth 

All mice were weaned at 21 days of age and placed in individual

cages.	 Feed was supplied as a finely crushed powder and was available

in ad libitum quantities at all times.	 Individual weights and feed

intakes were measured at three-day intervals from 21 to 84 days of

age to the nearest 0.1 gms.

4.2.3 Statistical Methods

The proposed model and design was based on the assumption that

cross-fostering per se had no detrimental effect on growth.

Prenatal maternal effects were approximated by comparing body

weights at birth; however, separation into environmental and genetic

components could not be achieved as they were confounded. 	 The major

difference in prenatal environment between litters (as measured by

birth-weight) can be attributed to genetic differences between the

dams themselves, although these differences are measured as environ-

mental factors in the offspring.

Postnatal maternal effects were calculated by comparing full

sib litter-mates with full sib cross-fostered pairs.	 Since full

sib pairs were assigned at random between the three cross-fostered

dams, any differences in growth can be regarded as environmental,

the dam having the major influence by manipulating the milkflow.
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The phenotypic variance can be partitioned in the following

manner:

	

2	 2	 2
a P = a

DA 

+ G
D 

+ a
D D + a

2 
+

2
 (Willham, 1963)c	 e

A M

2

	

G
D	

= the direct additive genetic variance
A

2

	

oD	 = the maternal additive genetic variance
M

a
D D 

= the direct maternal genetic covariance
A M

2

	

a
c	

= the common environmental variance = 62
ec

2
a
e	

= the residual or error variance = G2
ew

Table 4.2 shows the composition of the genetic covariances

between relatives when maternal effects are considered under the

above model, and illustrates the expectations.

Due to limitations on degrees of freedom using Harvey's Least

Squares and Maximum Likelihood Analysis of Variance (Harvey, 1977),

the data were separated into two groups, cross-fostered and non-

cross-fostered progeny.	 The two models utilised to describe the

data were:

a)
	

Cross-fostered Model 

Y
tijkl	 t 

+ S
ti 

+ C
tij 

+ G
tk 

+ E
tijkl

where A is the overall mean for Yth observation in a cross-

foster set on the l th individual at time t or over time period t.

Sti is the effect of the i
th 

sire



TABLE 4.2

EXPECTATIONS a OF CAUSAL COMPONENTS FOR THE

COVARIANCES AMONG RELATIVES CONSIDERED IN THIS STUDY

Causal Components

Relatives Correlated
DA
	

DM	DA DM	c	 w

Paternal	 Half-sibs 1,4 0 0 0 0

Full-sibs within	 sire

Within	 Full-sibs

1,4

2

1

0

1,--	 +	 .1--2	 2

0

1

0

0

1

a
The subscripts on the causal components denote

direct additive genetic effects	 D
A

additive genetic maternal effects	 DM

covariance of direct additive with

direct maternal effects	 D
A
D
M

common litter or environmental effects 	 C

effects not common to full-sibs	 W
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Ctij is the effect of j th cross-foster dam

mated to i th sire,

G
tk 

is the effect of the k
th 

sex,

Etijk , is the random error.

b
	

Non-cross-fostered Model 

	

*	 *	 *	 *
	Y .. 	 + S . + N .. + Gtk 	 E ..

tijkl	 Pt	 ti	 tij	 tk	 tijkl

the only difference in the terms of two models being that

in Model (b) N refers to the natural dam.

As the data were split lto allow the complete analysis)the

k coefficients or constants were required to enable the variance

components to be equated to their expected mean squares. Grossman

ans Gall (1968) provides a method for computing the k coefficient

matrix. Variance components were obtained by multiplying the

inverse of the coefficient matrix by the estimated mean squares.

Substituting the various components of variance into the

following equations allowed the partitioning of the total variance

into direct genetic, maternal and covariance terms.

2	 2	 2
aD

A+M 
= a

D
A 

+ a
D

M 
+ 2a

D
A
D

M

2	 2
where,	 and	 are the direct and maternal genetic variances
A 

2 
is estimated from the dam component of variance: cross-fostered

progeny

2
GE)

A+M 
is estimated from the dam component of variance: non-cross-

fostered progeny.

(1)



2	 2	 2 , 9
GD
A+M 

- GD
M
 = GD

A
 ' 'aD

A
D
M

The component of direct genetic effects cannot be separated

from the covariance term in equation (2). Assuming equal additive

genetic effects are received by the offspring from the sire and

dam, four times the sire component of variance (4as ) was

2
substituted for a l) .	 Equation (3) provides an estimate of the

A

direct and maternal genetic covariance.

2	 2	 2

= 
aD
A+M 

aD
M
 aD

Aa
D
A
D
M

where, a2
D 7

2
4a

A
S

Substitution of the sire component of variance for the dam

component may cause a bias in the estimation of the covariance term,

aD D in equation (3). As the sire component will not exactly
AM

equal the dam component, due to the exclusion of the dominance effects,

this may result in some bias in the estimates of the covariance.

Further problems may arise if we backsolve to obtain an estimate of

a
	

from equation (2). If the covariance term estimated by equation
D
A

(3) is negative, then negative estimates of the genetic effects for

the dam may be given by equation (2).
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(3)

2

The above models and variance/covariance estimations were
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applied to weights, feed intake, feed efficiency, and weight gain

information collected on the mice between birth and 84 days old.

The same models and estimation procedures were applied to the

individual parameter estimates obtained for the nonlinear models

considered in Chapter 3.

4.3	 RESULTS

4.3.1 Comparisons between means of Cross-fostered and Non-Cross-

fostered Mice for Weight, Weight Gains, Fraction of Maturity, 

Feed Intake and Feed Efficiency

Means for bodyweights of cross-fostered and non-cross-

fostered mice are presented in Table 4.3. 	 No differences in body-

weights at birth between the two groups (P < 0.05) indicated that

there had been random allocation of progeny between dams within a

cross-foster set.	 Similar results were found for comparisons

between bodyweights at all other ages suggesting there were no

significant differences between the groups for maternal influences

on individuals pre- and post-weaning.

Comparisons between means for weight gain (Table 4.4) gave

one significant result, weight gain of the cross-fostered animals

was significantly less (P < 0.05) for the period between 42 and 48

days of age.	 As with bodyweights, no significant differences were

observed between fraction of maturity at any age for the cross-

fostered and non-cross-fostered (Table 4.5).

