
Chapter 5

Maximum Likelihood Estimation

of Household Equivalence Scales

The preceding chapter has been concerned with the estimation of equivalence scales

using the Engel approach which showed the overall effect of a change in demo-

graphic composition on the total consumption of the household. In this chapter,

commodity-specific scales are estimated using the scaling-procedure of Barten to

incorporate demographic variables into a demand system. An iterative procedure

based on maximum likelihood techniques is developed and used in the estimation

of the scales. The results update both the commodity-specific and general scales

previously obtained for Australia using the extended linear expenditure system.

5.1 The Model
The demand system employed here is the extended linear expenditure system

(ELES) of Lluch (1973) that was later modified by Kakwani (1977) for equiva-

lence scale estimation. A feature of this system is linearity, an assumption which

is often questioned. Also, the utility function from which it is derived is directly

additive and, as shown in Deaton and Muellbauer (1980), this is a restrictive as-

sumption, particularly in studies using a detailed disaggregation of commodities.

Inspite of these disadvantages, the ELES was chosen for this study for a num-

ber of important reasons. First, the ELES is a convenient vehicle for carrying
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out relatively sophisticated research on consumer behaviour even when available

data on private consumption are limited. Because time series data on private con-

sumption are not disaggregated over various commodity groups, one can only use

cross-section information for estimating demand parameters. Since purely cross-

section data generally give no price variation, inference about price effects requires

strong theoretical specifications. Second, the ELES is chosen for its historical sig-

nificance in equivalence scale research. ELES-based equivalence scales have been

repeatedly estimated in the past and are particularly popular among researchers

using Australian data. See, for example, Kakwani (1980), Binh and Whiteford

(1990), and Bradbury (1994). Using the ELES in this study facilitates compar-

ison of results to these earlier ones. Thirdly, the ELES is used because of its

simplicity. In this chapter (and succeeding chapters) new methods of estimation

of equivalence scales are derived. For these purposes, the ELES is ideal because

the system remains mathematically tractable but is still sufficiently complicated to

warrant a number of econometric innovations. Once these innovations have been

developed, they can be more readily applied to more complicated models at a later

time. Special care was taken to split the sample into groups where there were few

parametric restrictions on the scales and estimation was restricted to just eleven

broad commodity groups, thereby mitigating the assumption of additive utility.

The exercise is an natural starting point for the demonstration of the derivation of

a new iterative procedure using maximum likelihood techniques (in this chapter)

and the application of Bayesian methodologies (in Chapters 6 and 7) for equiv-

alence scale estimation. The study as a whole provides a useful addition to the

available empirical evidence on equivalence scales in Australia.

5.1.1 The Extended Linear Expenditure System

To describe the model, consider n commodity groups indexed by i = 1, 2, ..., n, and

H types of households indexed by h = 1, 2, ..., H where household types are defined

according to the number of adults and the number of children in the household.

Define qih as the quantity of the i th commodity consumed by the h-type household

and Sih is the ith commodity-specific equivalence scale for the h-type household.
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The Sih are factors used to adjust qih values in utility functions to show the effect

of a change in the household's demographic composition on household utility and

on specific commodity expenditures. On a per unit basis, a given qih provides less

utility if it is shared with more people. How qih should be deflated to give the

same per unit utility will depend on the commodity i and on the household type

h. Thus the scale is subscripted by i and h. The unit for which the utility function

is specified is the household type where Sih = 1. For example, if the reference unit

is a household with two adults without children, then the Th in the utility function

is scaled by Sih to give a comparable two-adult-zero-children utility function for all

households.

Given this background, consider now the Klein-Rubin utility function where

the consumption quantities qih have been Barten-scaled as follows:

bi	 —h ci}
qih

where

bi	 is the marginal contribution to utility of the i th commodity and

satisfies the constraints 0 < bi < 1 and Ein_, 1 bi = 1;

Ci	 is a parameter which, if interpreted as the subsistence quantity of the
.thz commodity, satisfies the constraint c i > 0; Pollak and Wales (1978)

prefer not to give ci a strict subsistence interpretation letting negative

values be a possibility.

Let pi be the price of the ith commodity and vh be the total expenditure for the h-

type household. The Barten-scaled prices and consumption quantities are denoted

by IA = pi sih and q7h = 1th . Maximising the utility function (5.1) subject to the
Sih

budget constraint pi qih = vh is equivalent to maximising the utility function
i=1

n

U(qih)
	

bi ln(qi*h — ci )	 (5.2)
i=1

Uh =
Sih

(5.1)

such that Ein_ i pi qi*h = vh . The Lagrangean equation for the problem above is
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written as

L =
i=1

(nbi In (qih — ci ) + A vh —	 piqih
i=i

(5.3)

where A is the Lagrange multiplier. Differentiating L with respect to q'iKh and A

yields the following first order conditions

bi
(5.4)

n

V h P* q:i h (5.5)
i=1

Solving for q:h and A, we get from (5.4)

= AP:(q:h 	 = A (P: q:h P: ci)
	

(5.6)

Summing over all i and recognising that E in_ l bi = 1 and that vh = Ein_ i pi* qih , the

following expression for A is obtained

1

Substituting (5.7) back into (5.4) yields

bi	 Pi

Simplification leads to

q:h ci
= AP:

(5.7)

(5.8)

P: qih = P:ci + bi vh —
n

=1
p;cj)	 (5.9)

or, equivalently,

(
j=1j

Pigih = Pi Sihei + bi V II —	 PjSjhej	 (5.10)(5.

A household whose demand system is an LES is often described as first purchasing

"necessary", "subsistence" or "committed" quantities of each good ( s 1 h C 1 1 • • • 7 SnhCn)

and then dividing its remaining or "supernumerary" expenditure (vh—Ein_ i pisihci),

among the goods in fixed proportions, (b 1 , • • • ) bn) •
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The system in (5.10) can be more compactly expressed as

vih = aih bi (vh – ah )	 (5.11)

where

Vih = Piqih is expenditure on the i th commodity by the h-type household, and

aih = piCiSih is subsistence expenditure for the ith commodity and

h-type household.

5.1.2 Identification of Parameters

The objective is to estimate a ih and bi , with these estimates later being used to

estimate the scales Sih. Specifically, if sir = 1 denotes the scale for the reference

household type, then

piciSih	 aih
Sih =	 ==

pi ci Sir	 air
(5.12)

However, without further information, not all of the a ih are identified. The identi-

fication problem arises because for a given household type, one of the n equations

in (5.11) is redundant, redundancy being illustrated by summing both sides. Sum-

ming (5.11) over all commodities yields

n	 n
Vih	 aih 	 bi(v – ah )	 (5.13)

ih	 i=1
	 i=i

or

vh = ah (vh – ah)
	

(5.14)

where ah = El_ i aih is total subsistence expenditure for a h-type household. The

redundancy of one equation means that separate information is only available from

n – 1 equations. Our problem is to estimate n intercept terms with only n – 1

equations.

One solution to this identification problem is to include in the linear expenditure

system in (5.11) a micro-consumption function given by

Vh = ah b(xh – ah)
	

(5.15)
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where vh is the total expenditure, xh is net income b is a common marginal propen-

sity to consume for all households. This function shows that total expenditure Vh

is composed of "committed" or "subsistence" expenditure ah and a proportion b

of "uncommitted" expenditure (xh — ah ). The extended linear expenditure system

or ELES is thus comprised of equations (5.11) and (5.15).

To estimate the parameters in the ELES, Kakwani (1977) appended errors to

these equations, and assumed the error variances can be different for each house-

hold type and for each commodity. He suggested first estimating ah and b from

(5.15), and then replacing ah in each of the commodity equations in (5.11) with its

estimate from (5.15). Then, to estimate aih and bi in (5.11), weighted least squares

which allows for heteroskedasticity across different household types was applied to

each of these equations. Using an external estimate of ah identifies the remaining

parameters.

The estimation procedure that is developed in this chapter attempts to improve

on Kakwani's procedure in two ways. First, because Kakwani estimated each of

the commodity equations separately, he ignored any correlation that might exist

between the errors that correspond to different commodity equations for a given

household. Second, the '2-step' nature of the procedure ignored the effect of using

estimates from one equation on the properties of the estimates from a second equa-

tion. An estimator which allows for error correlation across different commodity

equations and which estimates all parameters simultaneously would seem more

desirable.

To investigate how all the parameters might be jointly estimated, (5.15) is

substituted into (5.11) to obtain

where

Vih = aih + bi Rah b(xh — ah)) — ah]

aih bi b(xh — ah)

= aih — bi bah bibah

= + 71ih	 .,i_h (5.16)

Oih = aih — bibah
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= bib

Consider now the estimation of the Oih and the Tli and how estimates of the struc-

tural parameters, aih , bi , b and ah can be retrieved from these estimates. Given

estimates of Oih and estimates of the structural parameters b, ah , b and aih can

be obtained using the expressions

b -=	 (5.17)

n
Oi

ah
	 i=1 	 (5.18)

i=1

bi = 	 	 (5.19)

j=1

n

aih = 9ih	 	
	 (5.20)

1—	 j
j=1

The system in (5.16) does not suffer from an identification problem because

there are no redundant equations. All the n commodity equations for a given

household type can be utilised.

5.2 Expressions for the Commodity-Specific and
General Scales

By definition, the equivalence scale sih is the ratio of the subsistence expenditure

for the i th commodity of the h-type household to that of the reference household.

It is given by
aih

Sih ==

	

	 (5.21)
air

where r refers to the reference household. This shows the amount by which the

commodity expenditures must be deflated so that they are expressed in per house-

hold equivalent terms.



