Head movements and sound

localization

by
Stephen Bernard Perrett, BA (Hons) University of New England

July, 1997

A thesis submitted for the degree of Doctor of Philosophy of the University of
New England

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature

> To Georgina Thankyou

Acknowledgements

I am extremely grateful to William Noble for introducing me to sound localization and for skilfully supervising me through this program of research. His enthusiasm and professionalism have kept me on track. I wish to thank Malcolm A. Perrett who helped provide mathematical solutions for processing of the head tracker data and whose development of the DSP software and digital signals used in the experiment formed part of his Honours (Electrical Engineering) project. I greatly appreciate Frank Niebling and Dave Heap for their help in designing, installing and maintaining the sound delivery hardware, and for all their ideas and technical know-how which has contributed to the success of this project. Thanks to Dean Davidson for being resourceful, tireless and hard working, and for writing reliable computer code. I am grateful to Chris Lisle for his ever helpful attitude and expertise with the video equipment. Finally, my special thanks to all those people who gave their time to act as listeners..

Table of contents

Declaration ii
Acknowledgements iv
Table of contents v
Table of figures ix
Abstract xiii
Chapter one: Introduction 1
1.1. STATIC LOCALIZATION CUES 5
1.1.1. Classical interaural cues 5
1.1.2. The ambiguity of classical interaural cues 7
1.1.3. Representing auditory space with a convenient co-ordinate system 12
1.1.4. High-frequency pinna derived spectral cues 14
1.1.5. Low-frequency shoulder/torso-derived spectral cues 17
1.2. HEAD MOVEMENT CUES. 20
1.2.1. Theory 20
1.2.2. Wallach's empirical evidence 21
1.2.3. Non-auditory information 25
1.2.4. Movement of a sound source about a motionless listener 27
1.2.5. Other empirical evidence for a role for head motion in sound localization 30
Chapter two: Preliminary experiments 39
2.1. EXPERIMENT 1 39
2.1.1. Method 39
2.1.2. Results 44
2.1.3. Discussion 47
2.2. EXPERIMENT 2 50
2.2.1. Method 50
2.2.2. Results 51
2.2.3. Discussion 52
2.3. EXPERIMENT 3 55
2.3.1. Method 55
2.3.2. Results 56
2.3.3. Discussion 58
Chapter three: The effect of head motion with minimal constraint onresponding .. 6464
3.1. EXPERIMENT 4 65
3.1.1. Method 65
3.1.2. Results 71
3.1.3. Discussion and Conclusions 89
3.2. EXPERIMENT 5 97
3.2.1. Method. 99
3.2.2. Results 101
3.2.3. Discussion 103
Chapter four: The nature of the Wallach cue and MVP Iocalization 107
4.1. EXPERIMENT 6 108
4.1.1. Method. 110
4.1.2. Results 113
4.1.3. Discussion 120
4.2. EXPERIMENT 7 123
4.2.1. Method 124
4.2.2. Results 126
4.2.3. Discussion 133
Chapter five: An exploration of the functional limits of head rotation 135
5.1. EXPERIMENT 8 136
5.1.1. Method 136
5.1.2. Results 140
5.1.3. Discussion 150
5.2. EXPERIMENT 9 154
5.2.1. Method 154
5.2.2. Results 157
5.2.3. Discussion 169
5.3. OVERALL CONCLUSIONS 177
Chapter six: General discussion and conclusion 179
6.1. EVERYDAY USE OF DYNAMIC LOCALIZATION. 183
6.2. LINKS BETWEEN VISION AND HEARING 185
6.3. SUMMARY OF MAIN FINDINGS 187
References 189
Appendix A: Data 196
Appendix B: Title pages of publications 328

Table of figures

Figure 1. A horizontal angle of displacement of 60° to the left of the median vertical plane, specifying a cone shaped locus (cone of confusion) encompassing forward, rearward, upward and downward directions