Analysis of feed intakes between various ages post-weaning



TABLE 4.3

LEAST SQUARES MEANS AND STANDARD ERRORS FOR WEIGHTS

OF CROSS-FOSTERED AND NON-CROSS-FOSTERED MICE

Non-Cross-Fostered	 Cross-Fostered

Age	 Mean (gnis)	 Error	 Mean (grns)	 Error

Birth	 1.535	 0.022	 1.540	 0.019

6 day	 4.613	 0.083	 4.510	 0.074

12	 7.421	 0.140	 7.315	 0.092

18	 9.072	 0.202	 8.973	 0.185

21	 11.085	 0.286	 10.975	 0.250

24	 13.867	 0.389	 13.693	 0.329

30	 20.828	 0.366	 20.778	 0.408

36	 25.175	 0.331	 25.417	 0.282

42	 27.515	 0.306	 27.657	 0.281

48	 28.698	 0.199	 28.522	 0.258

54	 29.828	 0.349	 29.806	 0.258

60	 30.697	 0.365	 30.788	 0.259

66	 31.624	 0.369	 31.550	 0.301

72	 32.168	 0.361	 32.104	 0.266

78	 32.921	 0.378	 32.845	 0.272

84	 33.392	 0.384	 33.278	 0.283
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TABLE 4.4

LEAST SQUARES MEANS AND STANDARD ERRORS FOR WEIGHT

GAIN OF CROSS-FOSTERED AND NON-CROSS-FOSTERED MICE

Period	 (Days)

Non-Cross-Fostered

Mean	 (gms)	 Error

Cross-Fostered

Mean	 (gms)	 Error

0-6 3.078 0.081 2.969 0.087

6-12 2.808 0.121 2.805 0.062

12-18 1.651 0.126 1.658 0.141

18-21 2.013 0.201 2.001 0.084

21-24 2.781 0.326 2.719 0.123

24-30 6.961 0.216 7.085 0.174

30-36 4.347 0.165 4.640 0.220

36-42 2.340 0.132 2.240 0.136

42-48 1.183 0.136 0.865 0.133

48-54 1.130 0.127 1.285 0.155

54-60 0.869 0.130 0.981 0.084

60-66 0.927 0.108 0.762 0.110

66-72 0.544 0.118 0.554 0.094

72-78 0.753 0.103 0.741 0.091

78-84 0.471 0.081 0.433 0.087
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TABLE 4.5

LEAST SQUARES MEANS AND STANDARD ERRORS FOR FRACTION

OF MATURITY (p = W t/A) OF CROSS-FOSTERED AND

NON-CROSS-FOSTERED MICE

Non -Cross - Fostered	 Cross - Fostered

181.

Age	 Mean (gms)	 Error Mean	 (gms) Error

0.047 0.0009

0.139 0.0030

0.224 0.0030

0.273 0.0067

0.335 0.0089

0.417 0.0114

0.626 0.0139

0.759 0.0081

0.827 0.0059

0.855 0.0068

0.890 0.0061

0.920 0.0059

Birth 0.047

6 0.138

12 0.223

18 0.274

21 0.335

24 0.418

30 0.629

36 0.763

42 0.830

48 0.863

54 0.899

60 0.919

66 0.950

72 0.963

78 0.986

84 1.000

0.0009

0.0015

0.0039

0.0056

0.0082

0.0111

0.0093

0.0076

0.0062

0.0062

0.0053

0.0051

0.0046	 0.942	 0.0052

0.0049 0.960 0.0043

0.0120 0.986 0.0025

0.0000 1.000 0.0000
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(Table 4.6) showed significant differences between the two groups

for feed intakes over three periods, 60 to 66 days, 72-78 days,

and 78-84 days.	 As the differences in feed intakes were for

periods when individuals were nearly at their mature weights and

mature feed intakes, these results may reflect random fluctuations

in feeding patterns.	 No significant differences were observed

between the cross-fostered and non-cross-fostered mice in feed

efficiencies measured over the periods from 21 to 84 days of age

(Table 4.7).

4.3.2 Comparisons Between Characteristics of Nonlinear Models 

Estimated for Cross-fostered and Non-Cross-fostered Mice 

The two forms of the Logistic and Gompertz equations (Models

I, VII, and II, VIIIrespectively) and the Parks' equations (Models

VIa, VIb, and XI) were fitted to individual growth data available

on cross-fostered and non-cross-fostered mice.	 Least squares means

of the parameter estimates and points of inflections for the two

groups are presented in Table 4.8. 	 Comparisons between the two

groups showed age,at the point of inflection for Models I, II and

VIII,and weight,at point of inflection for Model II were signifi-

cantly different (P < 0.05).	 However, there were no differences

between the parameters involved in calculations of the co-ordinates

for the point of inflection.

4.3.3 Components of Variance 

a)	 Variance Components  for Bodyweight, Weight Gain, Fraction 

of Maturity, Feed Intake and Feed Efficiency 

Components of variance for bodyweights are plotted in Fig. 4.1.



TABLE 4.6

LEAST SQUARES MEANS AND STANDARD ERRORS FOR FEED

INTAKE OF CROSS-FOSTERED AND NON-CROSS-FOSTERED MICE

Period	 (Days)
Non-Cross-Fostered

Mean	 (gms)	 Error

Cross-Fostered

Mean	 (gms)	 Error

21-24 11.65 0.317 11.59 0.284

24-30 34.24 0.658 34.13 0.696

30-36 41.31 0.503 42.15 0.615

36-42 41.01 0.474 41.31 0.580

42-48 41.20 0.658 42.13 0.621

48-54 41.75 0.501 42.34 0.649

54-60 40.69 0.510 40.20 0.601

60-66 37.67 0.557 38.97 0.668

66-72 39.19 0.719 38.92 1.038

72-78 41.14 0.468 37.73 1.544

78-84 34.81 1.531 30.33 2.204
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TABLE 4.7

LEAST SQUARES MEANS AND STANDARD ERRORS FOR FEED

EFFICIENCY OF CROSS-FOSTERED AND NON-CROSS-FOSTERED MICE

Period	 (Days)
Non-Cross-Fostered

Mean	 (gms)	 Error

Cross-Fostered

Mean	 (gms)	 Error

21-24 0.256 0.021 0.235 0.017

24-30 0.216 0.008 0.208 0.011

30-36 0.108 0.004 0.110 0.006

36-42 0.057 0.004 0.054 0.003

42-48 0.027 0.004 0.026 0.003

48-54 0.030 0.003 0.030 0.003

54-60 0.021 0.003 0.024 0.003

60-66 0.025 0.003 0.020 0.003

66-72 0.015 0.003 0.014 0.003

72-78 0.018 0.003 0.020 0.003

78-84 0.014 0.002 0.014 0.002
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TABLE 4.8

LEAST SQUARES MEANS AND STANDARD ERRORS FOR PARAMETERS

AND POINTS OF INFLECTION OF NONLINEAR MODELS FITTED TO THE

GROWTH DATA OF CROSS-FOSTERED AND NON-CROSS-FOSTERED MICE

Model Character
Non-Cross-fostered

Mean + S.E.

Cross-fostered

Mean + S.E.

A (gms) 32.095 + 0.326 31.898 + 0.331

b 14.505 + 0.269 14.407 + 0.268

Logistic,	 I k 0.107 + 0.001 0.109 + 0.001

POI
WT
	(gms) 16.047 + 0.163 15.949 + 0.165

POI
AGE

 (days) 25.057 + 0.280 24.474 + 0.284

A 30.929 + 0.314 30.567 + 0.320

Logistic,	 VII
k 0.128 + 0.002 0.129 + 0.002

POI
WT

15.465 + 0.157 15.284 + 0.163

POI AGE 20.349 + 0.262 20.182 + 0.235

A 35.096 + 0.205 35.011 + 0.227

b 3.294 + 0.019 3.265 + 0.019

Gompertz,	 II k 0.054 + 0.001 0.055 + 0.001

POI
WT

13.213 + 0.144 12.880 + 0.145

POI
AGE

22.080 + 0.299 21.514 + 0.226

A 35.918 + 0.390 35.666 + 0.373

Gompertz, VIII
k 0.057 + 0.001 0.058 + 0.001

POI
WT

12.880 + 0.127 13.121	 + 0.137

POI
AGE

20.460 + 0.300 19.827 + 0.316

A 37.544 + 0.793 37.212 + 0.699

Parks,	 VIa k 0.033 + 0.002 0.035 + 0.002

t* 4.709 + 0.086 4.700 + 0.081

A 33.796 + 0.381 33.112 + 0.327

(AB) 0.297 + 0.029 0.288 + 0.031
Parks,	 VIb
and XI

C 6.801 + 0.113 6.772 + 0.126

t* 4.386 + 0.430 4.275 + 0.412

T
o

5.018 + 0.112 4.969 + 0.110
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Figure 4.1:	 Components of variation as the percent they represent

of the total variance for bodyweight.
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By definition, the variance due to direct genetic effects (VA),

variance due to common environment (Vec) and the within group error

component of variance (Vew ) sum to 100%.	 The maternal variance

(V) and the covariance between maternal and genetic effects
M

(Cov
AM

) were estimated by the methods presented earlier. 	 The

additive variance after reaching a peak at 21 days of age remained

relatively stable throughout the measurement period.	 Maternal

environmental effects, measured by V ec , rose to a peak at 12 days

of age. After weaning V ec decreased steadily and accounted for

less than 20% of the total variation for most post-weaning traits.

