RESIDENTIAL DEMAND FOR WATER IN THE LOWER HUNTER VALLEY: ESTIMATES AND POLICY IMPLICATIONS

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Economics of the University of New England

By

A.D. McDonald

August 1983

ABSTRACT

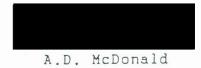
The nature of pricing and data collection policies adopted by water supply authorities is such that estimation of residential demand for water in Australia has been extremely difficult. Consequently, because there is a lack of information regarding consumer preferences, the confidence with which water supply authorities can proceed with policy change is undermined.

Motivation for the present study arose from the desire to improve the level of knowledge about residential demand for water, especially in view of a proposal by the Hunter District Water Board to change its pricing policy. A single-equation model suitable for evaluating residential water demand was formulated after examination of theoretical, empirical and <u>a priori</u> considerations. This model was estimated using data from the Hunter District Water Board and a household survey. The dependent variable was 'intended water use' which is a proxy for quantity demanded and is based on consumers' willingness-to-pay valuations.

Model estimation established that there is a causal relationship between intended water use and independent variables representing wealth, household size, previous water use, income, water price and connection to sewerage. The price elasticity of demand for water (at the point of means) was estimated to be -0.181 and the income elasticity of demand for water (at the point of means) was estimated to be 0.07. The absolute value of each of these elasticities was significantly greater than zero and significantly less than unity in the statistical sense.

After a discussion of the study's limitations, three pricing policies were evaluated. The implications of the results concern both consumers and the water supply authority. Consumers appear to have suffered a loss of utility as a result of the introduction of a non-zero marginal price for all water consumed. This follows from the conclusion that water consumption is likely to fall but expenditure on water is likely to rise, other things remaining constant. Despite this, a net social gain may be evident, provided the marginal price for water approaches the marginal cost of its provision. The water authority is shown to benefit from an increase in revenue but is unlikely to be able to effect substantial reductions in water consumption by increasing the marginal price for water.

ACKNOWLEDGEMENTS


Many people have provided assistance and encouragement throughout this study. The Hunter District Water Board not only assisted with the provision of secondary data and some printing but also provided the funds necessary for the household questionnaire survey. The Datex Co-operative conducted the interviews and assisted with the formulation of the survey questionnaire.

In addition to the valued contributions of Mr Vic Wright and Mrs Mary Lack, various members of the Departments of Agricultural Economics and Business Management, Economics and Economic Statistics gave valuable help in resolving theoretical and statistical problems. In this regard, Professor John Guise deserves special thanks.

Thanks are also due to Miss Julie Mitchell and Mr Gyorgy Antony for their patience and diligence in typing and editing the dissertation.

Finally, I would like to express my deep respect for, and gratitude to, Professor Warren Musgrave, my supervisor, and Dr Roley Piggott. Both provided substantial encouragement and innumerable suggestions for improvement.

I certify that any help received in preparing this dissertation and all sources used have been acknowledged herein. Furthermore, the substance of this dissertation has not been submitted for any other degree and is not being submitted for any other degree.

TABLE OF CONTENTS

ABSTRAC	T	ii
ACKNOWL	EDGEMENTS	iv
LIST OF	TABLES	ix
LIST OF	FIGURES	x
Chapter		
1	INTRODUCTION	1
	1.1 Objectives and Hypotheses	4
	1.2 Outline of the Dissertation	4
2	THE THEORY OF DEMAND	6
	2.1 The Development of Demand Theory	6
	2.2 The Neo-Classical Theory of Demand	9
	2.2.1 The consumer's equilibrium	10
	2.2.2 Deriving the demand function	12
	2.2.3 Elasticities of demand	16
	2.2.4 Consumer's surplus	19
	2.3 Market Demand	23
	2.4 Restrictions Imposed on Demand Functions	26
	2.4.1 The homogeneity condition	26
	2.4.2 The Engel aggregation condition	26
	2.4.3 The Slutsky negativity condition	27
	2.4.4 The symmetry condition	27

