VARIABILITY OF FOODGRAIN PRODUCTION IN CHINA

By Guang Hua Wan

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

August, 1989

DECLARATION

I declare that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Acknowledgements

I would like to express my profound gratitude to Professors Jock R. Anderson and John L. Dillon for their timely guidance, efficient supervision, consistent encouragement and patience at all stages of this work.

Professor William E. Griffiths devoted his valuable time and effort to supervise Chapter 6. Without his generous support, Chapter 6 would have been impossible to complete. I am very grateful to him.

I wish to thank Professor Jingji Wu (Beijing Agricultural University), Mr. Zhangyue Zhou. Mr. Xigang Zhu and Mr. Weiming Tian (Chinese Academy of Agricultural Sciences), and Mr. John Chapman, Ms. Sally Thorpe and Dr. Henry Haszler (ABARE) for providing help with data collection.

Many people helped me since my arrival in Armidale in 1984. Particularly, I owe sincere thanks to Alan Cowie, Roley Piggott, Peter Robertson, Gordon MacAulay, Geoge Battese, Prasada Rao, Howard Doran, Vic Wright, Euan Fleming, Kailash Sharma and members of the Computer Center for various help and assistance.

The moral support and friendship of the Dillon's, Cowie's, Jackie Lamble, Mary Henning, Neil Ferris, Jane Sefton, Jim Irvine, Margaret Franklin and some of my Chinese fellows are deeply appreciated.

Finally, I would like to thank my wife Sumei, my daughter Rose, my parents, my brothers and sisters in China who continuously supported me in every possible way.

Financial assistance for this work was provided by a UNE Research Scholarship for which I am extremely grateful.

Abbreviations and Other Notes

	• 1. 1	1 . •	• 1 • 1 • .	
ΔPRS	agricultural	nroduction	responsibility	svstem
TTT TOD.	agincuicuicu	production	responsibility	57 50CIII

- MAAF: Ministry of Agriculture, Animal Husbandry and Fishery of China
 - SSB: State Statistical Bureau of China

Region: province, autonomous region or metropolitan city

- Foodgrain: sum of rice, wheat, maize, soybeans, tubers, sorghum, millet and other-grains
- Other-grains: foodgrain excluding rice, wheat, maize, soybeans, tubers, sorghum and millet
- Other-regions: sum of the following eight regions: Menggu, Jilin, Beijing, Hebei, Jiangxi, Fujian, Yunnan and Xizang (Tibet)
- Residual grain: sum of all crops whose data are not available

Residual region: sum of all regions whose data are not available

yuan: Chinese currency $(3.7 yuan \approx \text{US }\$1)$

- *jin*: Chinese weight unit $(1 \ jin = 0.5 \ kg)$
- *mu*: Chinese land measure $(1 \ mu = \frac{1}{15} \ ha)$
- Mt: million metric ton

Abstract

Variability of Chinese foodgrain production bears important implications for the security of China's basic food supply and of her 800 million rural residents' income. It also has great bearing on the stable development of other sectors of the Chinese economy and on resource allocation in China. As well, it affects the stability of the world grain market.

In this thesis, the pattern of China's foodgrain production variability over time and space is explored by decomposing the square of coefficient of variation. The technique of variance decomposition is employed to examine the sources and changing patterns of Chinese foodgrain variability from 1949 to 1985. Special effort is made to appraise the institutional effect on the changed variability. To model the relationship between input usage and foodgrain output variability, a stochastic production function with error components is developed and applied to a set of survey data from China. In general, the results suggest that the influence of input changes on variability is not significant and that macro-policy or institutional effect is substantial. Most of the analyses are based on data at regional or provincial level.

It must be mentioned that unavailability and inconsistency of data are major obstacles to any study of the Chinese economy over recent decades. In particular, they cause difficulties in choosing the analytical techniques to be used and in discussing the results obtained.