This concurred with results reported in a number of other studies.

Eisen (1976) reviewed results from several experiments suggesting

that postnatal maternal effects accounted for between 50 and 70% of

the total variation in bodyweight between 12 and 14 days of age.

The results presented here suggest that the variance due to direct

maternal effects (V) was 31% for weight at this age. 	 However, as
M

discussed earlier, since the covariance term was negative throughout

the measurement period, caution must be used in the interpretation

of the role of the maternal genetic variance.	 Except for the 12

day and 30 day weight measurements, maternal genetic variances

remained between 5 and 25%.

The residual expressed as the within litter 	 component(Vew)

decreased pre-weaning as the additive genetic component increased.

After weaning the V ew component increased rapidly so as to represent

56% of the total variance by 42 days of age. 	 For the period from

42 to 84 days of age Vew remained high and always represented more

than 40% of the total variation.
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The pattern for components of variation for weight gain is

presented in Fig. 4.2.	 Both negative and positive estimates for

the covariance between direct genetic and maternal genetic effects

were observed for weight gain.	 The estimated maternal influences

on weight gain between 6 and 12 days of age were high; V M = 71.9%,

V
ec 

= 50.3%, and Cov
AM
 = 39.8%.	 Negative covariance estimates

were obtained for weight gain intervals between 48 days and 78 days

of age.	 Hanrahan and Eisen (1973) reported a negative covariance

estimate for 3 - 6 week weight gain in males.	 Young and Legates

(1965) reported positive covariances for 3 week and 6 week weights

and weight gain over the same time interval. 	 Hanrahan and Eisen

(1973) also reported considerable additive maternal effects on body

weights and weight gains; however, their results were obtained by

assuming Vec = 0.

The negative variances obtained for additive maternal effects

for gain between 12 - 18, 54 - 60, 60 - 66 and for 30 day weight were

theoretically impossible. This indicates the possible biases

introduced into the analyses by assuming that the additive genetic

variance for dams can be estimated by the sire component of variance.

This may also be a reflection of the fact that quadratic unbiased

estimators of variance components can be negative.

The amount of variation associated with the components V ec and

V
ew 

combined was high for all weight gain periods, only for the period

from 18 - 21 days did the variation attributable to these sources

fall below 55%.	 The variation due to common environmental effects

between full-sibs decreased in importance throughout the measurement

period, so that only two values greater than 10% were recorded after

36 days of age.	 Residual error (Vew ) accounted for sixty or more

per cent of the total variation in weight gain after 36 days of age.
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Figure 4.2:	 Components of variation as a percent they represent

of the total variance in weight gains.
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Variance components for fractions of maturity expressed as

percentages of the total variance are presented in Fig. 4.3.	 As

was found for body weight, the covariance term was negative through-

out the measurement period.	 The variation due to common environ-

mental influences remained low throughout.	 With the exception of

the value obtained for 78 days of age, V ec was less than 10% after

30 days of age.	 Similarily, the maternal variance (V M ) was low as

compared with values obtained for body weight, a value of -27% was

recorded for the 30 day measurement.	 Vew continued to increase

throughout the growth period and accounted for more than 40% of the

variation in measurements after 24 days of age, again the exception

being the value for 78 days of age.

The components of variation for feed intake, as presented in

Fig. 4.4, were marked by the 'see-sawing' pattern in all components.

The additive genetic variance tended to account for significant

proportions of total variance, usually being between 30% and 70%,

never below 20% and rising to a peak of over 85% for 36 - 42 day

food intake.	 The proportion of the variance due to maternal influence

(V
ec

) remained at or below 20% for the periods from 21 to 84 days.

In contrast to this result, the variance due to direct maternal effects

was mostly above 20%, this was against a back-drop of negative

covariance terms throughout.	 Because direct additive genetic effects

(V
A
) tended to be high for most feed intakes, residual error rarely

accounted for more of the variation in feed intake than genetic

effects.

The components of variation for feed efficiency (Fig. 4.5)

show that, unlike those for feed intake, direct genetic effects (VA)
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Fi g ure. 4.3:	 Components of variation as the percent they represent

of the total variance for fraction of maturity.
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Figure 4.4:	 Components of variation as a percent they represent

of the total variance for feed intake.
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Figure 4.5:	 Components of variation as a percent they represent

of the total variance in feed efficiencies.
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accounted for much lower proportions of the total variance.	 The

additive genetic component estimated from the sire variances ranged

from 3.08% for efficiency between 48 - 54 days of age, to 37.11% for

the period from 30 - 36 days.

The maternal genetic variances (V M ) for feed efficiency were

initially high, represented by 37.18% for 21 - 24 day period, then

declined through to the period from 54 - 60days of age where estimates

again accounted for a large proportion of the variation.	 If the

maternal influence is estimated simply by the variance due to common

environmental effects (vec ), its role was much less important than

that suggested by V M , accounting for less than 20% of the total

variation for all but two periods (31.9% and 32.3% for the periods

21 - 24 days and 42 - 48 days respectively).	 The V	 componentew

represented more than 45% of the total variation for all measured

periods.

b)	 Variance Components for Parameters and  Points of 

Inflection of Nonlinear Growth Models 

As the estimates for direct maternal effects and covariances

between additive genetic and maternal effects were consistently

biased,by using the sire component of variance to estimate the dam's

direct genetic effects for the analyses involving weights and feed

intakes, the total variance for the parameter estimates was not

partitioned into the V M and 
CovAM 

components.

Components of variation as the percent they represent of the

total variance for the parameters and characteristics of the non-
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linear models are presented in Table 4.9. 	 The proportion of the

total variance due to additive genetic effects for a parameter were

consistent for alternative parameterisations of the Logistic and

Gompertz models.	 For instance, the percentage value for the

additive variance of the asymptotes for Models I and VII were 38.43%

and 34.04% respectively. 	 The role of the maternal environment, as

estimated by Vec , was low for all estimates of mature weight.	 The

V
ec 

estimates for the maturing rate parameter (k) were greater than

those for mature weight (values ranged between 16.52% for Model VIa

and 35.67 for Model VIII).	 Eisen et al. (1969) reported intraclass

correlations for k, estimated by the Logistic and Gompertz equations

(Models I and II), of 0.24 and 0.38 respectively. 	 Rutledge et al.

