THE PERMIAN GEOLOGY, PHYSIOGRAPHY AND LANDSCAPE EVOLUTION OF NORTHEASTERN VICTORIA

by

Michael Anthony Craig

A thesis submitted in fulfilment of the requirements for the degree of Master of Science. University of New England Armidale, N.S.W. May 1934.

ABSTRACT

Northeast Victorian diamictites (tillites) and interstratified traction deposits (fluvioglacials), now mapped in detail and interpreted as glacial, contain: uni- and multidirectionally striated clasts; striated clasts with environmentally diagnostic shapes (wedges and bullets); and occasionally striated fossiliferous (Siluro-Devonian faunal assemblages) and non-fossiliferous erratics. The sequences represent proximal sedimentation associated with a wasting ice-front, south of the Wangaratta area.

Associated with these sediments are seven pavement surfaces, recognised as glacial (one - a miniature roche moutonnee) and indicating ice-movement from south to north. Petrographic data show derivation of non-fossiliferous erratics from local and distant source terrains south of the study area. Palaeontological data show derivation of the exotic fossiliferous erratics from beyond the present southern margin of the Australian crator.

Local preservation and general distribution of glacial deposits reflects original Permian topography rather than subsequent graben tectonics. There is no geological evidence for an Ovens Graben. The present landscape reflects tilt-block tectonics similar in structural pattern to that developed across the north of the state, and is in part at least a preserved Permian feature.

The radiometric age of basalt in Glenrowan Gap (on the western side of the Ovens tilt-block) demonstrates the Gap's existence before 36 Ma. Glacials suggest a relict Permian ice-spill path to the NW.

CERTIFICATE

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any degree.

I further certify that any assistance received in preparing this thesis, and all sources used have been fully acknowledged in the body of the thesis.

Michael Anthony Craig

signed:

PREFACE AND ACKNOWLEDGEMENT

This thesis is conceived as a contribution toward a wider understanding of the Permian glacial deposits of northeastern Victoria, and the landscape evolution since Permian time. The first objective is to establish the nature and distribution of Permian sediments in the northeastern district, to then examine the physiography and tectonic character and the nature and antiquity of landscape evolution.

Throughout the course of this study, I have received invaluable encouragement from a large number of people and in particular I wish to express thanks to the following:

> Professor C.D. Ollier, Geography Department, University of New England whose valuable advice, encouragement and constructive criticism as supervisor is appreciated.

> Dr B.C. McKelvey, Geology Department, University of New England whose efforts as dual supervisor are equally appreciated.

> Dr W. Mayer, Canberra College of Advanced Education for early advice on the nature of poorly sorted sediments.

> Dr J.A. Talent, School of Earth Sciences, Macquarie University for valuable palaeontological edvice and assistance with identifications.

My wife Yvonne and our three children who went without much for the sake of this thesis.

CONVENTIONS

The following is a list of conventions adopted for the preparation of this thesis:

- 1. Where possible, all measurements are in S.I. units. In some cases, imperial units are shown in brackets.
- 2. The attitude of planar surfaces or the plunge of their intersection is expressed in the form : dip/dip direction.
- 3. All bearings are converted to readings from true north.
- Choice of spelling is decided according to the form listed by The Concise Oxford Dictionary 5th edition, 1969.
- 5. Bibliographic style is based on the guidelines to authors issued by the Geological Society of Australia; the titles of periodicals are abbreviated as in the <u>World List of Scientific</u> Periodicals
- 6. Besides the provision of detailed geological maps in the pocket at the rear of the thesis, six figure grid references are supplied for each significant outcrop discussed within the text.
- Cardinal and ordinal point of the compass are written as the capitalized letter of the word only e.g., N - North.