— = Ci
Sih	 Pisih j

bib (
Xh —	 pisihci

=1
4''h

n
(5.22)

i=1	 i=1

= In b+ln (Xh —EPiSihei)+
n

i=1

b, in bi — bi In pi —
i= L
	

i=1i=1

bi In sib,	 (5.25)
i=1
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To obtain an expression for the general scales, we first consider the demand

equations in (5.10). Dividing through by pi sih , we get

Equation (5.22) is then substituted into the direct utility function in (5.1) and

	

noting that	 bi = 1, we get
i=1

	

Uh =	 bi in bib	  (Xh Pj
Pr Sih 

[n	b i In bi — In pi — in sih + in b + in xh —	 pisihci
j=i

n
bi in pi —	 bi in siii (5.23)

i=1

For the standard reference household where sir = 1, the indirect utility function is

thus expressed as

n	 n	 n

	u r = in b + in(xr —	 pi ci )	 bi In bi —	 bi in pi	 (5.24)
i=1
	 i=1	 i=1

The general scale for the h-type household is given by the ratio of incomes,

Sh = Xh/Xr

that equates the two indirect utility functions. Working in this direction, we set

ur = uh to obtain

n	 n	 rt
	in b + in(xr —) J pici) +	 bi in bi —	 bi in Pi

i=1 j=1 ci)

=1n b In
n

i=1
pi sihci)+	 bi In bi

i=1

Simplifying (5.25), we have

In (Xr — pici =
i=i

n

PiSihCi
i-=1	 i=1

bi in Sih



n

in (Xh —
i=1 

Pi Sih Ci	 = In (x, ici bi in Sih
n

i=1
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J ai (11 411)
i=1	 i=1

X, n —	

n	 n

(Pi SihCi	 =)

= xr ll sibj, — H 4 ,,E,, 	ici
i=i	 i=i	 .i=1

i=1	 i=1	 i=1	 ) (i=1

n	 n	 n	 n
Xh = X, n 4 ,,:i	 pisihei '-IT sib-iii

bi
S ih

1
PiSihei

TT	 iH b
Sih ici I I(5.26)

	

i=1	 r i=1	 i=1	 \i=1

	Noting that aih = pi sih ci and ah =	 aih , (5.26) can be equivalently written as
i=1

TT Q bi 	 aih H sibjiar
H'ih
i=1	 i_.1 i=1

ah
= — + H(sih ) bi 1 —

xr	 i=i	 xr

(5.27)

(5.28)

These general scales sh are the final quantities of interest. They capture the overall

effect of a change in demographic composition on the total expenditure of the

household. From (5.28), they are shown to be functions of the commodity-specific

scales Sih lS and are calculated based on a chosen reference income level of the

reference household. If we rewrite the first term in (5.28) as
ah ar

ar X,

we can see that a general scale is weighted average of the H(Sih ) bi term and ah/ar,
i=1

where the former is a geometric mean of the Si/L 'S and the latter is a ratio of relative

subsistence costs.

5.3 Stochastic Assumptions and ML Estimation

Suppose now that there are Mh observations (households) with demographic com-

position type h. In the notation that follows, the symbols Vih and xh which pre-

viously represented scalar quantities for a given household, will become (Mb x 1)

n

i=1

Ci)

Xh
xr

Xh
Sh X,

1 [n
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vectors containing all observations on households of type h. Returning to equation

(5.16), and adding stochastic terms, the system we wish to estimate can be written

as

?)lh Zh 91h Xh 77i elh

V2h zh 92h Xh 7/2 e2h
(5.29)

Vnh Zh Onh Xh rIn enh

or

Vh	 zhoh + xhn + Eh (5.30)

where

h	 = 1, 2, ..., H refers to household composition type h;

n refers to the number of commodity groups;

Vih	 is an (Mh x 1) vector of observations on expenditure

for the i th commodity and the h-type household;

zh 	 is an (Mh x 1) vector of ones;

xh 	 is an (Mh x 1) vector of observations on income

for households of type h;

eih	 is an (Mh x 1) vector of errors;

V h	 is of dimension (nMh x 1);

Zh	 In 0 zh is an (nMh x n) matrix of dummy variables;

Xh	 = In 0 x h is an (nMh x n) matrix of household incomes;

Oh, T1	 are (n x 1) vectors of unknown parameters;

Eh	 is an (nMh x 1) vector of errors which is assumed

to be distributed as

Eh (Nd 	 Slh /Mhi (5.31)

Thus the error covariance matrix nh is allowed to be different for different house-

hold types. Because Slh is not diagonal, correlation between errors from equations



log L = 
nM 

log (27) —
2

mh log I nh I
-1

1
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for different commodities, and the same household, is permitted. Zero error cor-

relation is assumed across different households. (The sample is assumed to be

random). Thus, in addition to (5.31), E(EhE ik ) = 0 for h k.

The task is to derive expressions for the maximum likelihood estimators of

Oh, fth and as well as asymptotic covariance matrices for these estimates and

asymptotic covariance matrices for the consequent maximum likelihood estimates

for the parameters in equations (5.17) - (5.20).

5.3.1 Derivation of Maximum Likelihood Estimators

Noting that V 1 , V2 ,..., VH in the system of equations defined in (5.30) are inde-

pendent, the log-likelihood for all parameters, given data on all household types,

can be written as

1
(V h - ZhOh xhri)/(nh i imh )(vh - Zh®h - xhn) (5.32)

=1

where M = Mh. To maximise this function, the possibility of concentrating

out the Oh is first investigated. Working in this direction, the last term can be

written (without the summation) as

Qh = (V h - ZhOh Xhrl) / (9h 1- ® IMh )(Vh -- Zh®h - xhn)
= (Vh -	 IMh)(Vh Xhi) ehzh(nw l ® imh)zhoh

—20h Vh (11 /7 1 0 /AA ) (V h Xhirl)
	

(5.33)

Now,

clog L _ aQh 
aoh - 2 aoh

=	 [24,(12v- 0 imh )zhoh -	 0 IMh)(Vh - xhn)] (5.34)

Setting this derivative to zero and solving for the maximising value eh gives

=	 ® imh )zhr	 ® imh )(vh xo)
	

(5.35)
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Now,

vh(nii1 imh )zh = (In ® ZO (n ii 1 /Nth )(in zh)

- 121-7, 1 	 ZlhZh

- nw l Mh

- mhni71

Also

Z 1h (11W 1 /mh ) = 12 /7, 1 	 -4,

Using (5.36) and (5.37) in (5.35) gives

Oh
	 [ni-1-1 0 mh] - 1 (m11 0 Z;i )(V h Xhrl)

= ( 11h 4.i- 1 )(n iT, 1 z;,)(vh - xhn)

= (In, 0 	 4) (V h Xhn)

Considering the ith row in equation (5.38), we obtain

(5.36)

(5.37)

(5.38)

9ih =
1
	 Zh (Vih X Oh)
Mh

(5.39)

where 7v-ih = .A-7117, ,z/hvih is the average expenditure on commodity i for all households

of type h and Xh = Mh Z;iXh is the average income of all h-type households. The

result in (5.39) is an important one. It means that the Oih 's do not depend on nh

and can be computed at the end of the maximum likelihood algorithm, after we

have estimated 11 h and

Let V III = ( 51h I T- 2h) • • • iinh) and Xh = In 0 Xh. Then,

e h = Vh Xhrl	 (5.40)

Substituting (5.40) into (5.33) yields

Q = [(Vh — ZhVh) — (Xh — ZhXh)ni (ith 0 /Mh [(Vh Z hVh (Xh — ZhXh)7/1

= (177, - x7,77)/ ( c2 17, 1	/)(v7i - x7, 77)	 (5.41)
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where Vh* = Vh- ZhVh is a vector of expenditures expressed in terms of deviations

from the mean expenditures for each commodity and household type, and Xh*

Xh - ZhXh is a vector of incomes expressed in terms of deviations from the mean

incomes for each household type. The concentrated log-likelihood function can

now be written as

log L*	
n

log (27) — H M log I Sill
M
2	 2 h= 1

H

E(v 1- )Ciin) / (V l ® I Alh)(ri — X7,77)
h=1

(5.42)

H

2
	 log (27) + —

2 h=1 
Mhlog fk l I	 E tr [whn,7 1] (5.43)

2 h=1

where Wh is an (n x n) matrix of (i, Ath element given by

[Whiij = (Vih xh1i) 1 ( v;ti 471:7)

	
(5.44)

See Judge, et.al. (1988, p.553) for details of the two alternative specifications in

(5.42) and (5.43). Judge, et.al. also gives details on how to differentiate (5.42)

with respect to ir,i7 1 . This differentiation yields

alog L* = Mh

anh 1	 2
Setting this derivative equal to zero yields the maximum likelihood estimator for

given 77 as follows:

E411 = ml	 h W h	 (5.46)

To find an expression for the maximum likelihood estimator for 77 , given nh,
we return to the last term in (5.42) and rewrite it as

E crh = E(NT;; X iir/)'( t h 1 imh )(VI — X171)
h=1	 h=1

= E [v '(5-2h' Imh )Vh	 /mh)X7,77
h=1

—27/X7, '(11 /T 1 0 Imh)Vh]
	

(5.47)

nM	 1 H

(5.45)
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Now,

clog L*
	

ag'h

h= 1 an
1 H

	[2N1'(/2/7, 1 ® I mh )X7,71 2X7,	 I imh )rd (5.48)
=1

Setting this quantity equal to zero yields

[
E Xh*	 imh)x;,1	 E Xh* (niTi ®IMh)Vh	 (5.49)
h=1	 h=1

Now,

X7, '(11,,, 1 	 o ')(5V1 0 /mh )(in 0 4)

= 121: fh'

= eh ' x7,11 1T1
	

(5.50)

Also,

Xh '(12h1 
0 IM, 	 (In 0 X;1 ' (fk l imh)r,

(S2W 1 	 x 411 ' )vvh 	 (5.51)

In the light of the 2nd line in (5.50), equation (5.51) can be written as

[niv 0 eh , x*h] [nw i x*hx;','(ith--' /mh )vch 	it 	 0 eh ']

'eh eh SI(	 ) (2h 0 (x4ch

	

)	 (12;,7 1 0 eh ')Vhh 1

eh eh 12 IT 1 {1-7, ® (eh ' 4) -1 eh '1V;;

el:41'4; 1 1)h 	 (5.52)

where

= [In ( x x *hr 1 x *h
	 (5.53)

is the OLS estimator for t from observations corresponding only to the h-type
household. The i th element in is given by

xh* • xh* , ) xh-1 *( (5.54)



or

=

--1
](x* ' x0O-1-	

,, --1 , L.

* ' 4)11 Tr
[h=1 h=1

(5.58)
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Substituting (5.50) and (5.52) into (5.49) yields

[

E(
=1 

xh* xh) nh 1	
= 11=1

(xh ' *
h 

(5.55)

E(Xh '4)C2 17 1 	 E (eh ' XDC l i(5.56)

Conditional on Sly, and Oh, the maximum likelihood estimator for T1 is given by a

matrix-weighted average of the h-type household OLS estimators with weights

given by (4'xh*)11-1. Maximum likelihood estimators for all the 9h, i and Sih are

given by the simultaneous solution of equations (5.39), (5.46) and (5.56).

5.3.2 An Iterative Estimation Procedure

The results obtained in the last section lead to the following convenient iterative

procedure for computing these estimates:

1. Express vih and xh in terms of deviations from their household type means.

That is, compute v:h vih ihZh and xh  xh -±hzh, where vih M h i 4tV2h

and -4, = Mh-1 Z;iXh.

