
1. Introduction

1.1 Background

In the mining industry there are ever-present problems in maintaining structural

stability of access roadways, belt roads, and numerous other underground headings and

openings. Unstable roof conditions are common in underground coal mining

environments. They are mainly the result of the layered structure of the sedimentary

rocks encountered. Numerous methods are employed to stabilize these structures,

particularly timbering and strapping via rock bolts. Structural problems around

underground openings in the case of mines in hard rock are often associated with the

blocky nature of the rock mass surrounding the opening. Thus, there is a need to quantify

and monitor the stability of suspect zones of rock surrounding underground openings,

particularly areas which are subject to damage from nearby blasting.

Conventional techniques for monitoring these areas include :

1) The traditional impact sounding method whereby a skilled miner strikes the

suspect rock with a sounding bar and, based on his accumulated experience, can

determine whether or not a suspect zone of rock is stable This technique is usually

employed to detect (and subsequently remove) small scale areas of loosened rock. It can

be considered as a subjective geophysical testing method.

2) Convergence tests for roof or wall structural behaviour based on the output from

electrical displacement measuring devices such as LVDTs (linear voltage differential

transformers) or, more commonly used, dial gauge readings of displacements between

points on the walls, roof or floor

3) Observation of the effects of changing stresses in supporting timbers, i.e.,

cracking and splitting, and observation of changes in rock joint openings etc.

4) Microseismic monitoring of "active " regions of mines whereby correlations

between changes in stress conditions and frequency of microseismic events are attempted.



Most of the monitoring practices are therefore relatively subjective with the

exception of the convergence measurements (which give only point measurements) and

the microseismic work. The microseismic techniques, particularly when employed at coal

mines, are based largely on empirical results, i.e., the correlation of increasing event

count with impending roof falls. Such correlations, when established (often tenuously) at

a particular mine, are often unreliable when extrapolated to other locations. Accurate

microseismic source location is a requisite of this technique although this is beset with

difficulties. The major problems appear to be that of accounting for the highly

anisotropic nature of the rock (particularly in the coal mine case), and the refraction and

diffraction effects associated with the often complex mine layouts and geology.

However, recent work in Canada in this area is showing great promise (Dr. Paul Young,

Queen's University, Kingston, Canada, private communication).

The author therefore decided to investigate other methods, with a more rigorous

geophysical base, of assessing structural integrity in underground rock masses. The first

approach was to investigate the vibrational response of the walls of underground

openings when defects, such as delaminations of sedimentary layers, were present. This

work lead to a promising technique - that of vibrational signature analysis (Siggins and

Enever, 1979). However, with it came the realisation that little was known of the

vibrational modal behaviour of openings in intact rock. It was intuitively felt that modal

behaviour of underground openings would be intimately associated with the presence of

circulating surface (Rayleigh) waves which would be largely confined to the inner surface

of the openings or tunnels.

A literature search on the interaction of elastic waves with cavities in elastic media

revealed that a substantial amount of work had been done by authors such as Pao and

Mow (1973) and Miklowitz (1980) which was applicable to the seismic response of

underground tunnels. The emphasis had been placed on the interaction of incoming plane



compressional and shear waves with cylindrical and spherical openings in elastic

materials. Little work had been done on the cavity wall response due to internal sources

although the generation of transient Rayleigh waves circulating around the cavity

circumference had been postulated.

The project thus proceeded along three major lines:

1) The development of an analytical description of the idealised problem of a

localised source acting on the wall of a cavity in an elastic medium in order to clarify the

physics involved in such an interaction.

2) Numerical simulation of the above problem based on dynamic Finite Element

methods. This technique allows the analysis to be readily extended to cavities of arbitrary

shape.

3) A program of experimental work, both in the field at mine sites and laboratory

based.

The analytical work was commenced by the author with an attempt to solve the

frequency equation (eigenvalues) for a cylindrical cavity in an infinite elastic medium.

This work entailed a re-examination of the work of Viktorov (1958) where a "frequency

equation " is described. It was recognised by the author that the roots of this equation are

central to all elastic wave/cavity interactions.

Solutions up to the fifth eigenvalue (n=5) had appeared in the literature in various

contexts, e.g., as poles of integral equations arising from the interaction of a

compressional wavefront with a cavity. Viktorov's frequency equation was rarely

mentioned in these works.

An attempt was made to solve the frequency equation using graphical methods as

had other authors. However, it was realised that a more elegant solution should be



possible. Dr. A.N. Stokes of the CSIRO Division of Mathematics and Statistics was then

approached for assistance in developing a solution method. Dr. Stokes provided a

continued fractions expansion for the Hankel function ratios involved in the Viktorov

equation A joint effort then resulted in a solution method based on a Newton-Raphson

root finding approach. Eigenvalues up to n=10 and beyond were readily obtained to a

high degree of accuracy. The results were then submitted for publication (Stokes and

Siggins, 1987). In that publication the similarity of other author's expressions ( with

identical eigenvalues ) to the Viktorov equation were pointed out. A knowledge of the

eigenvalues for the cavity then readily leads to an analytical solution, based on a Fourier-

Bessel series, for a localised source on a cavity wall. This solution was developed with

the aid of Dr. Stokes and published in Geophysics (Siggins and Stokes, 1987).