3. The term altitude is used instead of the phrase "height above sea level".

CHAPTER 1 HISTORICAL REVIEW

1.1	INTRODUCTION	
1.2	PREVIOUS INVESTIGATIONS	
1.3	SUMMARY	

CHAPTER 2 THE ENVIRONMENTAL INTERPRETATION OF DIAMICTITES 2.2 2.3.1 2.3.2 STRIATIONS AND RELATED FEATURES -34 2.3.3 -37 2.3.4 38 2.4 MICROSCOPIC AND SUBMICROSCOPIC DISCRIMINATORS . . 39 2.5 GRANULOMETRIC DISCRIMINATORS 47 2.6 2.7

CHAPTER 3 PERMIAN OUTCROP DESCRIPTIONS

3.1	DIAMICTITES AND SIMILARLY POORLY SORTED SEDIMENTS	63
3.1.1	WOORAGEE VALLEY DEPOSITS	63
3.1.1.1	THE MAGPIE CREEK BEDS	64
3.1.1.1.	.1 SUMMARY	70
3.1.1.2	OTHER LOCALITIES WITHIN THE WOORAGEE VALLEY	71
3.1.2	THE SOUTHERNMOST PORTION OF THE OVENS-KING RIVER	

	VALLEY
3.1.3	BEYOND THE SOUTHERN END OF THE OVENS-KING RIVER
	VALLEY
3.1.4	DEPOSITS WEST OF THE OVENS-KING RIVER VALLEY 93
3.1.5	GLACIAL DEPOSITS OF THE LAKE NILLAHCOOTIE AREA . 94
3.1.6	ROAD CUTTINGS SOUTH, BEYOND THE OVENS-KING RIVER
	VALLEY
3.1.6.1	THE LOWER ROAD CUTTING 100
3.1.6.2	THE UPPER ROAD CUTTING
3.1.6.3	THE MYRRHEE ROAD CUTTING
3.2 TI	RACTION CURRENT DEPOSITS
3.2.1	INTRODUCTION
3.2.2	THE LOWER ROAD CUTTING
3.2.3	THE UPPER ROAD CUTTING
3.2.4	THE MYRRHEE ROAD CUTTING
3.2.5	NEAR THE MOYHU PAVEMENT
3.2.6	THE WOORAGEE VALLEY
3.2.7	CONCLUSIONS

CHAPTER 4 THE PROVENANCE OF FOSSILIFEROUS CLASTS

4.1	INTRODUCTION	••••			. 122
4.1.1	FAUNA FROM '	THE PERMIAN	GLACIAL CLASTS .	•••	. 123
4.2	LIKELY PROVEN	ANCE OF THE	FOSSILIFEROUS CLA	STS .	. 158

CHAPTER 5 DIRECTIONAL INDICATORS

5.1	INTRODUCTION	•••	•	•••	•••	•••	•••	•	•	•••	•	•	162
5.2	THE MOYHU PAVEME	NT .	•			• •		•	•		•		163

5.3	FABRIC DATA
5.4	OTHER DIRECTIONAL INDICATORS
5.5	THE SIGNIFICANCE OF THE DIRECTIONAL DATA 170

CHAPTER 6 CLAST MORPHOLOGY

6.1	INTRODUCTION	3
6.2	GLACIAL CLAST MORPHOLOGY: NE VICTORIA 178	5
6.2.1	SUMMARY AND CONCLUSIONS	Ś

CHAPTER 7 MINERALOGICAL ATTRIBUTES

7.1 SAND GRAIN	N SURFACE TEXTURES	• • • • • •	•••••190
7.1.1 INTRODUC	CTION		•••• 190
7.1.2 SAMPLE F	PRE-TREATMENT AND PR	EPARATION .	••••• 191
7.1.3 DESCRIPT	FION AND DISCUSSION	OF THE TEXTU	IRES 192
7.1.3.1 SAMPLE N	NO. 77/26		192
7.1.3.2 SAMPLE N	NO. 77/29		197
7.1.3.3 SAMPLE N	NO. 77/21		199
7.1.3.4 CONTROL	SAMPLE		200
7.1.4 THE SIGN	NIFICANCE OF THE TEX	TURES	203
7.1.5 CONCLUSI	IONS		207
7.2 HEAVY MINE	ERAL ASSEMBLAGES .		208
7.2.1 INTRODUC	CTION		208
7.2.2 HEAVY M	INERAL ANALYSES		203
7.2.3 THE RESU	JLTS OF HEAVY MINERA	L ANALYSES	209
7.2.4 CONCLUSI	IONS		211