2. Find the least squares estimates 	 = (4 '4) 1 4 ',v7h.

3. Find an initial estimate of nh asi

[
Oh]	 - XVIN I (V; h XVI") I Mh	 (5.57)ij

4. Compute a pooled estimate for ri as

h=--1	 11=1

H	 ] -1 H

where h = (77, 1"T ,rh	 4),

5. Repeat step (3) with filil replaced by that is computed from (5.58).

'Note that steps (2) and (3) can be computed at the same time with a seemingly unrelated

regression of each of (v7h,v2*h,...,vn*h) on	 with no constant.
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6. Repeat steps (4) and (5) until convergence.

7. Compute estimates of the Oih from

Oih	 Yhf
	

(5.59)

5.4 Derivation of the Asymptotic Covariance
Matrices

This section outlines the derivation of the asymptotic covariance matrices for the

parameters Oh and n. A second section details the derivation of the asymptotic

covariance matrices for b, ah , bi and aih . The last section derives asymptotic

variances for the Sih estimators.

5.4.1 Variance Matrices For Oh and j

To specify the asymptotic covariance matrix for the maximum likelihood estimator,

the second derivatives of the log-likelihood function specified in (5.32) are required.

From (5.34), (5.36) and (5.37), these second derivatives are obtained as follows:

a21og L =
	 ® imh)zh

aohoo'h

a2log L

aehaek

a2 log L

aeharY

= -m1 1 T 1	(5.60)

= 0	 (h	 k)	 (5.61)

imjxh

=	 (5.62)
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From (5.32) and (5.50), we obtain

02 log L –	 vh (siv- irmh)xhanan,

E
h=1

(5.63)

It can be shown that the expectation of the cross partial derivatives with respect
to Oil, or rlZ and the elements of 12h, is zero. Thus the information matrix is block
diagonal, and, providing the interest is not on the standard errors of the maximum
estimator of Sly" concern may be confined to the derivatives (5.60)-(5.62).

Specifically, let CY =-- (0'1 , 0 2 ,	 OH, ), then

h=1

m1s11 1
0

0

0

m2n2-

0

0
0

Mi[011-1

m1-t-11-211

m2t-2Q21

1112.111

(5.64)
02 log L _
acme' -

H

m21-J2
2

1 	 MHTH12H-1
h=1

Since this matrix does not contain any stochastic elements, the information matrix
obtained by taking expectations of (5.64) is the same as (5.64). Let

E	 - MhTDS2h l ]	 (5.65)
h=-1

= (1 1) 12, • YHY	 (5.66)

(5.67)

mHinH
Using results on the partitioned inverse of a matrix and using V(.) to denote the
asymptotic covariance matrix, it can be shown that

-1
V(0) = 

[
E 

02log L 
00001

mi-11/1

A = 	 m2 1 f22



01) (a,13,)
Now, 

Obi
1
b

1
b

—

Let

071i 

-1(  °B '

for i= j

for i j

C = In —
b
Tr'

From (5.73) and (5.74) it follows that

OB 1
C

On'	 b

(5.73)

(5.74)

(5.75)

(5.76)
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A- 1	 A-1(7 i) 
-1

 
(5.68)

(zi I)A-1 E xidhEr1,1

-I- XV D-1	 D-1
—' D-1	 D-1	

(5.69)(5

The relevant variance components from (5.68) are

V(eh) W i tih +11D ---1 	 (5.70)

and

V(1-1) = D -1 .	 (5.71)

5.4.2 Variance Matrices for b, ah , bi and aih

This section provides details of the derivation of the asymptotic covariance matrix

of the estimators for the parameters b, ah , bi and aih defined in equations (5.17)-

(5.20). From (5.17),

V (b) = D -1 z	 (5.72)

where z	 (1,1, ..., 1)'. Let B = (b 1 , b2 ,	 bn )' . Then,
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and
V(ii) = —

b
CD-1C'	 (5.77)

Consider now the covariance matrix for the aih . Let a h = (a ih, a2h, • • • , anhY •

By definition, we have

v(ah) = iVarr
eh )1 (2h.)

(*LT) J
(5.78)

Now, P = C* and 'iaa	 ahC* where C* In + 1	 Thus- b
aeh

OM1 h	 —1-h.D-1	 C*1
v(a h) = [ C* ahC * ][ h D-1	 ahC*'

= C*[Mh l ith + (Th — ah)2D-1]C"

Noting that eth z' aih, we also have

V(ah) = Z 1 C* [Mh i fth (1h — ah)2D-1]C"z

(5.79)

(5.80)

5.4.3 Variance Expressions for the ,§ih's

By definition, the commodity specific scales are ratios of the subsistence expendi-

tures of some household h and the reference household r. Thus,

c	 =‘ih	 aih

	
(5.81)

air

In this regard, the following expression for the variance of the commodity-specific

scales V( ih) is obtained

	  COV	 air)
V(§ih) (03 asiihh ) 2 V (elih) CaSaiihr ) 2 

v(a„)+ 2 
( aaaSiihh) CaSaiihr

1,2 2aih

=	 T V(aih) +	 sir) — 3 cov(etih , air)
aih	 air	 a„

(5.82)
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The elements v(aih ) and V(a ir ) are given by the appropriately selected diagonal

element in (5.78) and its counterpart for the reference household. The elements

cov(etih , air ) are given by the diagonal elements of

covra h , ar ) as 	 ace,	 act, v v[ ae h 	 aer	 an,

acchY
aeh

( acthY
aOr

(a),-

eh
O r

\

= [ 0	 C* arC* V

I	 h
er

n

C*'

0

ahC*'

MIL1f2h-Fx1D-1
	

ThYrD-1	 —YhD-1
= [0 C ahC1
	

YhTr D-1
	

Mh-lnr+42 D-1 --X,

—AD-1
	

xr D-
1 	 D-1

= (Th — ah)(xr — ar)C* 	• C'

C*,

0

ahC*/

(5.83)

5.5 Empirical Application

The data used in this study are derived from the 1988-89 Household Expenditure

Survey (HES) conducted by the Australian Bureau of Statistics between the period

July 1988 to July 1989. This is described in detail in Chapter 3 of this study.

The iterative procedure described in Section 5.3.2 was applied to the 5532 sample

households grouped into eight household types (see Table 3.2) and using all the

eleven expenditure categories described in Chapter 3.

Table 5.1 presents the parameter estimates of the extended linear expenditure

system. The iterative process (Steps 4 and 5) converged on the 5th iteration and

yielded the 71i estimates found in the 2nd column. The other columns present the

estimates of 0ih corresponding to each commodity group and household type. The

table also provides estimates of the asymptotic standard errors of these parameters

from equations (5.69) and (5.71). These estimates of and Oih do not carry a

direct economic interpretation but are important to the procedure as they lead to
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the estimation of the marginal propensities and subsistence expenditures which are

presented in Table 5.2. The standard errors are all relatively small, except perhaps

for household type (1,3) where the number of households of that type is small.

In Table 5.2, the 2nd column provides the marginal budget shares b i and the

3rd through to the 10th columns give the estimates of subsistence expenditures aih

for each expenditure category. In general, the subsistence expenditures increase

with household size, with wider differentials occuring across two-adult households

compared to one-adult households. For all household types, expenditure on food

was on top of the shopping list, followed closely by housing, then transport, then

household furnishings. Together, these items make up between 62 to 67 percent of

subsistence expenditures of a typical Australian household.

Table 5.3 presents the estimates of commodity-specific scales defined in equa-

tion (5.21). A two-adult household with no children is chosen to be the reference

household for which sih, is set to 1. For most commodities, the scales increased

with the increase in the household size. These increases are observed to occur at a

decreasing rate indicating economies of scale for additional children. After the first

child there exists strong economies of scale for additional children, particularly for

expenditures towards housing, food and household furnishings. There are some

exceptions to these observations. The magnitude of the scales Alcohol and To-

bacco, for instance, declines as the number of children in the household increases.

Also, the scales for Medical and Health Care and Others commodity groups ex-

hibit no defined trend for one-adult households. A more thorough investigation

of expenditure patterns of households may be required for us to provide definitive

explanations for such deviations but one possibility is that the presence of children

in the household tends to influence expenses away from 'adult goods' under which

alcohol, tobacco and many other miscellaneous goods are classified.

Has there been significant changes in the scale relativities over time? Informa-

tion from Tables 5.4 and 5.5 provide some answers. In Table 5.4, scale estimates

calculated from the Binh and Whiteford (1990) results, that used the 1984 data,

are presented and compared with our results that used the 1988 data. Also, since

it could be argued that a difference in results may be attributable to the new

maximum likelihood estimation procedure, rather than a change in consumption
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patterns, estimates from the 1988 data set obtained using Kakwani's estimation

procedure (the procedure used by Binh and Whiteford (1990)) are also presented.

The two sets of 1988 scales are very similar with no one method exhibiting con-

sistently higher or lower values. The estimated standard errors for both sets (not

shown) show more divergence, but again do not display any consistent over or

underestimation.

There are noticeable changes between the 1984 and 1988 scales. For the one-

adult households with children, the estimated scales appear to have mostly de-

creased over time. In contrast, the scales for the (1,0) household type have in-

creased mostly. For the two-adult households with children, results were mixed.

The direction for the change were the same for the (2,1) and (2,2) household types

while change in the scale values for the (2,3) type tend to be in the other direction.

Interestingly, the only consistent (direction of) change for all household types was

observed for Alcohol and Tobacco. For this commodity, scales decreased signif-

icantly from 1984 to 1988. The 1988 trend seem to imply that the presence of

children has a deterring effect on the consumption of alcohol and tobacco which

(from the results above) was not the case in 1984. Many would argue against this

interpretation but it seems plausible.

Also, while relative costs for Alcohol and Tobacco increased with the increase

in household size in 1984, this trend is reversed in 1988. It is also noted that

there are fewer economies of scale in housing in the later data set, but greater

economies of scale in food. The largest differences in the scale estimates occurred

in the one-adult, three-children household groups. Since the number of households

in this group is relatively small, and the standard errors of the estimated scales

are relatively high, these differences may reflect sampling error.

The interpretations made above could be misleading. It is recognised that

a four-year period may be too short for any significant changes in behavioural

patterns to occur with such regularity. It is possible that price level changes

may have accounted for a change in the results. Without price movements being

incorporated in the analyses, a comparison of estimated scales at two different time

points in time must be made with caution.

The general scales computed from equation (5.28) are presented in Table 5.5.
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Because these scales depend on income xr , they are computed for three income

levels, the same levels as utilised by Binh and Whiteford (1990). Also presented in

Table 5.5 are three estimates of each scale - the Binh and Whiteford 1984 estimates,

the 1988 estimates using Kakwani's estimation procedure and the 1988 estimates

using maximum likelihood estimation. There is virtually no difference between the

two sets of 1988 estimates. Also, no sensitivity to the level of income is detected.