(1972) reported heritabilities of 0.18 and 0.00 for the asymptote

and rate parameter of the Logistic equation (Model I), for both

parameters the within component of variance accounted for more than

80% of the total variance.

The proportion of the variation attributable to the residual

error, Vew , was consistent when comparing the same parameter across

Models I, II, VII and VIII.	 Percentage V ew estimates for parameter

A were between 48.91% and 53.30%, between 23.42% and 37.08% for

parameter k and 55.75% and 43.75% for the two b parameter estimates.

In most cases, the V ec component accounted for less than 15% of the

total variation for the parameters of the Parks' models, thus neces-

sarily, the residual variance was closely allied to the variation

due to additive genetic effects.	 The two exceptions were for para-

meters k and t* estimated by Model VIa. 	 If the negative value of

-2.62% for k is considered as being equal to zero the variance for

this parameter was governed predominantly by additive genetic effects



TABLE 4.9

COMPONENTS OF VARIATION AS A PERCENT THEY REPRESENT

OF THE TOTAL VARIANCE FOR CHARACTERS OF THE NONLINEAR MODELS

Variance Components

Model Character V
A

V
D + M

V
ew

V
ec

Logistic,	 I A 38.43 89.07 48.91 12.66

b 15.56 130.31 55.75 28.69

k 33.18 162.23 34.54 32.27

POI
WT

38.43 89.06 48.91 12.66

POI
AGE

58.96 147.00 19.03 22.01

Logistic,	 VII A 34.04 91.53 51.59 14.37

k 27.49 170.16 37.08 35.67

POI
WT

34.04 91.53 51.59 14.37

POI
AGE

61.74 149.63 16.29 21.98

Gompertz,	 II A 35.61 83.21 52.49 11.90

b 43.18 95.55 43.75 13.07

k 49.04 159.19 23.42 27.54

POI
WT

35.61 83.21 52.49 11.90

POI
AGE

62.03 118.62 23.82 14.15

Gompertz,	 VIII A 34.33 83.80 53.30 12.37

k 41.09 174.14 25.65 33.26

POI
WT

34.34 83.80 53.30 12.37

POI
AGE

52.48 157.55 21.25 26.27

Parks,	 VIa A 53.86 102.46 33.99 12.15

k 86.11 152.22 -2.62 16.52

t* 33.18 117.72 45.69 21.14

Parks,	 VIb and XI A 12.83 29.47 83.01 4.16

(AB) 80.00 84.76 18.81 1.19

c 53.72 97.04 35.45 10.83

t* 19.86 45.52 73.72 6.41

T
o

45.47 67.70 48.98 5.56

196.
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(86.11%) and maternal influences (V ec = 16.5n).

The dam component of variation which involves direct genetic,

maternal genetic and covariance terms was always greater than the

additive genetic variance, estimated from the sire component of

variance, and in several instances values of more than 100° were

observed.

4.4	 DISCUSSION

Due to inadequacies in the data set and in the computer pro-

grammes available at the time this study was undertaken, it was not

possible to estimate direct maternal variances and direct genetic

and maternal covariances free from biases due to dominance components

of variance.	 By assumin g that the sire component of variance was

an adequate indicator of the dam's additive genetic variance, the

variance due to maternal genetic effects and the covariance between

the two were estimated.	 The results presented suggest that for all

traits considered, there were both negative and positive correlations

between the direct and maternal genetic effects operating at various ages

throughout the growth period from birth to twelve weeks of age.

From the analyses on body weights at various aces, it was

apparent the maternal influences were greatest prior to weaning and

that they decreased throughout the measurement period.	 If the

negative covariance term was in fact accurate, the resultant ne ga-

tive correlation estimates between direct genetic and maternal

genetic effects could decrease expected responses to selection for

body weights, weight gains or fraction of maturity at a specific
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age.	 However, the extremely erratic nature of the estimates for

the maternal variances, in some instance these being negative, and

covariances for weight gain cast doubts on the accuracy of the

results for weight gain. 	 There appears to be conflicting evidence

in the literature on both the direction and magnitude of the covar-

iances between maternal genetic effects (Young and Legates, 1965;

Hanrahan and Eisen, 1973).	 Results presented here appear to be

consistent with other estimates in the literature when examining

estimates at different stages of growth.

As no values for the role of maternal effects on feed intake

and feed efficiency post-weaning were found in the literature, the

results presented herein should be treated with caution. 	 Analyses

of feed intake variances showed that the combined maternal influences,

measured by the common environmental variance, fluctuated at low

proportions of the total variance throughout the measurement period.

Results obtained for the portions of the total variance attributable

to the various components for feed efficiency suggested that random

environmental fluctuations were the most significant causes of

variation between individuals.	 Both additive genetic and maternal

effects accounted for less than 40% of the variation over all measure-

ment periods.

The partitioning of components of variation for the

parameters of the growth models suggested that

maternal genetic variance and the covariance between direct and

maternal genetic effects would	 have important implications

on breeding programmes involving the parameters of any model con-

sidered in this study. 	 This is particularly true for the rate para-
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meters k and to a lesser extent, t* of the Parks' models. 	 The low

combined estimate of the maternal component, V ec , obtained for the

parameters of Parks' weight-feed intake models, VIb and XI, suggests

that selection, based on the genetic and phenotypic correlations

(reported in Chapter 3) between these parameters and pre-weaning

weights, would produce correlated responses free of the confounding

influences of the maternal environment.

The results found during this study would suggest that, in

accordance with statements by Willham (1980) and Baker (1980), there

appear to be negative genetic correlations between the direct maternal

and additive genetic components of several growth traits.

Careful consideration should be given to incorporating the variable

role of maternal effects on growth in animal breeding programmes,

particularly to pre-weanin g weight or growth to weaning.



CHAPTER 5

DISTRIBUTIONAL AND STATISTICAL PROPERTIES

OF NONLINEAR GROWTH MODELS

5.1	 INTRODUCTION

Two distinct approaches dominate the growth curve literature,

the 'biological' and the 'statistical'.	 Until now, the 'statistical'

approach has been almost purposely avoided in the preceding chapters.

The premise has been to develop an awareness and understanding of the

growth process, particularly in relation to the application of non-

linear models.	 There is certainly no lack 	 of biologically-based

models in the literature.	 However, the works of Brody (1945),

Kleiber (1961) and more recently, Parks (1982), suggest that our

knowledge of growth is uncertain, and constantly unfolding. 	 With the

increasing use and application of nonlinear models, we are constantly

asking questions about the distributional and statistical properties

of the models and the estimated parameters.

Geneticists particularly should be concerned with problems

associated with the application of parameter estimates and derived

characteristics from the parameters to analysis of variance techniques.

Grossman (1969) found the intrinsic growth rate constant, k of

the logistic equation, to 'appear near enough to normal

200.
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to warrant analysing the data without transformation'.	 This was

the only study cited where the distributional properties of the para-

meters were considered when nonlinear models were applied to animal

data and subsequently used in genetic analyses.

In linear regression, the least-squares estimators of the

parameters, with an independently and identically distributed error

term, N ti (0, o), have the desired properties of being unbiased,

normally distributed and achieving minimum variance bound (MVB),

whereas nonlinear regression models may only achieve these properties

asymptotically.	 Until recently, there have been no objective guide-

lines to determine the extent of bias, non-normality, or the extent

to which the variance may exceed the MVB. 	 The magnitude to which

these properties remain unfilled differs with the model under consid-

eration and its parameterisation, and may decrease with increasing

sample size.	 If a choice amongst several nonlinear models is to

be made, particularly between those suitable for biological inter-

pretation, one should choose a model whose behaviour closely approxi-

mates that of a linear model.