CHAPTER 3 PALAEOCLIMATIC INTERPRETATION OF PERMIAN SEQUENCES

8.1	INTRODUCTION
8.2	DIAMICTITES
8.2.1	PETROGRAPHY
8.2.2	GLACIO-GEOMORPHOLOGY
8.2.3	PROVENANCE
8.3	SUMMARY

CHAPTER 9 A SUMMARY OF PERMIAN GLACIAL SEDIMENTATION IN NE

CHAPTER 10 PHYSIOGRAPHY AND LANDSCAPE EVOLUTION

10.1 INTRODUCTION
10.2 PHYSIOGRAPHIC UNITS AND THEIR AGE
10.3 DRAINAGE AND WATERSHED PATTERNS 230
10.3.1 INTRODUCTION
10.3.2 RELIEF
10.3.3 THE SIGNIFICANCE OF TERTIARY BASALT 236
10.3.3.1 THE GLENROWAN GAP
10.3.3.1.1PHYSIOGRAPHY
10.3.3.1.2GEOLOGY OF GLENROWAN GAP
10.4 TECTONICS AND THE DISTRIBUTION OF PERMIAN DEPOSITS 239
10.4.1 TECTONICS
10.4.1.1 THE OVENS GRABEN
10.4.2 DISTRIBUTION OF THE PERMIAN DEPOSITS 244
10.5 DEVELOPMENT OF THE GLENROWAN GAP
10.6 LANDFORM EVOLUTIONARY MODEL

APPENDIX A AMDEL REPORT

A.1 RADIOMETRIC AGE DETERMINATION OF BASALT 273

APPENDIX B GLOSSARY OF TERMS

APPENDIX C COMPUTER GRAPHICS

C.1	SYMAP	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	285
C.2	ASPEX		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	286

Page xiii

LIST OF FIGURES

FIGU	RE PAGE
1	BIVARIATE PLOT
2	MAGPIE CREEK STRATIGRAPHIC SECTION 66
3	FRICTION CRACK FEATURES ON A GLACIAL PAVEMENT 165
4	NORTHEASTERN DISTRICT DIRECTIONAL DATA 171
5	ZINGG CLASSIFICATION FOR AXIAL RATIOS FOR PEBBLES
	FROM WHITFIELD - WHITLANDS ROAD CUTTINGS (VIC., AUST.)
	TAYLOR VALLEY (ANTARCT.) AND HOOKER VALLEY (N.Z.) 187
6	NORTHEASTERN VICTORIAN CLAST TYPES BASED ON BOULTON'S
	(1978) ZONES OF GLACIAL TRANSPORT
7	CUMMULATIVE FREQUENCY OF HEAVY MINERAL SPECIES Vs
	HEAVY MINERAL STABILITY SERIES FOR SELECTED SAMPLES
	FROM NORTHEASTERN VICTORIA
ô	COMPOSITE PROFILE OF THE BASE OF TERTIARY BASALTS,
	THE ELEVATION OF GLENROWAN GAP AND THE TOP OF SOME
	PERMIAN GLACIAL SEDIMENT OUTCROPS
9	AN EVOLUTIONARY SEQUENCE SHOWING THE DEVELOPMENT
	OF GLENROWAN GAP
10	POSSIBLE APPEARANCE OF THE PRE-PERMIAN LANDSURFACE
	IN NORTHEASTERN VICTORIA