Comparing the 1984 estimates with the 1988 estimates, we find the results for the

two-adult families are quite similar, although Binh and Whiteford's conclusion that

"there is strong evidence of economies of scale in the second child but adding the

third child increases these households' needs considerably" no longer holds. For

the 1988 data, adding the third child was only slightly more expensive than adding

the second child. For one-adult families, the noticeable differences are an increase

in the relative cost when there are no children, and a decrease in the relative cost

when children are present.



Table 5.1 Parameters Estimates of the Extended Linear Expenditure System

Commodity Type bi

( I ,0) (1,1)

0th

Household Type (no. of adults, no. of children)

(1,2)	 (1,3)	 (2,0)	 (2, I) (2,2) (2,3)

Housing 0.0577 0.1721 31.4384 39.2799 44.0618 48.5558 31.6131 52.8594 52.1784 56.3839
(0.0024) (0.0041) (1.5904) (3.4719) (4.0361) (8.1841) (2.0571) (3.9800) (3.4128) (4.1472)

Fuel & Power 0.0033 0.0097 6.8267 9.4220 10.9337 11.3064 9.9670 12.0888 13.4061 14.3140
(0.0003) (0.0004) (0.1876) (0.5191) (0.6032) (1.2418) (0.2480) (0.4113) (0.3652) (0.4972)

Food 0.0347 0.1035 32.4681 45.5670 61.0741 68.2695 62.6246 77.4861 90.4438 100.2526
(0.0013) (0.0023) (0.8173) (2.5353) (2.9826) (6.7713) (1.1152) (2.0088) (1.9529) (2.6030)

Alcohol & Tobacco 0.0115 0.0342 10.0246 6.9719 4.9411 3.4686 17.5799 15.4021 13.0945 10.2715
(0.0091) (0.0014) (0.6507) (1.0621) (1.2183) (1.3293) (0.8760) (1.3746) (1.3600) (1.1911)

Clothing & Footwear 0.0235 0.0701 5.2716 11.4805 10.9911 19.6190 10.7708 14.1915 15.7439 19.4025
(0.0013) (0.0022) (0.8410) (2.5512) (2.5906) (5.0014) (1.1941) (1.9730) (1.8881) (2.4064)

Household Furnishings 0.0443 0.1322 16.8705 20.1199 24.0804 24.1203 31.9543 50.1229 33.7267 39.9537
& Equipment (0.0028) (0.0047) (1.6025) (3.2014) (4.6645) (8.6138) (2.5944) (5.7405) (4.0231) (4.5020)

Medical & Health Care 0.0126 0.0376 6.5825 4.6592 7.9275 4.4214 12.6566 16.1081 15.9796 15.8738
(0.0007) (0.0012) (0.7026) (1.2638) (1.9084) (2.2170) (0.6276) (1.3418) (0.8806) (1.1131)

Transport 0.0455 0.1358 23.1214 23.5812 25.4170 33.4503 46.0910 42.9850 52.5040 61.3162
(0.0031) (0.0051) (2.1326) (4.0892) (5.1102) (13.1716) (2.8519) (4.3130) (4.2381) (7.1711)

Recreation 0.0585 0.1745 12.5837 11.2043 6.2985 18.6823 25.3231 21.2988 31.4789 32.5454
& Entertainment (0.0027) (0.0047) (1.5089) (3.7386) (2.8249) (7.6083) (2.6473) (4.1107) (4.4664) (5.5580)

Personal Care 0.0052 0.0156 2.9486 4.5084 5.7927 3.7391 5.6180 6.6150 7.1597 6.0180
(0.0004) (0.0006) (0.2490) (0.6603) (1.0832) (0.9797) (0.3719) (0.6447) (0.5324) (0.6224)

Others 0.0385 0.1150 4.0790 12.3671 8.0946 4.4807 7.6374 13.1176 20.7703 25.2940
(0.0018) (0.0031) (1.2281) (3.1177) (2.0378) (2.5730) (1.6269) (2.5048) (3.4253) (5.0650)

Note: The estimated standard errors are in parentheses.

oo



Table 5.2 Parameter Estimates of Marginal Propensities and Subsistence Expenditures

Commodity Type b (1,0) (1,1)

Subsistence Expenditures (a ;h 's)

Household Type (no. of adults, no. of children)

(1,2)	 (1,3)	 (2,0)	 (2,1) (2,2) (2,3)

Housing 0.1721 44.6461 55.6935 62.2498 69.3904 54.3326 80.8232 82.4249 89.4976
(0.0041) (1.6292) (3.9026) (4.4800) (9.9430) (1.8154) (4.1615) (3.4164) (4.4639)

Fuel & Power 0.0097 7.5720 10.3483 11.9601 12.4822 11.2492 13.6669 15.1027 16.1827
(0.0004) (0.1717) (0.5242) (0.6003) (1.2544) (0.1994) (0.3794) (0.3524) (0.4757)

Food 0.1035 40.4086 55.4349 72.0089 80.7954 76.2837 94.2910 108.5187 120.1607
(0.0023) (0.8475) (2.8826) (3.3039) (7.6824) (1.0129) (2.1782) (2.0471) (2.8829)

Alcohol & Tobacco 0.0342 12.6534 10.2387 8.5610 7.6153 22.1017 20.9678 19.0782 16.8621
(0.0014) (0.6188) (1.0512) (1.2132) (1.4246) (0.7419) (1.2963) (1.2491) (1.0574)

Clothing & Footwear 0.0701 10.6531 18.1682 18.4018 28.1081 20.0279 25.5854 27.9937 32.8947
(0.0022) (0.8219) (2.7734) (2.7713) (5.7923) (1.0271) (1.9432) (1.7799) (2.5240)

Household Furnishings 0.1322 27.0147 32.7264 38.0498 40.1224 49.4040 71.6005 56.8178 65.3866
& Equipment (0.0047) (1.5508) (3.5949) (5.0889) (9.7593) (2.2763) (5.9201) (3.9197) (4.5354)

Medical & Health Care 0.0376 9.4661 8.2428 11.8985 8.9702 17.6169 22.2135 22.5436 23.1035
(0.0012) (0.6868) (1.3382) (1.9893) (2.4079) (0.5132) (1.3274) (0.7944) (1.0619)

Transport 0.1358 33.5432 36.5327 39.7687 49.8903 64.0183 65.0505 76.2271 87.4452
(0.0051) (2.1086) (4.4341) (5.5586) (14.7220) (2.4982) (4.2747) (3.9894) (7.4524)

Recreation 0.1745 25.9738 27.8446 24.7377 39.8047 48.3563 49.6488 61.9587 66.1164
& Entertainment (0.0047) (1.4963) (4.3098) (3.1839) (9.7877) (2.4763) (4.3307) (4.6053) (6.0698)

Personal Care 0.0156 4.1486 5.9926 7.4373 5.6231 7.6723 9.1436 9.8783 9.0123
(0.0006) (0.2291) (0.6766) (1.0986) (1.0526) (0.3116) (0.6180) (0.4776) (0.5997)

Others 0.1150 12.9057 23.3362 20.2497 18.4044 22.8208 31.8058 40.8624 47.4238
(0.0031) (1.2465) (3.4371) (2.2069) (3.1771) (1.4203) (2.5751) (3.5113) (5.3230)

Total 1.0001 228.9851 284.5588 315 3233 361.2065 393.8838 484.7969 521.4062 574.0855
Note	 The estimated standard errors are in parentheses.



Table 5.3 Estimates of Commodity-Specific Scales

Commodity Specific Scales

Household Type (no. of adults, no. of children)
Commodity Type	 (1,0) (1,1) (1 , 2) (1,3) (2,0) (2,1) (2,2) (2,3)

Housing	 0.82 1.03 1.15 1.28 1.00 1.49 1.52 1.65
(0.04) (0.08) (0.09) (0.19) (0.00) (0.09) (0.08) (0.10)

Fuel & Power	 0.67 0.92 1.06 1.11 1.00 1.21 1.34 1.44
(0.02) (0.05) (0.06) (0.11) (0.00) (0.04) (0.04) (0.05)

Food	 0.53 0.73 0.94 1.06 1.00 1.24 1.42 1.58
(0.01) (0.04) (0.05) (0.10) (0.00) (0.03) (0.03) (0.04)

Alcohol & Tobacco	 0.57 0.46 0.39 0.34 1.00 0.95 0.86 0.76
(0.03) (0.05) (0.06) (0.07) (0.00) (0.07) (0.06) (0.05)

Clothing & Footwear	 0.53 0.91 0.92 1.40 1.00 1.28 1.40 1.64
(0.05) (0.15) (0.15) (0.30) (0.00) (0.11) (0.11) (0.15)

Household Furnishings 	 0.55 0.66 0.77 0.81 1.00 1.45 1.15 1.32
& Equipment	 (0.04) (0.08) (0.11) (0.20) (0.00) (0.14) (0.09) (0.11)

Medical & Health Care	 0.54 0.47 0.68 0.51 1.00 1.26 1.28 1.31
(0.04) (0.08) (0.11) (0.14) (0.00) (0.08) (0.06) (0.07)

Transport	 0.52 0.57 0.62 0.78 1.00 1.02 1.19 1.37
(0.04) (0.07) (0.09) (0.23) (0.00) (0.08) (0.08) (0.13)

Recreation	 0.54 0.58 0.51 0.82 1.00 1.03 1.28 1.37
& Entertainment	 (0.04) (0.09) (0.07) (0.21) (0.00) (0.10) (0.11) (0.14)

Personal Care	 0.54 0.78 0.97 0.73 1.00 1.19 1.29 1.17
(0.04) (0.09) (0.15) (0.14) (0.00) (0.09) (0.08) (0.09)

Others	 0.57 1.02 0.89 0.81 1.00 1.39 1.79 2.08
(0.06) (0.16) (0.11) (0.15) (0.00) (0.14) (0.19) (0.27)

Note	 1 he estimated standard errors are in parentheses.
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Table 5.4 A Comparison of Commodity-Specific Scales 
Commodity-Specific Scales (S ,h)

Household Type (no. of adults, no. of children)
Year*	 (1,0)	 (1,1)	 (1,2)	 (1,3)	 (2,0)	 (2,1)	 (2,2)	 (2,3)Commodity Type

ousing

Fuel & Power

I : I	 I

1988a	 0.80	 0.97	 1.09	 1.20	 1.00	 1.47	 1.50	 1.60
1988b	 0.82	 1.03	 1.15	 1.28	 1.00	 1.49	 1.52	 1.65