Figure 2. Contours of constant interaural time difference (ITD, in microseconds) extracted from head related transfer function (HRTF) measurements by estimating the delay at the maximum in the cross-correlation between left and right ear HRTFs (adapted from Wightman and Kistler, 1994). 10
Figure 3. Contours of constant interaural level difference (ILD, in dB) obtained by subtracting the overall level of the HRTF ($200 \mathrm{~Hz}-14 \mathrm{kHz}$, in dB) in one ear from the overall level in the other ear (adapted from Wightman and Kistler, 1994)

Figure 4. Schematic of spatial references relative to a listener, showing a cone of confusion at a leftward azimuth angle of 60°. Increments by 15° in azimuth angle are represented on a sphere as circles perpendicular to the horizontal plane (HP). Azimuth angles are positive when rightward, negative when leftward. Increments by 15° in elevation angle are shown as circles perpendicular to the median vertical (MVP). These are positive when upward, negative when downward. Examples are shown of co-ordinates using this double-pole system.

Figure 5. Loudspeaker layout relative to partial sphere structure. A sample area of the co-ordinate marking of the interior surface is shown. Co-ordinate labels use irregular two-term letter-number strings; co-ordinate positions occur at 15° intervals of azimuth and elevation.41

Figure 6. Three types of head movement: rotate, pivot and tip. For each movement type, a curved arrow indicates direction of movement and a straight line passing through the head indicates the axis of movement.

Figure 7. Apparent elevation of sources in the three quadrants tested in Experiment 1. Individual sources within the quadrants are identified in terms of their (double-pole) azimuth positions in degrees, from $-90\left(-90^{\circ}\right.$, directly left) through to $0\left(0^{\circ}\right.$, in the MVP). Actual elevations are indicated by crosses (\times). Error bars indicate standard error of the mean.

46
Figure 8. Apparent elevation of sources in the three quadrants tested in Experiment 2. Individual sources within the quadrants are identified in terms of their (double-pole) azimuth positions in degrees, from $-90\left(-90^{\circ}\right.$, directly left) through to $0\left(0^{\circ}\right.$, in the MVP). Actual elevations are indicated by crosses (\times). Error bars indicate standard error of the mean.53