Page xv

LIST OF TABLES

TABL	E PAGE
1	HISTORICAL REVIEW MATRIX
2	MACROSCOPIC AND MESOSCOPIC DISCRIMINATORS USED TO
	DETERMINE THE GLACIAL ORIGIN OF DIAMICTITES 40
3	ESSENTIAL GLACIAL TEXTURES ON THE SURFACE OF QUARTZ
	SAND GRAINS
4	COMPUTED DISCRIMINANT FUNCTIONS FOR SELECTED PUBLISHED
	GRANULOMETRIC DATA AND THEIR SUGGESTED DEPOSITIONAL
	ENVIRONMENTS
5	THE PROPORTION OF VARIOUS PEBBLE SHAPES AND THE
	PROPORTION OF CONSTITUENT ROCK TYPES FOR PEBBLE
	SUITES FROM DIAMICTITES IN THE WHITFIELD - WHITLANDS
	ROAD CUTTINGS, NORTHEASTERN VICTORIA
6	A SIGNIFICANT DIFFERENCE MATRIX FOR ZINGG INTERCEPT
	RATIOS BASED ON STUDENT T-TESTS OF PEBBLES FROM
	WHITFIELD - WHITLANDS ROAD CUTTINGS, NORTHEASTERN
	VICTORIA
7	A SIGNIFICANT DIFFERENCE MATRIX FOR KRUMBEIN ROUNDNESS
	BASED ON STUDENT T-TESTS OF PEBBLES FROM WHITFIELD -
	WHITLANDS ROAD CUTTINGS, NORTHEASTERN VICTORIA 184
8	A SUMMARY OF HEAVY MINERAL SPECIES IN SELECTED SAMPLES
	FROM NORTHEASTERN VICTORIA
9	A SIGNIFICANT DIFFERENCE MATRIX FOR COMPARISON OF
	HEAVEY MINERAL SUITES USING THE KOLMOGOROV-SMIRNOV
	STATISTICAL TEST

Page xvii

LIST OF PLATES

PLATE	E PAGE
1	DISTINCTIVE GLACIALLY GENERATED QUARTZ SAND GRAIN
	SURFACE TEXTURES
2	
Š	
4	
5	
6	THE BEECHWORTH - YACKANDANDAH ROAD CUTTING AT THE STAR
	LANE INTERSECTION
7	GLACIALLY STRIATED AND POLISHED BOULDER AT "MUNDARA"
	AT THE SOUTHERN END OF THE OVENS - KING RIVER VALLEY. 30
8	CROSS-BEDDING IN THE MOYHU SILTSTONE 84
9	STEREOSCOPIC PAIR OF THE LOWER WHITFIELD - WHITLANDS
	ROAD CUTTING
10	PANORAMA OF THE LAKE NILLAHCOOTIE PLUG SPILLWAY WALL. 96
10c	
11	STRIATED CLASTS FROM DIAMICTITES AT LAKE NILLAHCOOTIE 98
12	
13	THE GLACIAL-GRANITE CONTACT AT LAKE NILLAHCOOTIE 100
14	A GENERAL VIEW OF THE WHITFIELD - WHITLANDS LOWER
	ROAD CUTTING
15	WEATHERING INDUCED COLOUR LAYERING IN THE WHITFIELD -
	WHITLANDS LOWER ROAD CUTTING
16	STRATIFIED NON-COLOUR BANDED DIAMICTITE IN THE
	WHITFIELD - WHITLANDS LOWER ROAD CUTTING 102
17	A BROAD VIEW OF STRATIFIED COLOUR BANDED DIAMICTITE
	FROM THE WHITFIELD - WHITLANDS LOWER ROAD CUTTING 103

PLAT	E PAGE
18	AN ENLARGEMENT OF PORTION OF PLATE 17 103
19	AN ENLARGEMENT OF PORTION OF PLATE 18 103
20	GHOSTED IGNEOUS AND OTHER INTACT CLASTS IN THE
	MIDDLE DIAMICTITE UNIT FROM THE LOWER ROAD CUTTING . 103
21	PLANAR LAMINATION FROM UNIT 4 IN THE WHITFIELD -
	WHITLANDS LOWER ROAD CUTTING
22	(?)DEFORMED OR DRAPED LAMINATION AT THE BASE OF
	UNIT 4, LOWER ROAD CUTTING 105
23	LARGE SANDSTONE ERRATIC OPPOSITE LOWER ROAD CUTTING . 105
24	CROSS-BEDDED SEDIMENTS IN UNIT 5 OVERLYING THE MORE
	LAMINAR UNIT 4, LOWER ROAD CUTTING 105
25	GENERAL VIEW OF THE WHITFIELD - WHITLANDS LOWER
	ROAD CUTTING
26	DETAILED STRATIGRAPHY OF THE WHITFIELD - WHITLANDS
	LOWER ROAD CUTTING
27	DETAILED STRATIGRAPHY OF THE WHITFIELD - WHITLANDS
	LOWER ROAD CUTTING
28	EARLY FORM OF THE WHITFIELD - WHITLANDS UPPER
	ROAD CUTTING
29	
30	
31	A FIVE PART STEREOSCOPIC MOSAIC OF A RECENT FACE
	OF THE WHITFIELD - WHITLANDS UPPER ROAD CUTTING 115
32	A SELECTION OF THE FAUNA FROM GLACIAL CLASTS FOUND
	IN NORTHEASTERN VICTORIA
35	
34	
35	
36	•••••••••••••••••••••••••••••••••••••••