A number of statistical tools are now available to aid in the

choice of nonlinear models.

a)	 Box (1971): Bias in nonlinear parameters: M.J. Box

(1971) suggested bias in the least-squares estimates of the parameters

in a nonlinear regression model, given a specific data set, can be

estimated by,

2	 nn	 T	 n

2	

T	 \

E($) = -	 (	 F TF )-1
	

F Ttr ;(	 F 'F )' Hp i
V Vv=1	 11=1 p	 v., V V

(5.1)
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where, F is the lxp vector of first derivatives and

H is the pxp matrix of second derivatives, of the model with

respect to each of the p parameters, evaluated at the conditions of

the pth observations, p = 1, 2, .... n.

v is the index determining the order of the variance - covariance

matrix of the parameter set.

a 2 is the error variance and assumed to be constant.

The calculated pxl vector (I) is the bias, representing the

discrepancy between the estimate of the parameter and its true value.

Gillis and Ratkowsky (1978) and more recently Ratkowsky (1979, and

unpublished 1981), have examined a number of models using Box's

measure of bias.	 They concluded that the formula gave predictions

of bias to the correct order of magnitude and was also able to give

a good indication of the nonlinearity of the models considered.

Large bias has generally been associated with excess variance and

a high degree of non-normal behaviour, and Ratkowsky (1979) suggests

this is a measure of the nonlinear behaviour of the model.

It should be noted from the actual formula 5.1, that there

is a dependence on the variance, and thus a dependence on the sample

size.	 Box (1971) also noted that the bias estimated is directly

proportional to the experimental variance and the standard errors

of the least squares parameter estimates will be an order of magni-

tude greater than the bias of each estimate.

b)	 Bates and Watts (1980): Relative Curvature Measures 

of Nonlinearity:	 Bates and Watts (1980) have suggested

two measures of nonlinearity of a model based on the geometric con-

cept of curvature.	 They have shown that the nonlinearity of a
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model can be separated into two components of curvature, an 'intrin-

sic' curvature resulting from approximating the curved solution

locus by a plane, and a 'parameter-effects' curvature resulting

from replacement of the curved parameter lines on the approximating

tangent plane by a grid of straight, equispaced and parallel lines.

Bates and Watts have shown that Box's (1971) bias measure is closely

associated with their measure of parameter effects curvature.

They also demonstrate 	 in studies of 24 model-data set combin-

ations that the parameter-effects curvature was greater than the

intrinsic curvature.	 This finding supports Gillis and Ratkowsky's

(1978) evidence from a simulation study that nonlinearity due to the

parameterisation is more important than intrinsic nonlinearity and

also that the bias measure of Box (1971) can serve as a useful

indicator of overall nonlinearity of a model.

The measures of curvature are standardised by the scaling

factor of the standard radius, p = s45 where p is the number of

parameters and s is estimate of the standard deviation.

Multiplying both intrinsic and parameter effects curvatures

by the standard radius relates both measures to the solution locus.

To determine the impact of the nonlinearity upon the confidence

region of the solution locus, the scaled curvatures must be compared

with 1/ /F, where F = F (p, v; a), and is obtained from a table of

the F distribution with numerator degrees of freedom equal to the

number of parameters p, and the denominator degrees of freedom

equal to the residual degrees of freedom v, and significance level

a.	 If the intrinsic curvature is small compared to the critical

value, the solution locus is relatively flat over the confidence
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region area and the assumption of planarity can be accepted.	 If

the parameter-effects curvature is small compared to the critical

value, then the uniform co-ordinate assumption is considered good

over the region of interest.

5.2	 MATERIALS AND METHODS

A detailed description of the mouse population, management

practices used and measurements recorded were given in Chapter 2.

5.2.1	 Distribution Properties of the Model  Parameters and

Derived Characters

Means, variances and measures of normality, skewness and

kurtosis, for function parameters and characters, previously utilised

and described in Chapter 3, were calculated using Biomedical Computer

Programmes Package (Dixon and Brown, 1979).

The effect of reducing the number of data points used in the

nonlinear estimation process was examined. 	 However, as the number

of analyses required to examine all models would be extremely large

only two models were considered, the Logistic (Model I) and Gompertz

(Model II).	 The data structures examined are presented in Table

5.1.	 The choice of the data sets described in Table 5.1 was

arbitrary. The aim was to assess the minimum number of data points

required to obtain accurate estimates of model parameters.



TABLE 5.1

NUMBER AND STRUCTURE OF DATA POINTS FOR

REDUCED DATA SETS

Data Set
Number of
Data Points

Ages	 (day)	 for Included Data Points

I	 (

II	 (

0-84)

0-84)

29

15

0,

30,

57,

84.

0,

54,

3,	 6,	 9,	 12,	 15,	 18,	 21,	 24,	 27,

33,	 36,	 39,	 42,	 45,	 58,	 51,	 54,

60,	 63,	 66,	 69,	 72,	 75,	 78,	 81,

6,	 12,	 18,	 24,	 30,	 36,	 42,	 48,

60,	 66,	 72,	 78,	 84.

III	 (	 0-78) 27 0,	 3,	 6,	 9,	 12,	 18,	 21,	 24,	 27,	 :30,

33,	 36,	 39,	 42,	 45,	 48,	 51,	 54,	 57,

60,	 63,	 66,	 69,	 72,	 75,	 78.

IV	 (	 0-78) 14 0,	 6,	 12,	 18,	 24,	 30,	 36,	 42,	 48,

54,	 60,	 66,	 72,	 78.

V	 (	 0-72) 25 0,	 3,	 6,	 9,	 12,	 15,	 18,	 21,	 24,	 27,

30,	 33,	 35,	 39,	 42,	 45,	 48,	 51,	 54,

57,	 60,	 63,	 66,	 69,	 72.

VI	 (	 0-72) 13 0,	 6,	 12,	 18,	 24,	 30,	 36,	 42,	 48,

54,	 60,	 66,	 72.

VII	 (21-84) 22 21,	 24,	 27,	 30,	 33,	 36,	 39,	 42,	 45,

48,	 51,	 54,	 57,	 60,	 63,	 66,	 69,	 72,

75,	 78,	 81,	 84.

VIII	 (21-84) 11 21,	 27,	 33,	 39,	 45,	 51,	 57,	 63,	 69,

75,	 81.

205.
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5.2.2	 Correlation Structure Between Parameters of the

Same Model

The mean and range of the correlations between parameters

of the same model obtained during the least-squares estimation and

iteration of the model fitting were examined. 	 Many criticisms of

nonlinear analyses have been directed toward the lack of independence

between parameters of the same model. 	 The extent of the correlations

between parameters estimated during the regression process is an

indication of the dependence.

5.2.3	 Bias and Nonlinearity Measures on the Models 

Investigated and Their Structural Parameters 

A simulation study was undertaken to examine the properties

of the models and their structural parameters, (partial derivatives

for each model are given in Appendix 1.). 	 One thousand pseudo-

random samples of size n = 29 were generated with the variance of

weight, assumed constant on the log scale, i.e. the error structure

was assumed mutiplicative.	 Therefore, the data set was of the

form

Y t = log Wt + Et

where, for example W t = A (1 + be-kt)-1

for t = 0, 3, 6, 	  , 84 .