Figure 9. Apparent elevation of sources in the three quadrants tested in Experiment 3. Individual sources within the quadrants are identified in terms of their (double-pole) azimuth positions in degrees, from $-90\left(-90^{\circ}\right.$, directly left) through to $0\left(0^{\circ}\right.$, in the MVP). Actual elevations are indicated by
crosses (\times). Error bars indicate standard error of the mean. 59
Figure 10. Loudspeaker array used in Experiment 4. Loudspeakers arranged in two arcs that intersectdirectly left of the listener who is seated on a rotatable seat supported by platform made of steeltubing and weldmesh. The spherical screen is not shown.67
Figure 11. Front-back errors occurring in Experiment 4. 74
Figure 12. Apparent elevation of sources in the four quadrants tested in Experiment 4, under three testconditions for the 3 -second signal. Error bars indicate standard error of the mean.76
Figure 13. Apparent elevation in the same conditions as for Figure 12, but showing responses of thethree cluster groups separately, in a, b and c respectively. Error bars indicate standard error of themean.78
Figure 14, part 1. Head-tracker records for the four listeners, L1, L2, L3 and L4, for each of the two 3-snatural movement trials ($-\mathrm{a},-\mathrm{b}$), involving the source at $+60^{\circ}$ elevation. Each graph showsrotation, tip and pivot records from signal onset to moment of response. Vertical line at 3 sindicates signal offset.81
Figure 15. Horizontal error occurring for each condition with a 3-s signal. Source positions are at 0° to-75° azimuth in the back HP (B, 0 to $\mathrm{B},-75$), -90° directly left ($\mathrm{L},-90$) and -75° to 0° in thefront HP. Error bars indicate standard error of the mean85
Figure 16. Horizontal error occurring for each condition with a $0.5-\mathrm{s}$ signal. Source positions are at 0° to-75° in the back HP (B, 0 to $\mathrm{B},-75$), -90° directly left ($\mathrm{L},-90$) and -75° to 0° in the front HP.Error bars indicate standard error of the mean.87
Figure 17. Front-back errors occurring for each signal type and each condition in Experiment 5. Errorbars indicate standard error of the mean.102
Figure 18. Front-back errors occurring for each condition in Experiment 6. Error bars indicate standarderror of the mean.114
Figure 19. Apparent elevation for the seven types of noise under four different conditions in Experiment6. Actual source positions are at $0^{\circ},+30^{\circ},+60^{\circ}$ in front ($\mathrm{F}, 0$, etc.); Overhead ($\mathrm{O}, 90$), and $+60^{\circ}$,$+30^{\circ}, 0^{\circ}(\mathrm{R}, 60$, etc.) and actual elevations are indicated by crosses (\times). Error bars indicatestandard error of the mean.116
Figure 20. Loudspeaker array used in Experiment 7. Displayed is the complete circle of loudspeakerspositioned in the median vertical plane and the semicircle lying in the lateral vertical plane.125
Figure 21. Apparent elevation under rotation and motionless conditions in Experiment 7. Actual sourcepositions are at $0^{\circ}, \pm 30^{\circ}, \pm 60^{\circ}$ elevation, leftward (L, 0 , etc.); forward ($\mathrm{F}, 0$, etc.); overhead andbelow ($O, \pm 90$), and $\pm 60^{\circ}, \pm 30^{\circ}, 0^{\circ}$ elevation, rearward ($\mathrm{R}, \pm 60$, etc.). The symbol " \times " indicatesthe actual elevation of sources at and above the HP; the symbol " + " indicates sources below. Errorbars indicate standard error of the mean127
Figure 22. Overall front-back errors for each condition in Experiment 8. Error bars indicate standard error of the mean. 142
Figure 23. Front back errors over 6 different stages of each condition in Experiment 8. Note that opensquares appear where 50% s and 100% rotation data coincide. Error bars indicate standard errorof the mean. ... 144
Figure 24. Head-tracker records of rotational movement, for typical listeners in the three guided rotation velocities, with $150-\mathrm{ms}$ and $350-\mathrm{ms}$ signals. The straight dotted diagonal lines represent the targeted performance, while the solid irregular lines represent actual performance.147

Figure 25. Apparent elevation under rotation and motionless conditions in Experiment 9. Actual source
positions are at $0^{\circ}, \pm 30^{\circ}, \pm 60^{\circ}$ elevation, forward ($F, 0$, etc.); overhead and below ($O, \pm 90$), and $\pm 60^{\circ}, \pm 30^{\circ}, 0^{\circ}$ elevation, rearward ($\mathrm{R}, \pm 60$, etc.). The symbol " \times " indicates the actual elevation of sources above the HP; the symbol " + " indicates sources below. Error bars indicate standard error of the mean. .158

Figure 26. Benefit from rotation for each rotation condition in Experiment 9. Actual source positions are at $0^{\circ}, 30^{\circ},-30^{\circ}, 60^{\circ},-60^{\circ}, 90^{\circ},-90^{\circ}$ elevation, " $\mathrm{F}, 0,30,-30$ etc." indicates sources forward of the listener; "O, 90 " the source overhead; "R, $0,30,-30$, etc." sources rearward of the listener; and " $B,-90$ " the source directly below.