Concurrent with the analytical development a time-domain numerical solution for a

cylindrical cavity in an infinite elastic medium excited by a line source acting on the cavity

wall was carried out by the author. The solution procedure consisted of a Dynamic Finite

Element analysis, using step by step integration, followed by spectral analysis on the

resulting waveforms. Spectral ratio techniques were then used to arrive at the cavity wall

transfer functions.

At this stage the analytical solution had not been developed far enough to function

as a check on the numerical solution. However, a computer program had been recently

developed by the author's co-supervisor, Dr. Dane Blair, which evaluated, via a Fourier-

Bessel series, the solution for cavity wall displacements arising from an incoming plane

compressional wave. This program was made available to the author and with a small

modification and by invoking seismic reciprocity principles it was possible to calculate the

far-field waveform resulting from a pulse applied to the cavity wall. Thus, a check on the

numerical solution was obtained.



The experimental work evolved from earlier work concerned with assessing coal

mine roof stability via dynamic methods (Siggins, 1983). The dynamic response of the

roof was found to be dominated by modal behaviour associated with the strong acoustic

impedance contrasts in the sedimentary layering in the roof structure. Any resonances

associated with standing Rayleigh waves were thought to be masked by these effects.

Thus, an experimental program was commenced with the aim of investigating Rayleigh

wave resonances in hard rock, i.e., in metalliferous mining environments where the

geology is generally less complicated.

The majority of the experimental work in the field was performed in an access

heading on the 17th level at the New Broken Hill Corporation Mine, Broken Hill,

N.S.W. Additional measurements were made in the Hillgrove tunnel, Hiligrove

Geophysical Observatory, Armidale, N.S.W.

These experiments were carried out with varying degrees of thoroughness due to

the difficult environments and the poor condition of the rock at these sites. More closely

controlled experimental work was carried out by the author in the laboratory on 0.15m

diameter boreholes in a large granite block.



1.2 Objectives and description of the study

The long term aim of this project was to develop a geophysically based non-

destructive test for underground openings in rock. The test was to be based on the

generation of Rayleigh type elastic waves on the opening walls. Analytical extensions of

Lamb's (1904) solution to that of Rayleigh waves on curved surfaces were initiated by

Japanese workers such as Sezawa (1927) at the Earthquake Research Institute, University

of Tokyo, in the late 1920's, but it was not until 1958 that Viktorov published his

definitive paper on surface waves on convex and concave surfaces that the physics was

clarified. Viktorov (1958) examined the existence of Rayleigh modes on convex surfaces

in. 'some detail and established the frequency equation for both convex and concave

surfaces. However, he did not examine the convex case in the same detail, other than by

showing that in both cases propagation is dispersive.

In the 1960's and 70's a great deal of interest was shown in the response of

underground openings to seismic loading, no doubt prompted by the perceived need for

structurally stable underground installations. Many papers were published during that

period on the analysis of plane waves (both shear and compressional) impinging on

cavities in elastic media. The most significant contributions were from Miklowitz (1967),

Baron and Matthews (1961), Baron and Parnes (1962), and Pao and Mow (1973). In

1967 Miklowitz discussed the long-time solution for the response of the walls of a cavity

excited by the passage of a compressional wavefront. He concluded that, following this

excitation, energy would be retained on the cavity walls as circulating Rayleigh type

waves which did not diminish in amplitude. These conclusions were later modified as it

was recognised that circulating energy would be diminished by radiation damping.

Papers by authors such as Baron and Parnes (1962), discussed the stress amplification

effects on cavity walls in plane wave/cavity interactions and concluded that normal modes

(eigensolutions), in particular the modes associated with P (compressional waves) and

Rayleigh waves, were responsible for these effects. The literature concerned with



circulating elastic waves on cavity walls and underground openings is discussed in detail

in Chapter 2.

It therefore occurred to the author that it should be possible to generate surface

standing waves of a predominantly Rayleigh type on the walls of underground openings

in rock with the use of a seismic source. A knowledge of die theoretical radial

deformation modes at "resonance", when compared to the measured mode shapes in the

field would then, in principle, provide a means of assessing the state of the rock mass

surrounding the opening. Although there had been some discussion in the literature on

the theoretical seismic radiation from a source on the wall of a cavity, none of these

solutions were found to be of value in the calculation of the near-field (cavity-wall)

response. Thus the initial objective was the development of a a new analytical solution.

From the analytical point of view the problem is essentially three dimensional if

propagation down the axis of the tunnel is considered, but if the wavelengths generated

are restricted to the order of the tunnel diameter, then a two dimensional or plane-strain

analysis is justified. The analysis described in Chapter 3 begins with a description of a

new solution method for evaluating the eigen-frequencies of the Viktorov frequency

equation for cylindrical cavities in elastic media. This readily leads to a solution for the

dynamic response of a cylindrical cavity of circular cross sectic>n within a linear elastic

rock of infinite extent. Dynamic loading is in the form of a norimi line source applied at

one location on the cavity wall. Some discussion of the three-dimensional problem of a

point source on a cavity wall is also included.