PLAT	E PAGE								
37 A SELECTION OF THE FAUNA FROM GLACIAL CLASTS FOUND									
	IN NORTHEASTERN VICTORIA								
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									
50									
51									
52									
53									
54									
55									
56									
57									
58									
59	A SELECTION OF THE FAUNA FROM GLACIAL CLASTS FOUND								
	IN NORTHEASTERN VICTORIA								
60	MOYHU GLACIAL PAVEMENT								
61	EROSIONAL FEATURES ON THE MOYHU GLACIAL PAVEMENT 166								
62	DISTINCTIVE CLAST SHAPES FROM NORTHEASTERN VICTORIA . 179								
63	CONCHOIDAL BREAKAGE PATTERNS AND A PRECIPITATION								

PLAT	E PAGE
	SURFACE ON A QUARTZ SAND GRAIN VIEWED WITH S.E.M 194
64	IMBRICATE BREAKAGE BLOCKS (Ib), ARC-SHAPED STEPS (As)
	AND SEMI-PARALLEL STEPS (Ss)
65	PORTION OF ARC-SHAPED STEPS
66	SEMI-PARALLEL STEPS WITH HEXAGONAL SOLUTION HOLES 195
67	LARGE SCALE ARC-SHAPED STEPS
68	IMBRICATE BREAKAGE BLOCKS(Ib), SEMI-PARALLEL STEPS (Ss)
	AND ARC-SHAPED STEPS
69	ARC-SHAPES STEPS (As) AND SEMI-PARALLEL STEPS (Ss) . 198
70	STEREOSCOPIC PAIR WITH PARALLEL STRIAE (Ps) 200
71	
72	ARC-SHAPED STEPS (As), SEMI-PARALLEL STEPS (Ss) AND
	SOLUTION PITS (Sp) 210
73	AN ENLARGEMENT OF THE AREA INDICATED IN PLATE 72 210
74	SINGLE QUARTZ SAND GRAIN WITH CRYSTAL FACES
	WITH THE REMAINDER OF THE GRAIN HIGHLY ETCHED 202
75	GRAIN FROM A CRUSHED QUARTZ CRYSTAL
76	IRREGULAR FRACTURE SURFACE FROM CRUSHED CRYSTAL 204
77	PARALLEL STRIAE (Ps), ARC-SHAPED STEPS (As) AND
	SEMI-PARALLEL STEPS (Ss)
78	SEMI-PARALLEL STEPS SHOWN IN PLATE 77 205
79	SEMI-PARALLEL STEPS

Page xxii

LIST OF MAPS

Page xxiii

MAP		PAGE
Α:	PALAEOZOIC STRUCTURE CONTOUR MAP AND THE POSITION	
	OF MAJOR RIVERS AND DIVIDES	. 231
В:	MAJOR DRAINAGE DIVIDES, LINES AND BASINS	. 232

MAPS WITH LEDGENDS AND LOCALITY DIAGRAMS HELD IN THE POCKET AT THE END OF THE THESIS.

1	DE	ET /	11	LEI) (GEO	DLC)GI	CA	۱L	МA	ΙP	•	•	•	•	•	•	.WOORAGEE	DISTRICT
2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰.	ANGARATTA	DISTRICT
3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	MOYHU	DISTRICT
4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	TAMINICK	DISTRICT
5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	WILBY	DISTRICT
6	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	WHITLANDS	DISTRICT