Contents

Ack	Acknowledgements		
Abb	Abbreviations and Other Notes		
Abs	Abstract		
1 I.	NTROD	UCTION	1
1	.1 Back	ground	1
	1.1.1	Importance of foodgrain production	1
	1.1.2	Development of foodgrain production in China	4
	1.1.3	Future growth: a question of grain 'self-sufficiency'	7
	1.1.4	Instability of China's foodgrain production	8
1	.2 <u>Liter</u>	<u>ature Review</u>	12
	1.2.1	Definition of instability	12
	1.2.2	Measurement of instability	13
	1.2.3	Methods of instability decomposition	14
1	.3 <u>Intro</u>	duction to the Research	19
	1.3.1	Objectives and methods	19
	1.3.2	Distribution of grain production and scope of the study \ldots	20
	1.3.3	Data and Outline of the Study	23
2 I	DATA		26

	2.1	<u>A Note on Chinese Data</u>	26	
	2.2	Data Required for the Study	27	
	2.3	Problems with Chinese Data	27	
		2.3.1 Sources and availability of the data	27	
		2.3.2 Missing values	31	
		2.3.3 Lack of unified statistical criteria	34	
		2.3.4 Reliability of the data	35	
	2.4	Solutions to the Data Problems	36	
		2.4.1 Choosing the right data source	36	
		2.4.2 Testing consistency between CAAS data and regional data	37	
		2.4.3 Handling missing values and absent data set	38	
	2.5	The Finalized Data	43	
0	חת	IMARY ANALYSIS OF FOOD CRAIN PRODUCTION MARIARI		
ن	PR ITV	IMARY ANALYSIS OF FOODGRAIN PRODUCTION VARIABIL-		
	11 I 2 1	Trees Just	46 40	
	3.1	Introduction	46	
	3.2	Single-variable Measures of Instability	47	
	3.3	Consistency Test of Single-variable Measures		
	3.4	Variability of Area Sown		
	3.5	5 <u>Yield Variability</u>		
	3.6	Variability of Output	70	
	3.7	Variabilities of Area Sown, Yield and Output	75	
	3.8	Summary		
4	CC	MEANENES OF FOOD OF AIN PRODUCTION MADIA DITION	80	
4		The last	80	
	4.1	Introduction	80	
	4.2	Decomposable Measures of Instability	81	
	4.3	Data Deficiencies and Variability Decomposition	84	
	4.4	Components of Variability	86	
		4.4.1 Variability of area-sown and its components	86	

		4.4.2 Variability of output and its components	90
	4.5	Spatial Distribution of Foodgrain Variability	94
		4.5.1 Spatial distribution of sown-area variability	94
		4.5.2 Spatial distribution of output variability	98
	4.6	<u>Summary</u>	102
5	INS	TITUTIONAL EFFECT ON CHINESE FOODGRAIN PRODUC	-
	TIC	ON VARIABILITY	104
	5.1	Introduction	104
	5.2	Analytical Framework	105
	5.3	Determining Time Periods	110
	5.4	Effect of Collective Farming	111
		5.4.1 Changes in mean production	116
	5.5	Effect of the APRS and Economic Reform	118
		5.5.1 Changes in mean production	121
	5.6	Effect of Procurement Policy	126
		5.6.1 Changes in mean production	130
	5.7	Summary	134
6	INI	PUT APPLICATIONS AND CHINESE FOODGRAIN PRODUCTIO	N
	VA	RIABILITY	136
	6.1	Introduction	136
	6.2	Output Variability and Mean Levels of Inputs	137
		6.2.1 Estimating marginal variability via a single equation	138
		6.2.2 Estimating marginal variability via SUR with error components	140
	6.3	Estimation, Results and Interpretation	153
	6.4	Summary	166
7	EP	ILOGUE	168
	7.1	Introduction	168