1984	 0.61	 0.99	 1.02	 1.38	 1.00	 1.23	 1.32	 1.50
1988a	 0.67	 0.90	 1.04	 1.08	 1.00	 1.19	 1.34	 1.42
1988b	 0.67	 0.92	 1.06	 1.11	 1.00	 1.21	 1.34	 1.44

Food	 1984	 0.51	 0.65	 0.95	 1.26	 1.00	 1.17	 1.40	 1.61
1988a	 0.53	 0.71	 0.93	 1.04	 1.00	 1.23	 1.42	 1.56
1988b	 0.53	 0.73	 0.94	 1.06	 1.00	 1.24	 1.42	 1.58

Alcohol & Tobacco	 1984	 0.58	 0.64	 0.74	 0.80	 1,00	 1.15	 1.11	 1.15
1988a	 0.57	 0.46	 0.39	 0.34	 1.00	 0.95	 0.87	 0.76
1988b	 0.57	 0.46	 0.39	 0.34	 1.00	 0.95	 0.86	 0.76

Clothing & Footwear	 1984	 0.38	 0.94	 1.46	 2.18	 1.00	 1.15	 1.32	 1.68
1988a	 0.53	 0.89	 0.90	 1.38	 1.00	 1.27	 1.39	 1.63
1988b	 0.53	 0.91	 0.92	 1.40	 1.00	 1.28	 1.40	 1.64

Household Furnishings	 1984	 0.46	 0.85	 1.05	 1.24	 1.00	 1.14	 1.20	 1.37
& Equipment	 1988a	 0.56	 0.71	 0.83	 0.89	 1.00	 1.48	 1.14	 1.37

1988b	 0.55	 0.66	 0.77	 0.81	 1.00	 1.45	 1.15	 1.32

Medical &	 1984	 0.47	 0.33	 0.43	 0.63	 1.00	 1.15	 1.20	 1.36
Health Care	 1988a	 0.53	 0.44	 0.64	 0.47	 1.00	 1.25	 1.28	 1.28

1988b	 0.54	 0.47	 0.68	 0.51	 1.00	 1.26	 1.28	 1.31

Transport
	

1984	 0.46	 0.62	 0.75	 1.19	 1.00	 1.34	 1.16	 1.32
1988a	 0.53	 0.61	 0.66	 0..85	 1.00	 1.01	 1.19	 1.41
1988b	 0.52	 0.57	 0.62	 0.78	 1.00	 1.02	 1.19	 1.37

Recreation	 1984	 0.53	 0.62	 0.68	 1.01	 1.00	 0.92	 1.15	 1.19
& Entertainment	 1988a	 0.54	 0.61	 0.54	 0.88	 1.00	 1.03	 1.28	 1.40

1988b	 0.54	 0.58	 0.51	 0.82	 1.00	 1.03	 1.28	 1.37

Personal Care

Others

1984	 0.62	 0.69	 1.33	 1.32	 1.00	 1.19	 1.13	 1.22
1988a	 0.54	 0.76	 0.95	 0.71	 1.00	 1.19	 1.29	 1.17
1988b	 0.54	 0.78	 0.97	 0.73	 1.00	 1.19	 1.29	 1.17

1984	 0.45	 1.34	 0.99	 1.98	 1.00	 1.19	 1.26	 1.86
1988a	 0.57	 1.04	 0.90	 0.82	 1.00	 1.40	 1.80	 2.10
1988b	 0.57	 1.02	 0.89	 0.81	 1.00	 1.39	 1.79	 2.08

*1984 Scales derived using 1984 unit record data from Binh and Whiteford (1990).
I988a Scales derived using the Kakwani procedure applied to 1988 HES survey data (own calculations).
1988b Scales derived using the proposed MLE procedure applied to 1988 Household Expenditure

Survey (own calculations).



Table 5.5 Estimates of General Scales

General Scales (S h)

Reference Income**
	

Year*	 Household Type (no. of adults, no. of children)

(I, 0)	 (1,1)	 (1,2)	 (1,3)	 (2,0)	 (2,1)	 (2,2)	 (2,3)

Low Income ($325 p.w.) 	 1984	 0.53	 0.80	 0.95	 1.27	 1.00	 1.20	 1.28	 1.44

1988a	 0.59	 0.73	 0.82	 0.94	 1.00	 1.23	 1.33	 1.46

1988b	 0.58	 0.72	 0.81	 0.92	 1.00	 1.23	 1.32	 1.45

Medium Income ($450 p.w.)	 1984	 0.52	 0.81	 0.94	 1.28	 1.00	 1.20	 1.27	 1.44

1988a	 0.58	 0.73	 0.80	 0.92	 1.00	 1.23	 1.32	 1.47

1988b	 0.58	 0.72	 0.80	 0.91	 1.00	 1.23	 1.33	 1.46

High Income ($700 p.w.)	 1984	 0.52	 0.81	 0.94	 1.29	 1.00	 1.19	 1.26	 1.45

1988a	 0.58	 0.73	 0.78	 0.92	 1.00	 1.23	 1.32	 1.47

1988b	 0.58	 0.72	 0.79	 0.91	 1.00	 1.23	 1.33	 1.47

* 1984 Scales reprinted from Binh and Whiteford (1990) which used 1984 Household Expenditure Survey data.
1988 a Scales derived using the Kakwani procedure applied to data from 1988 Household Expenditure Survey (own calculations).
1988b Scales derive using the proposed MLE procedure applied to data from 1988 Household Expenditure Surve (own calculations).

**The scales have been evaluated using the listed incomes as reference levels.



Chapter 6

A Bayesian Approach to the

Estimation of Equivalence Scales

In the last chapter, the procedure used in the estimation of parameters was derived

within the sampling theory framework of analysis. In this section, an alternative

approach based on Bayes Theorem is proposed and used. Certain features of the

Bayesian approach to inference make it attractive for the model considered here.

First, the approach is known for its ability to provide finite sample inference pro-

cedures in many instances where only asymptotic inference is available from a

sampling theory framework. As seen in Chapter 5, the model considered here

has the original demand parameters (aih and bi ) expressed as non-linear functions

of the estimated parameters (Oil, and n). The commodity-specific scales s ih are

likewise non-linear functions of the a ih ; and the general scales s h are complicated

functions of a number of the parameters. These nonlinearities meant that consid-

erable effort had to be put into deriving asymptotic covariance matrices for the

various sampling theory estimators in Chapter 5. In this chapter, a Bayesian pro-

cedure that describes parameter uncertainty in a more straightforward and less

cumbersome manner is derived. For the general scales, Bayesian estimators are

shown to allow for more complete inference than was possible within the sampling

theory framework.

Another advantage of the Bayesian approach is its ability to include pre-sample

or "prior" information about parameters by way of a formal framework. In this

88
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chapter, non-informative priors are used and, in that sense, it can be argued that

this work does not avail of the advantage that Bayesian analysis has in terms of

including prior information. This is not because no prior information is available.

Indeed, subsistence parameters should be less than the corresponding minimum

consumption in the sample, and prior information about the relative magnitudes of

the various scales exists. Specifying non-informative priors does, however, provide

a first step towards Bayesian analysis of the model, from which more sophisticated

future research involving informative priors (inequality restrictions) could emanate.

Research within this context, but for a different specification, has been carried out

by Griffiths and Chotikapanich (1996, 1997).

A further motivation for the Bayesian approach in this chapter is that it pro-

vides a first step towards the development of a methodology to cover the infre-

quency of purchase problem (Chapter 7) that is too difficult to handle within

the sampling theory framework. Finally, for some, presenting results in terms of

a subjective (post-sample) distribution is more natural and meaningful than pre-

senting values from estimators that have good pre-sample but not necessarily good

post-sample properties (as in the sampling theory approach).

6.1 Bayesian Inference and Bayes Theorem

There is a lively debate in the literature about the relative merits of the sampling

theory and Bayesian approaches to inference. See, for example, Zellner (1988).

Griffiths, Hill and Judge (1993, Chp. 24) explain in detail the distinction between

these two approaches. In conventional sampling theory, inferences are made based

on parameter estimates which are evaluated in terms of their performance in re-

peated samples. Accordingly, an estimate that is unbiased implies that in a large

number of hypothetical samples, the average value of the estimates produced by

that estimator converges to the true unknown parameter value. A minimum vari-

ance unbiased (mvu) estimator is so desired because, relative to estimates provided

by any other unbiased estimator, mvu estimates vary less around the true unknown

parameter value. To a sampling theorist, the concept of probability of an event is

defined in terms of its frequency of occurrence in repeated identical experiments.
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Consequently, the precision of a statistical estimation technique used within this

framework is evaluated based on its long-term accuracy over repeated samples.

Such is the case for the methods of least squares and maximum likelihood esti-

mation. Also estimation techniques used within this framework do not normally

involve the formal consideration of non-sample information. The variation in the

observed variables is, for the most part, assumed to contain all the information

about the unknown parameters of interest.

In the Bayesian framework, probability is a concept that expresses an individ-

ual's belief on how likely or unlikely a particular event is to occur. This belief may

depend on quantitative or qualitative information or both but it does not neces-

sarily depend on the relative frequency of the event in a large number of future

hypothetical experiments. As such, different individuals are allowed to assign dif-

ferent probabilities to the same event, and hence, the association of this notion of

`subjective' probability with Bayesian procedures. A further consequence is that

the uncertainty about the value of an unknown parameter can be expressed in

terms of a probability distribution; this is one of the main features of Bayesian

analysis.

The initial step to presenting and analysing information about a set of unknown

parameters 0=- (91 , 02 , Ok ) using the Bayesian approach is the construction of

a prior probability density function (pdf), g(0). This prior pdf summarises all

the researcher's information about 0 before the sample is observed. Such prior

information would typically be based on economic theory, past studies, or both.

Some data relevant to 0 is then collected. Subsequently, consider now the sample

information vector

Y =	 Y27 •••) Yn)

which has a probability density function that depends on 0 in some known manner

denoted by

Py I 0).

What is desired at this point is to combine prior knowledge contained in g(0) with

that of information from the sample f(y 0) to form an expression for 0 known

as the posterior probability density function (posterior pdf for short). A posterior
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pdf summarises all the sample information about 0 after the sample y is taken.