160
Figure 27. Up-down errors for each condition in Experiment 9. data for sources at symmetrically opposite positions relative to the HP are combined.
Figure 28. Corrected apparent elevation under rotation and motionless conditions in Experiment 9. Actual source positions are at $0^{\circ}, \pm 30^{\circ}, \pm 60^{\circ}$ elevation, forward ($\mathrm{F}, 0$, etc.); overhead and below ($\mathrm{O}, \pm 90$), and $\pm 60^{\circ}, \pm 30^{\circ}, 0^{\circ}$ elevation, rearward ($\mathrm{R}, \pm 60$, etc.). The symbol " \times " indicates the actual elevation of sources above the HP; the symbol " + " indicates sources below
.165
Figure 29. Front back errors for each condition at each elevation in Experiment 9. 168

Table of tables

Table 1. Front-back errors for each condition in Experiment 1 45
Table 2. Front-back errors for each condition in Experiment 2 51
Table 3. Source-Head-Response angle means and standard deviations for each condition in Experiment 3 57
Table 4. Front-back errors for each condition in Experiment 3 57
Table 5. Elevation error occurring in Experiment 3 for loudspeaker situated directly over listeners head. Boxes indicate responses where margin of error was $\leq 30^{\circ}$ 60
Table 6. Average SHR angle and absolute elevation error for each condition of Experiment 4 (standard deviations in brackets) 72
Table 7. Mean absolute elevation error, in degrees, for seven different signals under four different listening conditions (standard deviations in brackets) 118
Table 8. Mean absolute elevation error across experiments and test orders. (standard deviations in brackets) 129
Table 9. Apparent elevation and benefit from rotation for three different regions and two hemispheres (standard deviations in brackets) 131
Table 10. Actual velocities and extents of rotation for each data point in Figure 23 (standard deviations in brackets) 148
Table 11. Actual velocities and extents of rotation for each condition in Experiment 9 (standard deviations in brackets) 166
Table 12. The extent of pivot movement occurring in each rotation condition in Experiment 9 171

Abstract

Most research on auditory localization has been conducted with listeners motionless. Nine experiments were conducted to investigate whether and how head motion assists sound localization. In three preliminary experiments, fairly unconstrained responding was made possible by using a partial spherical screen to obscure sources in the left lateral horizontal plane (HP) and the upper-left lateral vertical plane (LVP). The signal was $2-\mathrm{kHz}$ low-pass noise, which thus offered no high-frequency pinna-based spectral cues. As expected, listeners were unable to localize the low-pass noise if they remained motionless throughout the duration of the signal. With a 3-s signal, it was observed that listeners achieved much greater accuracy in terms of front-back discrimination and elevation judgement, if they were permitted to move naturally or if they employed head rotation, about a vertical axis. Following these preliminary experiments, the test equipment was upgraded, so that all regions of auditory space were equally likely to contain sound sources. A fourth experiment, employing these conditions, used sources throughout the left LVP and left HP, and showed that natural head
movement, and 45° of head rotation, during a $3-\mathrm{s}$ signal, produced significantly more accurate responding in terms of front-back discrimination, elevation judgement and horizontal judgement, compared with motionless listening. With a 0.5 -s signal, rotation of the head produced a virtual elimination of front-back confusion, while natural movement was no different to motionless listening. The fifth experiment tested front-back discrimination of 2 -s signals with small amounts of head movement. Results showed that head rotation of as little as 8° substantially reduced front-back confusion for $2-\mathrm{kHz}$ low-pass noise and a 500 Hz pure tone. The sixth experiment revealed that head rotation allowed much greater accuracy in elevation judgements of low-pass and broadband noise sources in the upper median vertical plane. Disruption of pinna cues prevented listeners from localizing the broadband signals while motionless, but with rotation, localization was proficient. In the seventh experiment, listeners were tested with sources positioned throughout the MVP and left LVP. This revealed that head rotation assists localization of sources more greatly in the front MVP than for other regions. The eighth experiment employed a guided rotation procedure to allow some control over the velocity of the head rotation. This revealed that the faster a listener rotates the head the greater the ability to distinguish between front and back positions. Front-back errors were seen to be virtually eliminated with signals of as little as 150 ms in duration. The ninth experiment employing the same procedure showed that elevation judgement was assisted with signals of as little as 200 ms . Some remarks are made, in
conclusion, about the functions and bases for sound localization in everyday listening conditions.