7.2	Limita	tions of the Study and Needed Further Research	168
7.3	Altern	atives towards Handling Production Variability	170
	7.3.1	Reducing production variability	170
	7.3.2	Mitigating production variability or its effect	171
7.4	Major	Findings and Remarks on Policy Implications	172
Appen	dix A	SUPPLEMENTARY TABLES OF CHAPTER 3	177
Appen	dix B	SUPPLEMENTARY TABLES OF CHAPTER 4	199
Appen	dix C	PROGRAM LISTING	202
REFE	RENC	ES	265

List of Tables

1.1	China's Foodgrain Production: 1976–85	6
1.2	Composition of China's Foodgrain Production by Region: 1985 \ldots .	22
1.3	Composition of China's Foodgrain Production by Crop: 1985	23
2.1	Coverage of Regions of the Production Data by Sources	28
2.2	Production Coverage of the Regional Data in National Totals by Crop \ldots	29
2.3	Sown-Area Coverage of the Regional Data in National Totals by Crop \ldots	30
2.4	Number of Missing Values in the Regional Production Data by Crops and	
	Regions	33
2.5	Results of Testing for Equality of Variances and Equality of Means between	
	CAAS Data and the Regional Data	39
2.6	Methods of Estimating Missing Value in the Regional Production Data	44
2.7	The Finalized Production Data	45
3.1	Single-variable Measures of Instability	48
3.2	Number of Insignificant R_p and R_s Among Different Instability Measures	
	Based on Area-sown Data and Cross-region Matrix	52
3.3	Number of Insignificant R_p and R_s Among Different Instability Measures	
	Based on Area-sown Data and Cross-crop Matrix	52
3.4	Number of Insignificant R_p and R_s Among Different Instability Measures	
	Based on Yield Data and Cross-region Matrix	53
3.5	Number of Insignificant R_p and R_s Among Different Instability Measures	
	Based on Yield Data and Cross-crop Matrix	53

3.6	Number of Insignificant R_p and R_s Among Different Instability Measures	
	Based on Output Data and Cross-region Matrix	54
3.7	Number of Insignificant R_p and R_s Among Different Instability Measures	
	Based on Output Data and Cross-crop Matrix	54
3.8	Number of Insignificant R_p and R_s Among Different Instability Measures:	
	Aggregation of Tables 3.2 to 3.7	55
3.9	Area Sown Variability Measured by CV2	59
3.10	Area Sown Variability Measured by MA	60
3.11	Area Sown Variability Measured by APC5	61
3.12	Yield Variability Measured by CV2	67
3.13	Yield Variability Measured by MA	68
3.14	Yield Variability Measured by APC5	69
3.15	Output Variability Measured by CV2	72
3.16	Output Variability Measured by MA	73
3.17	Output Variability Measured by APC5	74
3.18	Regression of Output Variability on Sown-Area and Yield Variabilities when	
	Variability Is Measured by APC5	76
3.19	Regression of Output Variability on Sown-Area and Yield Variabilities when	
	Variability Is Measured by MA	77
3.20	Regression of Output Variability on Sown-Area and Yield Variabilities when	
	Variability Is Measured by CV2	78
4.1	A Hypothetical Production Table with Missing Data Sets	84
4.2	Components of Area Sown Variability	87
4.3	Components of Sown-Area Variability by Crop	87
4.4	Components of Sown-Area Variability by Region	89
4.5	Components of Output Variability	90
4.6	Components of Total Output Variability by Crop	91
4.7	Components of Total Output Variability by Region	93
4.8	Distribution of Sown-Area Variability by Crop and Region	95