Bayes' theorem for random variables (and vectors) is a mathematical rule that

enables us to do just that. Bayes' theorem states that

g(e I y) = 
f(y o)9(e)

f (y)

where g(0 y) is the posterior pdf for 0 and g(0) is the prior density for 0. Here,

it is noted that the function f (y 0) is algebraically identical to the likelihood

function for 0. Accordingly, if we regard f (y) as a constant, and let f(y I 0) be

written as the likelihood function 1(0 I y), then (6.1) becomes

g(0 I y) cx 1(0 I y)9(0)	 (6.2)

where oc denotes 'proportional to'. In simpler form, Bayes theorem in (6.2) can be

written as

posterior oc sample x priori

This relationship summarises the way in which Bayesians modify their beliefs in

order to take into account the available non-sample information. This feature

of the Bayesian approach to estimation is particularly appealing to economists

who frequently have prior information about the parameters in their economic

relationships.

One of the major obstacles to the application of Bayesian econometrics has

been the perceived need for numerical integration. A common way to present re-

sults from a Bayesian investigation is to provide graphs of marginal posterior pdfs

for each of the unknown parameters of interest. Instead of presenting a point es-

timate and its corresponding standard error as traditionally done in the sampling

theory approach, Bayesians summarise information about an unknown parameter

in terms of a pdf that describes how likely (in a subjective probabilistic sense) dif-

ferent values of the parameter are. See Griffiths, et.al. (1993) for an introductory

exposition. In order to present information in this way, it is necessary to derive

marginal posterior pdfs for each of the unknown parameters from the joint pos-

terior pdf for all the parameters. This process means that unwanted parameters

(6.1)
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must be integrated out of the joint posterior pdf. If analytical integration is not

possible, or the dimension of the joint posterior pdf is greater than three, mak-

ing numerical integration impractical, some other solution must be found. One

such solution, which has led to an enormous explosion in Bayesian literature over

the last five years, is the use of Markov Chain Monte Carlo (MCMC) techniques.

These techniques provide a way of drawing observations from the joint posterior

pdf. Once some observations have been drawn, they can be used to construct his-

tograms as estimates of the marginal posterior pdfs. Since observations are drawn

artificially using computer software, we can make estimated marginal posterior

pdfs as accurate as we like, by drawing as many observations as are required. Mar-

ginal posterior pdfs are not the only way of presenting information that utilises

MCMC-estimated integrals. Posterior means and standard deviations which are

the Bayesian counterparts of sampling theory point estimates and standard errors

often take the form of intractable integrals. These quantities can be readily esti-

mated using the sample means and standard deviations of the MCMC-generated

observations. There are two main MCMC techniques: Gibbs sampling and the

Metropolis-Hastings (M-H) algorithm. Introductory expositions to these numeri-

cal algorithms are found in Casella and George (1992) and Chib and Greenberg

(1995a). And for an appreciation of the wide variety of applications of these al-

gorithms, see Albert and Chib (1996), Chib and Greenberg (1996), Tanner (1993)

and Gelfand and Sfiridis (1996).

In this chapter and the next, the availability of the Gibbs sampling and M-

H algorithm paves the way for the application of Bayesian econometrics to our

equivalence scale estimation problem. Gibbs sampling is employed in this chapter

while the M-H algorithm is combined with the Gibbs sampling procedure in the

next chapter. In the meantime, we now focus on the application of Bayesian esti-

mation techniques to the n-equation linear seemingly unrelated regression system

which was analysed in Chapter 5. The MLE-based results from that chapter will

be compared with the results derived from this chapter using Bayesian principles.
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6.2 The Model and Bayesian Estimation

The model used in this chapter is the extended linear expenditure system which

was discussed previously in section 5.1.1 of Chapter 5. The following detailed

presentation of the Bayesian solution to the same equivalence scale estimation

problem starts off by considering the following set of n-equation linear seemingly

unrelated regression (SUR) system (first presented in Chapter 5 as equations (5.29)

and (5.30)):

Vlh Zh 91h Xh 711 elh

V2h Zh 92h Xh 772 e2h

Vnh Zh 9nh Xh 77n enh

or

vh = zhoh+xhn + Eh	 (6.3)

where

	

h	 = 1, 2, ..., H refers to household composition type h;

	

n	 refers to the number of commodity groups;

	

Vih	 is an (Mh x 1) vector of observations on expenditure

for the ith commodity and the h-type household;

	

zh	 is an (Mh x 1) vector of ones;

	

xh	 is an (Mh x 1) vector of observations on income

for households of type h;

	

eih	 is an (Mh x 1) vector of errors;

	

V h	 is of dimension (nMh x 1);

	

Zh	 0 zh is an (nMh x n) matrix of dummy variables;

	

X h	 = In xh is an (nMh x n) vector of household incomes;

	

eh, j	 are (n x 1) vectors of unknown parameters;

	

Eh	 is an (nMh x 1) vector of errors which is assumed
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to be distributed as

Eh r'a N[0, ith IMh]
	

(6.4)

where S2 h is a (n x 1) error covariance matrix.

Application of the Bayesian approach to estimation begins with specification of

a joint prior distribution for the unknown parameters. Traditional non-informative

priors for the SUR model are specified. Non-informative priors ignore the existence

of what could be considerable prior information, but they do have the advantage

of objective data-based reporting of posterior information.

The following generic notation will be useful:

12 = {nh I for all h}

e = {eh forall h, }

V = {vh I for all h, }

The traditional non-informative or diffuse prior (Judge, et.al. 1985, p.478) for 11h

is

g(IZh)OC I 211 1-T±1
	

(6.5)

Treating all the 1h as a priori independent, the combined prior pdf for all error

covariance matrices is

	

g(S1) cc 11 Oh 2
	

(6.6)
h=1

For the location parameters eh and n which can take on any value on the real line,

it is customary to assign priors that are proportional to a constant. Therefore, we

have

	

g(i) a constant
	

(6.7)

	

g(eh ) oc constant
	

(6.8)
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Assuming a priori independence implies

g(o) = Hg(p h ) cc constant
	

(6.9)
h=1

Finally, assuming prior independence of 0, ri and Si, the joint prior pdf will simply

be the product of the priors specified in (6.6) (6.7) and (6.9). Thus, we have

g(0,	 = g (e)g (Ti)g (12)

H

h=1

as the joint prior density function.

For specification of the likelihood function, it is first noted that the pdf of the

expenditure vector for all households of type h is given by

f (M I eh, 1, nh) cx Inhl -
2`

2

exp
	

(vh-zfieh-xhnY (itiVoimh)(vh-zheh-x07)}
(6.12)

Then, the complete likelihood function is

f (v I e,n,n)
	 H f h I eh, Oh)

h,=1
H

cx H
h=1

1 H
2 E (vh-zfieh-xoYPIT,101-Mh)(Vh-Zheh-X0)}

h=1
(6.13)

exp
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Combining (6.11) and (6.13) via Bayes' Theorem yields the joint posterior pdf

H	 Mh-l-n+1 

f (e, sly) oc	 IfIld	 2

h=1
H

exp {-- –E (v-h - Zig h —)chn) 1 Ph l® -1-111h)(Vh —Zheh --xhr))}2h=1
(6.14)

This pdf is the source of all our post-sample information on the parameters ®,
and SI. What is of particular interest is the information on the equivalence scales

sih and sh that can be derived from the information on O and r). To tackle this

problem analytically, the traditional approach is to derive the marginal posterior

pdfs f (sih V) and f (sh IV) for all i and h through variable transformation and

by integrating unwanted parameters out of the joint posterior pdf. This task

is a daunting one. Properties of the inverted Wishart distribution can be used

to integrate 1th from (6.14), but the resulting marginal posterior pdf for (Om)

is not of a recognisable form, and to then employ a transformation to (sih , sh)

would likewise not be a rewarding experience. A numerical approach is much more

promising. If a sample of values of the parameters can be drawn from the posterior

pdf in (6.14), corresponding values of the sih and s h can be computed. This sample

of values is equivalent to sampling from the marginal posterior pdfs f (sih IV) and

f (sh I V) for each commodity parameter and household type. Thus, the sample

values can be used to estimate posterior means and standard deviations for the

various equivalence scales, as well as provide information for approximate plots of

the posterior pdfs.

Drawing values from the joint posterior pdf in (6.14) is achieved conveniently

using Gibbs sampling. The Gibbs sampler is an algorithm for generating obser-

vations on random variables from their marginal distributions indirectly without

having to derive their pdfs l . Through information from the conditional posterior

pdfs for each of the parameters in the joint distribution, the procedure enables the

generation of observations by sampling iteratively from these pdfs. After a suitable

I-Appendix A gives a brief description of how the Gibbs sampler is applied in general terms.
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`burn-in' period, the draws obtained represent draws from the joint posterior pdf.

The application of Gibbs sampling to SUR systems of different kinds has been

considered by Percy (1992), Chib and Greenberg (1995b) and Griffiths, Thomson

and Coelli (1996). The current model does not fit neatly into any of these earlier

studies, and so, the direction taken now is to derive the required conditional pos-

terior pdfs of Oh, ri and fth . The details of the application of the Gibbs sampler

in this chapter is outlined in section 6.4.

6.3 Conditional Posterior Pdfs

Note that the joint posterior pdf in (6.14) can be conveniently factored as

f(e ,n, n I v)

Mh +n-1-1
2

H
+n

Inkl 
Mk+n+1

kph

exp

exp

Zheh–xiinY Phi® IMh)(Vh-Zheh-X1177)}

{–
1	 74,ek-)c7/0-2k-loimk)(vk-zkek-x0)
2kh
	 }

(6.15)

This factorization is a convenient one for obtaining the conditional posterior pdfs

for RI and eh. Let

S27 =	 for all k =,4 h}

0;1 = {O k 1 for all k h

To obtain the conditional posterior pdf for 	 (6.15) is viewed as a function of

only, with other parameters held constant. Then from (6.15) we have (Judge,

et.al. 1985, p.479)

f (Ith I 10,77,97), v) (xl nh I mh+2n+1 exp	 tr (AhniT1)}
	

(6.16)
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where Ah is an (n x n) matrix with (i, A th element equal to

aii = (Vih - Zheih Xh77,0 (V jh Zh O jh X hi)j)

The conditional density in (6.16) has an inverted Wishart distribution from which

random generation of observations is straightforward (Anderson, 1984, p.238).