The random variables, c
t' 

were generated as stochastically
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independent and normally distributed with mean zero and variance 62 ,

thus

,
-N (log W

t , a2 ).

The parameter values, for functions involving weight and

time, were estimated as the mean values obtained for the logistic

function from the analyses described in Section 5.2.1.	 Similarly,

the error variances used in the simulation study were estimated from

the analyses described in Chapter 3. 	 As only the asymptotic rela-

tionships were under consideration and the same 1000 data sets were

used for each equation, direct comparisons between the five models

involving weight versus time data points can be made.

The bias can be simply estimated as

b=q)*-
/N.

(I)

where cp is the parameter value supplied as the 'true' value

= (
1/

N)
i=1

where,* is the mean of the sampling distribution, and

cp. is the parameter value obtained from the sample.

In addition to the parameter biases, estimated by simulation,

estimates of Bates and Watts' (1980) relative curvatures measures of

nonlinearity were calculated.	 Information on a random sample of

Y
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10 individuals drawn from the analysed population was used to obtain

estimates of "intrinsic" and "parameter effects" curvature. 	 A

programme supplied by Dr. D. Ratkowsky (Division of Mathematics

and Statistics, CSIRO, Tasmania) and modified to the U.N.E. computer

system, provided the above measures of nonlinearity.

5.3	 RESULTS

5.3.1	 Distribution Properties of the  Model Parameters and

Derived Characters 

The results of the analyses for the six models are presented

in Table 5.2.	 The large number of individuals involved in these

analyses should provide a representative sample of the population.

The means and variances shown for each parameter and derived characters

were not corrected for sex or group effects.

For each model the measures of deviation from normality,

skewness and kurtosis, indicate distinct non-normal distributions

in parameter estimates.	 Comparisons between the two forms of the

Logistic, models I and VII, and the Gompertz, models II and VIII,

suggest that the distributions for all parameters were similar,

with exception of the asymptote parameter, A, for models I and VII

(a skewness value of 0.12 for both models). 	 For these four models,

the distribution of the parameter A was positively skewed, when

different from zero, and negatively skewed for the k parameter.

However, for the Parks weight/age model, Model VIa, both A and k

had positively skewed distributions, whilst estimates of the para-



TABLE 5.2

MEANS, VARIANCES AND MEASURES OF NORMALITY FOR

NONLINEAR MODELS

209.

Parameter	 Mean

LOGISTIC	 A	 31.97

Model I	 b	 15.58

k	 0.123

POI age	 22.80

POI weight	 15.98

Model VII	 A	 31.26

k	 0.137

POI age	 18.77

POI weight	 15.62

GOMPERTZ	 A	 35.00

Model II	 b	 3.27

k	 0.060

POI age	 19.75

POI weight	 12.88

Model VIII	 A	 34.68

k	 0.061

Variance Skewness' Kurtosis'

13.52 0.12 -0.38

6.48 0.68** 1.47**

0.002 -0.36* -0.06

7.50 1.16** 2.81**

3.37 0.10 -0.36

12.75 0.12 -0.38

0.002 -0.21* 0.72

5.36 0.84** 1.62**

3.18 0.12 -0.38

21.17 0.43* 0.42

0.63 2.63** 22.32**

0.0001 -0.48** 0.40

0.62 1.65** 7.62**

2.87 0.42* 0.32

19.93 0.30** -0.11

0.0001 -0.44** 0.45

POI age 18.69 8.08 1.35** 4.00**

POI weight 12.76 2.70 0.30 -0.11

PARKS A 37.06 48.57 0.89** 3.60**

Model	 VIa k 0.036 0.0001 0.84** 0.77

t* 4.99 1.08 -0.21* 0.28

Model	 VIb A 33.65 20.36 0.65** 3.91**

and	 XI (AB) 0.400 0.055 2.11** 5.56**

C 6.79 0.70 0.54** 0.55

t* 4.99 16.77 2.21** 7.62**

T
o

5.09 17.52 0.65** 0.59

1 * P < .05 , ** P < 0.01.
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meter t* exhibited a negatively skewed distribution (-0.21). 	 The

parameter b, for Models I and II, had a positively skewed distribu-

tion, quite markedly so for the Gompertz model (2.63).	 The degree

of skew obtained for the parameters of the Parks' models VIb and

XI indicates distinctly non-normal behaviour in their respective

distributions.	 All parameters exhibited positive skewness for

their distribution of estimates for this sample of the total popu-

lation.

The results from the measures of kurtosis were less pro-

nounced.	 For Models I, II, VII and VIII the values obtained for

parameters A and k are not significantly different from 0 and there-

fore could be representive of normal distributions.	 The values

for parameter b, 1.47 for Model I and 22.32 for Model II, illus-

trates a peaked or leptokurtic distribution in actual parameter

values.	 The large deviations from normality for parameter b are

also reflected in the distributions for age at the point of inflec-

tion for these two models.	 Both showed positively skewed and

leptokurtic distributions (1.16 and 2.81, for Model I, and 1.65 and

7.62 for Model II).	 A similar result is evident for Models VII

and VIII, although the parameter b is not involved in the calcula-

tion of the age at the point of inflection.

The results for the measure of normality for the Parks'

models, VIa, VIb and XI shows that these model types, when fitted

to individual information, gave parameter estimates in the population

that were markedly non-normal. 	 This was particularly evident for

the combined models VIb and XI, where all parameters had distribu-
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tions that were positively skewed and only the parameter C, repre-

senting estimated mature feed intake,and the parameter T o , which

is directly related to C (To = A/C), were not leptokurtic.

5.3.2	 Reduced Number and Altered  Structure of the Data

Points 

Results from altering the number of data points and struc-

ture of the data are shown in Table 5.3. 	 The data presented are

for the 379 male and female mice in Group 1 (see Chapter 2, Section

2.2.1).

Paired t- test comparisons between the mean values for the

full data set, Type I, and values for the reduced models show that

reducing the number of data points by up to 4 measurements from the

endpoint, that is 12 days, had little effect on the estimated para-

meter values.	 However, by reducing the period of measurement from

0 - 84 days (Type I and II sets) to 21 - 84 days (Type VII and VIII

data sets) significantly altered the parameter estimates.	 Note,

because the variances for the parameters increased considerably for

reduced data sets VI, VII and VIII caution should be taken when

interpreting levels of significance belowa= 0.05, and also in light

of the apparent skewness in some parameter distributions (Table 5.2).

Reducing the number of data points whilst maintaining the

same endpoints in the data structure, for example comparisons between

Type I and Type II data sets or Type III and Type IV data sets, had

no apparent effects on the parameter means or errors for the Gompertz
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model for periods up to and including 78 days of age. 	 With the

exception of the b parameter, estimated by using data set Type IV

(0 - 78 day in 6 day intervals) the same result was found for the

Logistic model.	 Parameter estimates based on data sets for the

age interval from 0 - 72 days, with measurements every 3 days, did

not significantly alter the mean parameter estimates.	 Over the

same age interval, but with measurements every 6 days, mean and

variances for the parameters changed considerably.	 No t- test

comparisons were made for the Gompertz parameter k for data sets

VI, VII, and VIII because of the large differences in the variances.