4.9	Distribution of Regional Sown-Area Variability
4.10	Spatial Distribution of Area Sown Variability by Crop
4.11	Distribution of Output Variability by Crop and Region
4.12	Variability Distribution of Regional Output 100
4.13	Spatial Distribution of Output Variability by Crop 101
4.14	Percentage of Total Variance Explained by the Available Regional Production
	Data
5.1	Components of Changes in Mean Production 107
5.2	Components of Change in Variance of Production
5.3	Components of Change in the Inter-crop and Inter-region Yield Covariances 109
5.4	Components of Change in the Inter-crop and Inter-region Covariances be-
	tween Sown-area and Yield
5.5	Components of Change in the Variance of Total Foodgrain Production, All
	China, from 1949-58 to 1962-77
5.6	Disaggregation of the Contribution due to Changes in Yield Covariances,
	from 1949-58 to 1962-77
5.7	Disaggregation of the Contribution due to Change in Covariance between
	Sown-area and Yield from 1949-58 to 1962-77
5.8	Components of Changes in the Sums of Intra-crop Variances, by Region, from
	1949-58 to 1962-77
5.9	Components of Changes in the Sums of Intra-crop Variances, by Crop, from
	1949-58 to $1962-77_1$
5.10	Components of Change in Mean Production of Total Foodgrain, by Region,
	from 1949-58 to 1962-77
5.11	Components of Change in Mean Production of Total Foodgrain, by Crop,
	from 1949-58 to 1962-77
5.12	Components of Change in the Variance of Total Foodgrain Production, All
	China, from 1962-77 to 1978-85

5.13	Disaggregation of the Contribution due to Changes in Yield Covariances,
	from 1962-77 to 1978-85
5.14	Disaggregation of the Contribution due to Change in Covariance between
	Sown-area and Yield from 1962-77 to 1978-85 \ldots \ldots \ldots \ldots \ldots 122
5.15	Components of Changes in the Sums of Intra-crop Variances, by Crop, from
	1962-77 to 1978-85
5.16	Components of Changes in the Sums of Intra-crop Variances, by Region, from
	1962-77 to 1978-85
5.17	Components of Change in Mean Production of Total Foodgrain, by Region,
	from 1962-77 to 1978-85
5.18	Components of Change in Mean Production of Total Foodgrain, by Crop,
	from 1962-77 to 1978-85
5.19	Components of Change in the Variance of Total Foodgrain Production, All
	China, from 1949-58 to 1978-85
5.20	Disaggregation of the Contribution due to Changes in Yield Covariances,
	from 1949-58 to 1978-85
5.21	Disaggregation of the Contribution due to Change in Covariance between
	Sown-area and Yield from 1949-58 to 1978-85
5.22	Components of Changes in the Sums of Intra-crop Variances, by Crop, from
	1949-58 to 1978-85
5.23	Components of Changes in the Sums of Intra-crop Variances, by Region,
	1949-58 to 1962-77
5.24	Components of Change in Mean Production of Total Foodgrain, by Region,
	from 1949-58 to 1978-85
5.25	Components of Changes in Mean Production of Total Foodgrain, by Crop,
	from 1949-58 to 1978-85
6.1	Parameter Estimates for the Mean Output Function: Rice
6.1	Parameter Estimates for the Mean Output Function: Maize 158
6.1	Parameter Estimates for the Mean Output Function: Wheat 159

6.2	Parameter Estimates for the Output-Variance Function: Rice	161
6.2	Parameter Estimates for the Output-Variance Function: Maize	163
6.2	Parameter Estimates for the Output-Variance Function: Wheat	164
6.3	Covariance Matrices of Output-Variance Functions	165
6.4	Covariance Matrices of Mean Output Functions	166

List of Figures

1.1	Chinese Foodgrain Output, Area Sown and Yield: 1949–86	9
1.2	Agricultural Regions of China	21
3.1	China's Sown Areas for Rice, Wheat, Maize and Tubers	57
3.2	China's Sown Areas for Soybeans, Sorghum, Millet and Other-grains	58
3.3	Variability of Regional Foodgrain Yield: All Crops	64
3.4	Variability of Regional Rice Yield	65
3.5	Variability of Regional Wheat Yield	66
3.6	China's Outputs of Rice, Wheat, Maize and Tubers	70
3.7	China's Outputs of Soybeans, Sorghum, Millet and Other-grains	71

"