Also, from (6.15) the conditional posterior pdf for Oh can be written as

f (eh I e;1, 77, n,v) oc exp kl (vh-zheh-NinY Pwlormh)(Vh-Zheh-X01)}
(6.17)

Now, let

eh
	 [zopii .1 imh )zhr z'h (nw l IMh)(Vh - Xhrl)

(In, ® AV zo(vh - xhri)
	

(6.18)

By adding and subtracting Zheh to the term (Vh -- 4®h –Xhri) in (6.17) and ex-

panding, it can be shown that

(Vh-zhoh-xtin)/ (1 ' ® IAA )(vh- zheh -xhri)

(oh-Oh)'vh(nwi0i-mh)zh(oh-Oh)

+ (vh- 4eh -XIM) ' Ph-,10/mh)(vh-zheh-xhn)

(6.19)

Note that the second term in (6.19) does not include e h . Therefore, we can write

(6.17) as

f (eh 1 191, RV) oc exp {---1 (oh – OhYvh (nw l 0 1-mh) zh(eh- Oh)}
	

(6.20)

Equation (6.20) suggests that the conditional posterior density for eh is a multi-

variate normal density function with mean O h and covariance matrix (Mh)--1C2h•



_	 11_, ,	 1	 -1 H
[	 10 imh Noh— L Xh ph 0 imh pich E rh (12 hTi
h=1	 h=1

= 147-1Q (6.26)
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That is,

f(oh I cqi ,n,n,v)	 N [eh,	 ® imh)zh]
1] 

A
N [Vh,Wch] (6.21)

To derive the conditional posterior for ri consider again the joint posterior density

in (6.14). Conditioning on all parameters except n implies that

H
f(n e,n,v) aexp{---E (Vh-zfieh-x/mY (�-�wloimh)(vh-zheh-xiin)}2 h=i

(6.22)

If we let Vh = Vh — Zh®h, the summation term in (6.22) can be written as

Eri pw 10/mh YVT-1-71 / [Exii (s/ iVoimh )xii]r/-27i[EXh AT 10/Mh jVi] (6.23)
h=1	 h=1	 h=1

To enable further simplification, let

H	 H

W = E xvnh loimixh = E(XhX012h 1	 (6.24)
h=1	 h=1

Q	 E Ph10	 E (12 IT 10 Xh)v1	 (6.25)
h=1	 h= 1

and define

It then follows that
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r
f(n I co , 11,v) a exP 1-- (77 — n)'W(71

a exP{--- -
2	

'11)/ (E(4X1i)121 1 ) ( I/ - fi)}	 (6.27)
h=--1

which suggests that f (77 I e, 12, V) is a multivariate normal distribution with mean

and covariance matrix W. That is,

f(n I e,n,v) N	 (11(xhxh)S1h1)-11
h=--1

6.4 Applying the Gibbs Sampler

(6.28)

In this section, the Gibbs sampling procedure applied to our model is described.

The object of the exercise is to be able to draw observations or "sample" from the

Bayesian posterior pdf in (6.14) using information from the conditional posterior

pdfs in (6.16), (6.20) and (6.28). Specifically, the Gibbs sampler is employed to

generate observations on Itk, 512, ..., 11H 01, 02, OH, and ri using the following

steps:

1. Given some initial values for Oih and Tli, compute for each h,

= (Vih Zheih	 )'(V 'h Zhajh XII%)

2. Draw values n 1 ,11 2 , ...., 12H from respective inverted Wishart distributions

with parameter matrices A1, A2, ..., AH and degrees of freedom M1 ,	 )•••,MH•

3. Compute 6 1 ,6 2 , ...., OH as defined in (6.18) and, given the Slh drawn in

step (2), draw values eh , h = 1, 2, ..., H from N(0 h , Mh-1 12 h ) distributions.

4. Using the values for Qh and Oh drawn in steps (2) and (3), respectively,

compute W and i as defined in (6.24) and (6.26).

5. Draw a value for ri from a N (i) ,W -1 ) distribution.
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6. Return to step (1) using the O) and drawn in steps (3) and (5), respectively,

and continue to proceed iteratively through all the steps, until a large sample

has been generated.

Markov Chain theory guarantees that, after a particular point, the observations

from this large sample represent observations from the marginal (or joint) posterior

pdfs (Geman and Geman, 1984). The point at which they represent points from

the marginal pdfs is the point at which the Markov chain (created by the Gibbs

sampling procedure) has converged. Because observations at the beginning of the

iterative procedure will not necessarily be from the marginal posterior pdfs, it is

conventional to drop a number of these, treating them as initial observations in a

"burn-in" period.

Estimates for Oii and once obtained, enable the calculation of parameter

estimates for aih and bi from equations (5.17)-(5.20). These in turn lead to the es-

timation of equivalence scales sih and sh from expressions (5.21) and (5.28) derived

earlier.

6.5 Empirical Application
The Bayesian procedure described in the previous section is applied here using

data from the 1988-89 Australian Household Expenditure Survey. This microunit

data set is described in detail in Chapter 3. The Bayesian procedure developed in

this chapter is applied to the 5532 sample households grouped into eight household

types (see Table 3.2) and using all the eleven expenditure categories described in

Chapter 3.

For Bayesian estimation, 18,000 sets of observations were generated for each

parameter element in 11h, n and eh for all the 8 household types. Observations

from the first 3,000 runs in the iterations provided the `burn-in' period of the

Gibbs sampler and hence were discarded, leaving 15,000 observations in the final

estimation sample. These observations were used to estimate the posterior means

and standard deviations of all the commodity-specific and general scales as well

as to provide observations for graphing marginal posterior pdfs for some selected
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scales. All calculations were carried out using the econometric package SHAZAM.

Checks of convergence of the generated Gibbs sequence were conducted through

diagrams. The estimated scale values for the first and last 1,000 observations of

that part of the generated series that was retained were plotted adjacent to each

other. The plots for the generated values of the food, clothing and housing scales

capture the essence of the convergence for the entire set of commodity groupings

and are shown here in Figures 6.1-6.3. For all commodity types, the generated

values of the scales are stable suggesting that convergence has taken place. Across

commodities, the series for the food scales exhibit least variability while the series

for the clothing scales exhibit the most variability. The series for the rest of the

commodity groups including housing show levels of variability in between these

two extremes. Plotted in Figure 6.4 are the generated values for the general scales.

It is likewise evident here that convergence of the generated series has taken place.

Table 6.1 shows the posterior means and standard deviations of the commodity-

specific scales from the Bayesian estimation. Taking the posterior means as point

estimates, the scales for most of the commodities exhibited the expected increase

in the per household equivalent expenditure with the increase in household size.

Further, the increasing graduation of scales occurred at a decreasing rate indicating

economies of scale for additional children. There are some exceptions to these

observations. The estimated scales for Alcohol and Tobacco are observed to decline

as the number of children in the household increases. Also, the scales for Medical

and Health Care and Others commodity groups exhibit no defined trend for one-

adult households.

To facilitate comparison of the Bayesian scales with those obtained through

the iterative maximum likelihood procedure developed in Chapter 5, Table 5.3 is

reproduced here as Table 6.2. It is most obvious, from only a quick inspection of

both tables, that the point estimates from both methods are strikingly similar. In

most cases, the point estimates differ only from the third decimal point. The two

sets of estimates appear to be highly reliable in that they possess small posterior

standard deviations and small standard errors, although the Bayesian standard

deviations are, in general, higher than the ML standard errors. Across commodi-

ties, the largest variances are associated with the estimated scales for Clothing and
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Footwear, Recreation and Entertainment and Others commodity types while the

smallest variances are associated with the estimated scales for Food and Alcohol

and Tobacco. Across households, the largest variances are exhibited by household

type (1,3) while the smallest variances belong to those scales for single member

households i.e. household type (1,0). This result can be attributed to the relative

sizes of the samples: there are more than a thousand households of type (1,0) while

there are only 42 households of type (1,3) (see Table 3.2).

The estimates for the general scales are presented in Table 6.3. It may be

recalled that general scales depend on a chosen level of income of the reference

household xr . The ML estimates are based on xr= 450 which is the median in-

come level. The Bayesian estimates are marginalised with respect to the empirical

distribution of the xr , with the inequality restriction x r > ar imposed. Symboli-

cally, the posterior pdf for the general scale is

f (sh) = f	 f (sh xr,V)f (Xr)dXrf (6.29)

In practice, this means that, in each Gibbs sampling iteration, a value xr is drawn

from the empirical distribution of the xr and the corresponding value for sh is

calculated from it and the current drawings of the other parameters. If drawings of

xr and ar were such that xr < ar (i.e. income is less than subsistence expenditure),

another xr was drawn until the required inequality was satisfied. The Bayesian

posterior means and ML estimates are again very close to each other. Compared

to the ML point estimates, the Bayesian scales for the 2-adult households are

smaller in magnitude while those for the 1-adult households are slightly larger.

The standard errors for the ML estimates are conspicuously absent from the table.

Why? While it is theoretically possible to derive standard errors for the ML

estimates, doing so would be extremely cumbersome because of the large number

of parameters involved and their various interrelationships. With the Bayesian

estimates, posterior standard deviations are straightforwardly estimated.

The posterior pdfs of some of the estimated scales are presented in Figures

6.5-6.8. Normal conditional posterior pdfs implied by the ML estimates and stan-

dard errors are plotted alongside the posterior pdfs for the Bayesian scales. It
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is immediately evident that the ML-based posteriors approximate those of the

Bayesian posterior pdfs, exhibiting no significant differences for all curves. The

figures clearly show that posterior pdfs for the single member households stand

out for their sharp steepness relative to the others. In contrast, the posterior pdfs

associated with household type (1,3) are the flattest of the lot, reflecting the added

imprecision from a small number of households. Also, a comparison of the vari-

ability in precision of information across commodities is more readily made. For

example, foodscales are observed to have less variability compared to those of the

clothing or housing scales.

The pdfs are observed to shift to the right with the addition of children in the

household. The magnitudes of the shifts however differ across the commodities.

For example, with food, the effects of increasing the number of adults and children

in the household has a clear distinct effect; overlapping of the posterior pdfs is

minimal. With clothing, changes in the demographic make-up of the household

also shift the pdfs to the right but with considerable overlappings of the pdfs.

This reflects the fact that there exists lesser gains in economies of scale for food

compared to housing or clothing.

The posterior pdfs for the general scales in Fig. 6.8 yield patterns that are

consistent with the observations for the posterior pdfs of the three commodity

groups analysed earlier. That is, the pdfs shift to the right at a diminishing rate

with the addition of children in the household. The least variance was observed for

household type (1,0) while the largest variance was observed for household type

(1,3). Standard deviations for the general scales are noted to be larger than those

for the commodity-specific scales.

6.6 Concluding Remarks

In this chapter, the Bayesian approach was applied to our problem of estimating

equivalence scales. It was shown that Bayesian techniques and related numerical

methods are relatively straightforward to use to obtain posterior pdfs and summary

measures such as the posterior means and standard deviations. Unlike ML estima-

tion, posterior pdfs permit finite sample inferences about non-linear functions of
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the original parameters like the equivalence scales. Also, Bayesian estimates take

account of the uncertainty associated with the error covariance matrix estimation

in that they are not conditional on point estimates of the error covariances, as ML

estimates are. It is also convenient to be able to present information diagramati-

cally through plots of posterior pdfs. Through such diagrams, it is easy to show

the relationships between the different scales in terms of both the magnitudes and

reliability of the derived information; such relationships may not be so obvious

when analysing point estimates alone.