Chapter

	2.4.5 The Cournot aggregation condition	27
	2.4.6 Implications of the restrictions for demand estimation	28
	2.5 A Brief Note on Two Recent Contributions to Demand Theory	28
	2.6 The Application of Demand Theory to Pricing Policy Analysis	30
	2.7 Conclusions	40
З	EMPIRICAL ESTIMATION OF RESIDENTIAL DEMAND FOR WATER	41
4	METHODS DATA AND RESULTS IN THE PRESENT STUDY	59
	4.1 The Model	59
	4.1.1 The dependent variable	61
	4.1.2 The explanatory variables	62
	4.1.3 The functional form of the model	64
	4.2 The Data	66
	4.3 Estimation of the Model	68
	4.4 Testing the Hypotheses of the Study	77
5	DISCUSSION OF RESULTS	80
	5.1 Limitations of the Study	80
	5.1.1 Pre-test estimation	80
	5.1.2 Data editing	82
	5.1.3 Representativeness of the sample	83
	5.1.4 Restrictions implied by utility theory	84

vi

Chapter

	5.1.5 Valuation of water by consumers	86
	5.1.6 The overall impact of limitations of the study	86
	5.2 Implications of the Results	87
	5.2.1 Implications for consumers	87
	5.2.2 Implications for the water supply authority	96
6	SUMMARY AND CONCLUSIONS	102
Append	ix	
A	HOUSEHOLD SURVEY QUESTIONNAIRE AND PROMPT CARDS	105
В	HOUSEHOLD SURVEY MAIL ENCLOSURES	123
С	STATISTICAL METHODS AND TEST STATISTICS	131
	C.l The Least-squares Model	132
	C.1.1 Heteroscedasticity	133
	C.1.2 Autocorrelation	135
	C.1.3 Normality of the Residuals	137
	C.l.4 Multicollinearity	140
	C.1.5 The Coefficient of Multiple Determination	142
	C.2 Box-Cox Regression	143
	C.3 Testing the Significance of Elasticities	145
	C.3.1 The variance of the price elasticity of demand	146
	C.3.2 The significance of the price elasticity of demand	147

vii

D

	C.3.3 The variance of the income	
	elasticity of demand	147
	C.3.4 The significance of the income elasticity of demand	148
	C.3.5 Conclusion	148
	C.4 Tests of Significant Difference	
	Between Means	149
	C.4.1 Water use in 1981/82:	
	respondents vs. non-respondents	149
	C.4.2 UCV: respondents vs. non-repondents	149
	C.4.3 Water use in 1981/82: respondents vs. population	149
		147
	C.4.4 Water use in 1981/82:	
	non-respondents vs. population	149
	C.4.5 Water use by all interviewed	
	households: USE82 vs. WTPUSE	149
	C.4.6 Water use by final usable	
	sub-sample: USE82 vs. WTPUSE	150
	C.4.7 Conclusion	150
	C.5 Homogeneity of Degree Zero	150
D	DATA	152
REFEREN	NCES	162

LIST OF TABLES

Table

3.1	Residential Water Demand Elasticity Estimates	42
4.1	Matrix of Correlations between Regressors	74
4.2	Confidence Intervals for Elasticity Estimates	78
5.1	Estimated Elasticities at the Point of Means	88
D.1	Data Used in Estimation of the Preferred Model	154
D.2	Means and Standard Deviations of Regression Variables	161

LIST OF FIGURES

Figure	
--------	--

2.1	The Consumer's Equilibrium in Consumption	13
2.2	Derivation of the Demand Curve	15
2.3	The Hicksian Decomposition of the Effect of a Price Change	17
2.4	The Slutsky Decomposition of the Effect of a Price Change	18
2.5	The Two Measures of Marshallian Surplus	21
2.6	Compensating Variation, Equivilent Variation and the Compensated Demand Curve	22
2.7	Consumer Equilibrium under a Rating Structure	32
2.8	Consumer Equilibrium under a Two-part Tariff	34
2.9	Consumer Equilibrium with Declining Block Prices	36
2.10	Alternative Pricing Policies Yielding Constant Utility	37
2.11	Alternative Pricing Policies Yielding Constant Expenditure	38
5.1	Residential Demand for Water in the Lower Hunter Valley	90
5.2	Efficiency Gains Accruing from Marginal Cost Pricing in an Increasing Cost Industry	92
5.3	Setting Price Equal to Marginal Cost: the Case of a Decreasing Cost Industry	98