5.3.3	 Correlation Structure Between Parameters of the

Same Model 

The means for the correlations between parameters, estimated

during the actual nonlinear regression analysis, and the range of

values obtained for all individuals are presented in Table 5.4.

The mean correlations between A and b for both the Logistic,

model I and Gompertz, model II, were very similar, 0.2564 and 0.2550,

although the range was greater for the Gompertz model.	 The corre-

lations between A and k for the two Gompertz models were higher

than those between A and k for the two Logisitic models. 	 However,

the correlations between b and k were lower for the Gompertz model,

0.2039, when compared with the Logistic model, 0.5418, though the

range of correlations obtained was much greater for the Gompertz,

-0.438 to 0.380 compared to 0.216 to 0.640. 	 The correlation between

A and k for the Parks weight/age model, model VIa, was -0.8963, with
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values ranging between -0.999 to -0.634.

The range of values for the correlations between parameter

estimates for Parks' models, Model VIa and VIb and XI, were mostly

from both ends of the scale, i.e. -1.0 to 1.0.	 Although the mean

correlations between parameters were quite low in some instances,

0.0513 between parameters A and C, and 0.0702 between parameters

(AB) and C, the large ranges of values makes single point interpre-

tations based on the means difficult.

5.3.4	 Measures of Nonlinearity  for Nonlinear Models and

Model Parameters 

Table 5.5 gives the results obtained for four alternative

appraisals of nonlinearity for the seven models considered through-

out this study.	 Both the intrinsic and parameter-effects curvature

may be assessed by comparing them with the critical 1/IF. 	 The

value for a < 0.05 for models I, II and VIa is 0.5793, for models

VII and VIII the value is 0.4856, and for Parks' models VIb and XI

the critical value is 0.6226.	 It can be seen that all models have

acceptable intrinsic curvatures, that is, the solution locus may be

acceptably approximated by a plane. 	 In contrast, all models have

unacceptable parameter-effects curvatures. 	 The worst behaved models

being the two forms of the Parks' models.

Assessment of the biases inherent in the estimation proced-

ure was examined by two methods, estimation by simulation and utili-

sing equation 5.1 (page 201) . 	 The bias calculated by equation 5.1

shows general agreement with the bias estimated by simulation.



TABLE 5.5

MEASURES OF NONLINEARITY FOR NONLINEAR MODELS AND MODEL PARAMETERS

Model
Bias %	 Bias %	 Parameter
From	 Calculated	 Effects

Simulation	 (Box, 1971)	 Curvature'

Intrinsic,
Curvature)

Logistic,	 A -0.0265 0.0582

Model	 I	 b 0.2891 0.1595 0.6435** 0.073:3

k 0.0243 0.0100

Logistic, A -0.0406 0.0221 1.0212** 0.159

Model	 VII	 k 0.7610 0.7001

Gompertz, A -0.9280 -0.6829

Model	 II	 b 0.5877 0.3042 1.8132** 0.0819

k 0.2623 0.1161

Gompertz, A -0.6663 -0.3118 2.7852** 0.2787

Model VIII k 0.5921 0.4365

Parks,	 A 0.3263 0.2211

Model	 VIa k 5.6521 2.3573 15.5641** 0.2733

t* 10.1859 8.5995

Parks,	 A - 0.427

Models	 (AB) - 16.368 35.6623** 0.2992

VIb and	 C - 3.792

XI	 t* - 15.621

* P < 0.05;	 ** P < 0.01

1 Critical Value 1//F, where F = (p, v; a); where P = number of
parameters, v = residual degrees of freedom.
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For convenience and ease of comparison both are presented as per-

centages.	 Reparameterisations of Models VII and VIII to their

model general forms, Models I and II improved the measures of non-

linearity with parameter biases in the estimates decreasing, for

example -0.0406% to -0.0265% for parameter A of the Logistic

models.

All parameters of the Parks' model, with exception of

parameter A, the estimated mature weight, show unacceptably high

percentage bias when compared with alternative model descriptors.

The Parks' input/output models, VIb and XI, were not included in

the simulation exercise and therefore percentage biases based on

simulation were not available for the parameters of these models.

5.4	 DISCUSSION

The results presented for skewness and kurtosis on the

parameters of each model suggest that careful consideration should

be given to techniques of analysing and utilising the different

model parameters.	 Transformations of the parameter estimates may

overcome some problems of non-normality for parameters, however,

it is doubtful that this would be possible for all parameters of

the Gompertz and Parks' models,whilst still maintaining meaningful

interpretations of the parameters.	 The correlated error structure

associated with data of weight/age or weight/feed intake form can

cause considerable problems.	 Using ordinary least-squares pro-

cedures correlated errors result in an under-estimation of the

covariance matrix of the parameter estimates.	 This problem was
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first encountered when initiating the simulation exercise and although

simulation using a correlated error structure was considered, as the

assumptions would be vague and the exact nature of the covariance matrix

difficult to define, an independent error structure was assumed.

This may account for the discrepancies between the estimates of bias

by simulation when compared with those obtained by equation 5.1.

Although, this situation may affect decisions on which model to

ultimately use, any selection programme using parameters of a model

as selection criteria should be unaffected.	 In using truncation

selection based on the criteria of a parameter or parameter set the

under-estimation of the covariances, due to correlated errors, will

apply to each animal and therefore affect all to the same extent.

In terms of the two measures of normality, skewness and

kurtosis, some parameters estimated for this population of mice,

show considerable deviations from normality. 	 The distribution of

the parameters for the Logistic models (Model I and VII) were close

to normal, while those of the Parks' models (Models VIa, VIb and

XI) were markedly non-normal.

Correlations between parameters estimates (Table 5.4) concur

with one of the most quoted problems associated with using nonlinear

models, that the parameters are not independent and therefore biases

would occur in utilising them as selection criteria. 	 Certainly,

the results suggest that there is problems with the high degree of

association between some parameters. 	 This problem is further exag-

gerated by the correlated errors associated with measurements taken

on the same individual. 	 However, the large range of correlations
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obtained for individuals in this population would suggest, that

there may be instances where the correlations between parameters

estimated for an individual would be low.

The fundamental theme throughout this chapter is that in

choosing a nonlinear model, the user should be seeking one whose

behaviour closely approaches that of linear models, that is, given

the assumption that the stochastic error is independently and

identically distributed, the least squares estimators of the model

parameters should be close to being unbiased, normally distributed

and having the minimum possible variance. 	 Given these conditions

and good initial estimates of the parameters, the Gauss-Newton

iterative selection should converge quickly to the least squares

solutions.	 This will provide an asymptotic covariance matrix which

should closely approximate an unbiased estimate of the true covari-

ance matrix.	 Ratkowsky (1979) suggested percentage biases less

than 1% should provide parameters whose behaviour is guaranteed to

be normal.	 From the results presented here it would appear that

the two forms of the Logistic and Gompertz models would satisfy this

criteria.	 All parameters of these models had biases less than 1%

when computed either by simulation or equation 5.1. 	 In direct con-

trast to this result, the parameters of the Parks' models, except

parameter A, had bias estimates greater than 1%.	 The extremely

high biases associated with the parameter t* is probably due to the

fact that this parameter occurs more than once in both models VIa

and XI.	 Ratkowsky (pers. comm) has suggested reparameterisation

of the models would possibly alleviate the problem. 	 However, re-

parameterisation of the models could remove any biological inter-
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pretation that could be placed on the model parameters.	 High

degrees of parameter effects curvature, as found for all models,

suggest that one or more of the parameters of a model are biased.