In this chapter, finite sample inference for all parameters is possible from their

marginal posterior probability density functions that were estimated using Gibbs

sampling. As it turns out, if one views the ML results through Bayesian eyes, and

constructs "posterior" normal distributions from the ML results with the point

estimate as the mean of the distribution, and the standard error as the "poste-

rior standard deviation" „ the asymptotic ML results from Chapter 5 are virtually

identical to the Bayesian results obtained in this chapter. This result is perhaps

surprising, but is likely due to the fact that the sample size is large and the as-

ymptotic results for the ML estimators are good finite sample approximations.

For the general scales, no attempt at an asymptotic variance was made because of

its complicated structure. The Bayesian estimators, however, provide a complete

posterior distribution for the general scales which permit more complete inference

than was possible within the sampling theory framework. A useful future extension

of this study would be the imposition of prior information in the form of obvious

inequalities between scales and on subsistence parameters.

With the conclusion of this chapter, the basic steps are set for the development

of a methodology to cover zero expenditures in the next chapter. The Bayesian

approach is shown there to facilitate the development of an estimation procedure

that is too difficult to handle within the sampling theory framework.



Table 6.1 Bayesian Posterior Means and Standard Deviations for Commodity-Specific Scales

Commodity Specific Scales

Household Type (no. of adults, no. of children)

Commodity Type (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)

Housing 0.82269 1.02559 1.14785 1.27995 1.00000 1.48807 1.51560 1.64963
(0.04040) (0.08350) (0.09622) (0.22548) (0.09238) (0.07938) (0.09952)

Fuel & Power 0.67342 0.92021 1.06296 1.11025 1.00000 1.21552 1.34328 1.43859
(0.01893) (0.05229) (0.06003) (0.13720) (0.04019) (0.03851) (0.04961)

Food 0.52986 0.72651 0.94421 1.05883 1.00000 1.23641 1.42314 1.57516
(0.01302) (0.04096) (0.04761) (0.12146) (0.03288) (0.03215) (0.04369)

Alcohol & Tobacco 0.57326 0.46419 0.38810 0.34489 1.03000 0.94899 0.86359 0.76252
(0.03384) (0.05340) (0.05993) (0.07912) (0.06648) (0.06332) (0.05411)

Clothing & Footwear 0.53373 0.90953 0.92086 1.41036 1.00000 1.27952 1.40232 1.64687
(0.04929) (0.15584) (0.15551) (0.35590) (0.11570) (0.11224) (0.15340)

Household Furnishings 0.54832 0.66360 0.77333 0.81383 1.00000 1.45087 1.15187 1.32548
& Equipment (0.04031) (0.08347) (0.11627) (0.24227) (0.13807) (0.09439) (0.11088)

Medical & Health Care 0.53766 0.46764 0.67554 0.50716 1.00000 1.26139 1.28029 1.31282
(0.04199) (0.08200) (0.12328) (0.16573) (0.08378) (0.05732) (0.07144)

Transport 0.52496 0.57064 0.62282 0.78055 1.00000 1.01755 1.19239 1.36633
(0.03858) (0.07627) (0.09542) (0.28149) (0.07744) (0.07681) (0.12984)

Recreation 0.53822 0.57570 0.51331 0.82662 1.00000 1.02866 1.28465 1.36945
& Entertainment (0.04111) (0.09893) (0.07593) (0.24889) (0.10475) (0.11507) (0.14589)

Personal Care 0.54155 0.78131 0.97237 0.73424 1.00000 1.19372 1.29070 1.17633
(0.03697) (0.09988) (0.15972) (0.16776) (0.09478) (0.08032) (0.09259)

Others 0.56738 1.02376 0.88952 0.80893 1.00000 1.39732 1.79408 2.08332
(0.06528) (0.17297) (0.11805) (0.17583) (0.14236) (0.19043) (0.27199)

Note: The posterior standard deviations are in parentheses.
O
C.)



Table 6.2 ML Estimates of Commodity-Specific Scales

Commodity Type (1,0) (1 , I) (1,2)

Commodity Specific Scales
Household Type (no. of adults, no. of children)

(1 , 3)	 (2,0)	 (2,1) (2,2) (2,3)

Housing 0.82172 1.02505 1.14572 1.27714 1.00000 1.48756 1.51704 1.64722
(0.03987) (0.07964) (0.09091) (0.18807) (0.08956) (0.07835) (0.09766)

Fuel & Power 0.67312 0.91992 1.06320 1.10961 1.00000 1.21492 1.34256 1.43857
(0.01902) (0.04940) (0.05659) (0.11329) (0.03918) (0.03824) (0.04888)

Food 0.52972 0.72669 0.94396 1.05914 1.00000 1.23606 1.42257 1.57518
(0.01290) (0.03902) (0.04509) (0.10172) (0.03230) (0.03196) (0.04277)

Alcohol & Tobacco 0.57251 0.46325 0.38735 0.34456 1.00000 0.94869 0.86320 0.76293
(0.03346) (0.05007) (0.05641) (0.06558) (0.06559) (0.06223) (0.05348)

Clothing & Footwear 0.53191 0.90715 0.91881 1.40345 1.00000 1.27749 1.39773 1.64244
(0.04840) (0.14615) (0.14618) (0.29826) (0.11465) (0.11101) (0.14993)

Household Furnishings 0.54681 0.66242 0.77018 0.81213 1.00000 1.44928 1.15006 1.32351
& Equipment (0.03940) (0.07897) (0.10895) (0.20121) (0.13538) (0.09300) (0.10880)

Medical & Health Care 0.53733 0.46789 0.67540 0.50918 1.00000 1.26092 1.27966 1.31144
(0.04163) (0.07720) (0.11462) (0.13755) (0.08260) (0.05641) (0.07033)

Transport 0.52396 0.57066 0.62121 0.77931 1.00000 1.01612 1.19071 1.36594
(0.03817) (0.07280) (0.09015) (0.23206) (0.07606) (0.07555) (0.12714)

Recreation 0.53713 0.57582 0.51157 0.82315 1.00000 1.02673 1.28129 1.36727
& Entertainment (0.04153) (0.09393) (0.07086) (0.20691) (0.10205) (0.11331) (0.14254)

Personal Care 0.54072 0.78107 0.96937 0.73291 1.00000 1.19177 1.28752 1.17465
(0.03637) (0.09376) (0.14850) (0.14053) (0.09237) (0.07896) (0.09046)

Others 0.56552 1.02258 0.88733 0.80647 1.00000 1.39372 1.79058 2.07809
(0.06391) (0.16369) (0.11145) (0.14848) (0.13901) (0.18630) (0.26501)

Note: The estimated standard errors are in parentheses.
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Table 6.3 Bayesian and ML Estimates of General Scales

Household Type
	

Bayesian	 ML
(no. of adults, no. of children)

	
Estimates	 Estimates

(2,0)
	

1.00000	 1.00000

(2,1)
	

1.23380
	

1.23164

(0.05705)

(2,2)
	

1.33410
	

1.32578

(0.05458)

(2,3)
	

1.47000
	

1.46043

(0.07253)

(1,0)
	

0.58189
	

0.58143

(0.02198)

(1,1)
	

0.72262
	

0.72295

(0.05323)

(1,2)
	

0.78616
	

0.79635

(0.05633)

(1,3)
	

0.89943
	

0.91396

(0.15416)

Note: The posterior means are treated as the Bayesian point estimates and the values in parentheses are the posterior
standard deviations
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Figure 6.1
Plots of the first and last 1000 sample points from the generated

series for the food scales (after discarding the burn-in observations).
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I

Figure 6.1 (cont.)
Plots of the first and last 1000 sample points from the generated

series for the food scales (after discarding the burn-in observations).
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Figure 6.2
Plots of the first and last 1000 sample points from the generated
series for the clothing scales (after discarding the burn-in observations).
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Figure 6.2 (cont.)
Plots of the first and last 1000 sample points from the generated
series for the clothing scales (after discarding the burn-in observations).
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Figure 6.3
Plots of the first and last 1000 sample points from the generated
series for the housing scales (after discarding the burn-in observations).
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Figure 63 (cont.)
Plots of the first and last 1000 sample points from the generated
series for the housing scales (after discarding the burn-in observations).
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Figure 6.4
Plots of the first and last 1000 sample points from the generated
series for the general scales (after discarding the burn-in observations).

General Scales for Household Type (1.0) General Seale* for Household Type (1.0)
1.00 :AO /-

1.31 LIS
2.00 1.00

1.711 -
110 Lel
.25 1.3

1.00 .00 '-

CP
1:441044,~e5,100,4040.0.10.00*~0600.4010604.0.040144051016004v

0.75
91.4411147.00504•4007•177.0PO44.~.404wodeireire404~...p..

0.1e
• as

041 0.20 r-
SAO .12100 , 200	 POO	 400	 000	 000	 700	 000	 900	 10000 000	 14 200	 14 000	 14 750	 is 000

LAO
1.211
2.00

1 .71I
140
1.20
1.00
0.70
0 SO
0.23
0.00

General Seale* for Household Type (1.1)

-

-

-

-

1.00
2.25

2.00
1.71
1.50
1 .21

1.00
0.71

0 10
0.23

°

General Scales for Household Type (1.1)

0000	 100	 200 300 400 500	 $00	 700 100 1100 1 000 000	 14 250 $4 500 14 720	 15

1.40
2_23
2.00
1.76
1 40
.13

1.00
0.71
o50
o13
0.00

0

General Scales for Household Type (1,2)
2.80

2.23
2.00
1.70
140

I 1.13
1.00
0.78
0 60

0.2.5

°

General Scales for Household Type (1,2)

000100	 200 300 400 500	 SOO	 700	 SOO	 000 1000 000	 14 230 $4 500 4 750	 15

General Scales for Household TyFSe (1,3)
	 General Scales for Household Type (1_3)

1



Bayesian Estimation	 116

Figure 6.4 (cont.)
Plots of the first and last 1000 sample points from the generated
series for the general scales (after discarding the burn-in observations).
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Figure 6.5
Posterior Distributions of Food Scales for each
Household Type (no. of adults, no. of children).
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Figure 6.6
Posterior Distributions of Clothing Scales for each

Household Type (no. of adults, no. of children).
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Figure 6.7
Posterior Distributions of Housing Scales for each

Household Type (no. of adults, no. of children).
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Figure 6.8
Posterior Distributions of General Scales for each

Household Type (no. of adults, no. of children).
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