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Summary

1. In this thesis the flows of 14 C to glucose from labelled

propionate infused into the rumen of sheep were studied,

2. The pattern of tracer flow does not represent the pattern of

net carbon flow because of equilibration of tracer, in the

symmetrical dicarboxylic acid pools, recycling of tracer,

tracer flows via indirect routes and metabolic crossover. The

effects of these influences have not been fully appreciated and

accounted for in the interpretation of data obtained from many

isotope dilution experiments. In this thesis an attempt was

made to correct the percentage of the carbon atoms in the

glucose pool that originated in the propionate pool (i.e. the'

transfer quotient) for the above influences and thus, calculate

the true percentage of the glucose pool being provided by

propionate.

3. The biochemistry of the propionate molecule is given and the

effects of interaction with the tricarboxylic acid cycle on the

fate of carbon from the middle and carboxyl positions of

propionate discussed.

4. The effects of metabolic crossover are proportional to the

percentage of the molecules in the oxaloacetate pool that

arises from cycling of the tricarboxylic acid cycle.

Therefore, equations were developed to estimate this

percentage. Two of these equations were based on an approach

similar to that used by Weinman, Strisower and Chaikoff (1957):

i.e. based on the differences in metabolism of the middle and

carboxyl carbons of oxaloacetate and the subsequent labelling
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of metabolites synthesised from the oxaloacetate pool. The

third equation was based on the incorporation of CO 2 into

glucose.

5. The understanding of the tracer flows developed through a

series of experiments culminating in the development of 5 pool

models (propionate middle or acetate methyl carbon, rumen

bicarbonate, blood bicarbonate, glucose and the carboxyl carbon

of propionate or acetate).

6. A comparison of the transfer quotients with the relevant values

from the models indicated that when propionate or

14 C-acetate was infused into the rumen, a significant

proportion of the tracer in glucose was incorporated from the

bicarbonate pools.

7. The data for the incorporation of tracer from the middle and

carboxyl carbons of oxaloacetate into glucose, their entry into

the blood bicarbonate pool and the incorporation of CO 2 into

glucose could not be explained simultaneously by the cycling of

tracer in the tricarboxylic acid cycle. Nor could all the

results be rationalized by taking into account recycling of

tracer via the pathways; oxaloacetate, phosphoenol-pyruvate,

pyruvate back to oxaloacetate, and/or via; oxaloacetate,

phosphoenol-pyruvate, pyruvate, acetyl-CoA, citrate then back

to oxaloacetate via the tricarboxylic acid cycle.

8. The incorporation of 14CO 2 into glucose was much higher than

predicted by the pathways of incorporation presently accepted.

Therefore, it appears that there is at least one further

pathway by which CO 2 can be incorporated into glucose that has



not been accounted for in the interpretation of the results.

9. More basic research is needed to identify all forms of tracer

recycling and to quantify their effects on the tracer flows.

Until this is done flows calculated from the transfer of tracer

from propionate to glucose can not be converted into net carbon

flows.
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