This was particularly evident for the Parks' equations. 	 Models

with both significant parameter effects curvature and highly biased

parameter estimates have a variance well in excess of the minimum

variance bound (Bates and Watts, 1980).

Utilising parameters of nonlinear models as possible sel-

ection criteria has some major drawbacks, possibly the most signi-

ficant of these is the early estimation of mature weight, usually

estimated by the parameter A.	 This problem was examined by alter-

ing the structure of the data set and changing the number of data

points available. 	 It was shown that for the two models considered,

reducing the final endpoint of measurements by 12 days did not

significantly affect the parameter estimates, as long as the time

interval between measurements was not increased (that is, from 3 to

b days).	 However, by changing the initial age of first measurement,

from birth to 21 days of age, parameter estimates for both models

changed significantly. 	 It should be remembered that this data

structure, with measurements beginning at 21 days of age and finishing

at 84 days, is the same as was used for the Parks' models VIb and

XI.	 The failure of both the Gompertz and Logistic models to give

similar means and variances for the parameter estimates with this

particular data structure was undoubtedly due to a lack of a true

inflection point in the actual data.

From the results presented and the discussion above it is
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apparent that, on the criteria examined and within the overall aim

of this chapter, the generalised form of the Logistic model (Model

I) provided the best fit of the data. 	 The parameters of this

model most closely approximated a normal distribution, had the

least biased parameters estimates, the smallest intrinsic curvature

and parameter-effects curvature and exhibited the most stable cor-

relations estimates between parameters during the estimation

process.



GENERAL CONCLUSIONS

From evaluations of farm animals there appears to be certain

growth patterns that are considered more desirable than others, for

mostly economic reasons.	 It is natural then that consideration be

given to exploring different shaped growth curves in animal species,

whether they are the result of natural or artificial selection pressures.

It is important to note that in attempting to alter the shape

of the growth curve, specifically the weight/age growth curve, that

consideration should be given to the genetic and phenotypic relationships

among body weights and weight gains over the total growth curve. 	 In

Chapter 2 of this thesis these relationships along with feed intakes and

efficiencies at various ages were considered. 	 The results obtained

suggested that the more conventional selection procedures, that is selec-

tion for weights or weight gains over specified time periods, would, in

this population, produce changes in the total growth curve consistent

with results from selection experiments with mice.	 As body weights at

different ages have a part-whole relationship and are generally positively

correlated, selection to increase early weights will increase weights at

later ages.	 The magnitude of the correlated responses in later weights

will be determined by the chronological difference in age between the age

at selection and the later weights. 	 Although, selection on this basis

produces changes in the weight/age growth curve and the feed intake/age

curve, these changes, unfortunately, do not give growth patterns that

could	 be considered economically desirable. 	 Mature animal maintenance
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costs are increased and animals have tended to become over-fat at later

ages.	 Within this framework then, there is a need to develop alterna-

tive selection strategies to produce individuals economically and biolo-

gically viable.	 The work reported in Chapters 3, 4 and 5 of this thesis

was an attempt to consider one such alternative.

Results reported in Chapter 3 suggested that the models considered

provided a good fit to the data and that there was significant genetic

and phenotypic variation for all parameters of each model.	 This indi-

cates direct selection on any single parameter or parameter set would

produce changes in the growth patterns of this population of mice. 	 The

results presented showed general agreement with similar studies, whether

in cattle, mice or poultry. 	 However, it was shown that the results do

indicate that the correlations, at times strongly positive or negative,

would make changes in one parameter independent of any other parameter

difficult to achieve.

In terms of the biological interpretations that can be placed on

individual parameters, the Parks' models offers the most comprehensive

information, particularly his input/output models. 	 Simulated expected

direct and correlated responses to selection using the parameters of the

Parks' models suggest that results to selection would not, unfortunately,

be that different from those of selection for combinations of weights,

weight gains and feed intakes. 	 This has strong negative implications

for any practical application of selection criteria based on the para-

meters of nonlinear models.	 Examination of the changes possible under

direct selection for model parameters would appear to fit the biological

model presented in Chapter 1. 	 Selection would act at different pathways

in the model in a manner similar to those described for direct selection.
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on body weights or weight gains.

Just as body weights, and weight gains are affected by maternal

effects so are the parameter estimates for different models. 	 This was

shown to be particularly true for the rate parameters, k, of the Logistic

and Gompertz models.	 The results suggested that, as with selection

programmes, for example involving weaning weight, there is the possibility of

negative genetic correlations existing between direct maternal and

additive genetic components for the parameters of nonlinear models fitted

to animal data.	 Because of the direct relationship between the para-

meter estimates and the data used to obtain the estimates this result

should not be unexpected.

As mentioned previously each model gave good apparent fits to the

data, whether expressed as a visual fit or based on low residual variances.

However, the examination of the distrbutional and statistical properties

of the models and their parameter estimates illustrated considerable

problems in the application of nonlinear models to data for any particular

individual.	 All models presented exhibited some degree of non-normal

behaviour.	 The Parks' input/output model provided the worst fit for the

data based on the criteria suggested in Chapter 5.	 However this could

be associated with the more restricted age range for the data points used

to obtain parameter estimates for this model. 	 If compared to results

presented on the Logistic and Gompertz models, when fitted to the same

range of points (Table 5.3), the Parks' models may provide better fits

to the data.

Although not considered in this study, Taylor's (1980, 1982) and
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Park's suggestions of utilising standardised growth curves for comparisons

between and within breeds may provide additional information on possibi-

lities for changing the structures of growth curves.	 However, as both

procedures are still dependent on estimating mature weight, and mature

feed intake, either by fitting a model to the data or by obtaining actual

measurements, both methods could suffer the problems alluded to above.

Utilising Taylor's model, Webster et al. (1982) presented results that

would suggest a very poor fit to their data for Charolais, Hereford and

Aberdeen Angus.	 It should, however, be noted that the nonlinear model

Webster et al. used to estimate mature weight, the Brody function, over-

estimated 2000 - day weight for each breed.	 This may account for the

poor results obtained using these estimated mature weights.	 Both Taylors'

and Parks' approaches to standardising the input/output growth curves

could provide useful information for between and within breeds or species

for assessing physiological and nutritional differences.

The results presented and discussed in this thesis suggest that

the model, most appropriate to describe the weight/age growth curve of

this mouse population, would be the generalised Logistic model. 	 The

ability to utilise the parameters of this or any alternative models as

selection criteria to alter the structure of the growth curves would be

possible.	 However, if these results can be repeated for livestock species,

and there is no reason to believe they cannot be if given sufficient data

input, the possibilities of attaining changes in growth patterns that

would provide economically and biologically viable alternatives to present

selection strategies appear limited. 	 There is a need, still to be full-

filled, in the ability to accurately determine an animals' mature weight

and feed intake at early ages.	 This would allow information on corre-
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lated changes in the total growth patterns after selection at early ages,

to be assessed and if undesirable remedied.
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APPENDIX 1

LISTS OF THE PARTIAL FIRST AND SECOND DERIVATIVES OF WEIGHT

WITH RESPECT TO EACH VARIABLE FOR WHICH THEY ARE FUNCTIONS
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4.	 b)	 Brody	 W
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5.	 Parks' Function (weight versus time)
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6.	 Parks, Weight versus Feed Intake
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