Analytically it is difficult to deal with openings of arbitrarf cross-section, such as

those frequently encountered in underground mines, other than by conformal mapping

techniques. However, the dynamic Finite Element Method is a numerical solution

technique which is gaining popularity for wave propagation studies and is ideally suited to

arbitrary geometries. Thus, another major objective in this project was to establish the
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accuracy of a Dynamic Finite Element simulation of the problem The DFEM method and

applications to surface waves including the line source/cavity interaction are discussed in

Chapter 4. Chapter 5 is devoted to comparisons between analytical and DFEM

predictions. The "resonance" behaviour of cavities in infinite elastic media and the

significance of the Viktorov poles are discussed in Chapter 6.

Experimental work was initiated at the Zinc Corporation Mine, Broken Hill, where

a CSIRO, Division of Geomechanics, Rock Mechanics programme was in progress. The

geophysical test developed involved seismic excitation in the audio frequency range of the

walls of a tunnel (drive-way) with the use of a heavy duty elector-mechanical shaker. The

response of the tunnel walls at various locations around the test circumference is then

measured. Similar experiments, on a smaller scale, were conducted in a borehole within a

large granite block in the laboratory.

It was necessary to develop a broad range of instrumentation for these experiments

and a suite of computer programs for the analysis of the resulting data. Aspects of this

work are described in Chapters 7 and 8.

Currently there is interest in the use of circumferentially propagating elastic waves

for non-destructive testing applications. Uses include the measurement of stress induced

anistropy around borehole walls via changes in circumferential propagation velocity. A

circumferential device for remote logging of borehole fractures has been described by

Setser (1981). Dowding (1978) has mentioned the possible role of circulating Rayleigh

waves in damage to tunnel walls following surface explosions. There is also interest in

the use of seismic sources, clamped to borehole walls to avoid unwanted resonances

associated with tube-wave modes, for cross-hole tomographic mapping. Thus, the

results presented in this thesis hopefully will be of use in the above applications and for

geophysical and non-destructive testing applications involving circumferentially

propagating elastic waves.



2. A literature review of the dynamic response of cavities in
elastic media

When considering the dynamic response of cavities in elastic media it is useful to re-

examine the physics of elastic surface waves, for as Pao and Mow (1976) state:

"An infinitely extended solid with a cylindrical cavity may also "oscillate". Because

the medium is unbounded the free oscillations can only be expressed in the form of

travelling waves".

An intuitive examination of the physics of the above problem suggests that these

"free oscillations " will be confined to the vicinity of the cavity walls during steady-state

oscillation and will therefore exist as a form of Rayleigh or surface waves circulating the

cavity walls. In fact, Miklowitz (1980) refers to the problem of a line-source acting on the

wall of a cavity of radius, a, located within an infinite elastic medium, as " basically a

Lamb type problem for the exterior space r>a".

2.1 Surface waves on curved surfaces

Following the discovery of free elastic surface waves by Rayleigh (1885)

subsequently termed "Rayleigh waves", Lamb (1904) published in the Philosophical

Transactions of the Royal Society a mathematical treatise on the dynamic response of the

surface of an elastic half space to various cases of force application. He considered

several cases including harmonic line loads applied vertically, impulsive vertical line

forces, horizontal forces, buried forces and the 3-dimensional case of a point force. The

vertical impulsive line force is considered in greatest detail. Lamb (1904) showed that the

surface application of an impulse of short duration results in the generation of a surface

disturbance consisting of a "minor tremor" followed by the "main shock"---Figure 1. The

minor tremor contains the first arrival consisting of longitudinal wave motion (P-wave),

followed by the arrival of transverse wave motion (S-wave). The amplitude of these
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Figure 1. Horizontal (a) and vertical (b) displacement waveforms on the surface of an

elastic medium at a large distance from a pulsed surface source -- after Lamb (1904). The

compressional, shear and Rayleigh arrivals are denoted by P, S, and R respectively.
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components is decreased and the time scale is increased with increasing distance from the

source. In the 2-dimensional case the amplitude of the P and S components are to a first

order approximation dependent on distance to the power -3/2.

In contrast, the main shock has an arrival time of that of Rayleigh waves (for a

Poisson solid, the Rayleigh wave velocity is 0.9194 that of the shear wave velocity) and a

constant time scale is preserved, i.e., propagation is not dispersive. The wave motion is

largely confined to the surface and the particle motion is retrograde elliptical. In the 3-

dimensional case its amplitude is decreased only by annular divergence (geometric

spreading).

Lamb discusses the waveform of the Rayleigh component and notes that in the case

of an impulsive source the waveform is that of a "solitary wave", i.e., it consists of one

oscillation only. However, it is not sharpely defined in the rear as it is in front, but rather

it has a prolonged tail which suggests it is a peculiarity of the 2-dimensional nature of the

wavefront. In contrast, the 3-dimensional analysis suggests that the P and S components

will be more clearly isolated than in the 2-dimensional case. In concluding his discussion,

Lamb considers the propagation of similar disturbances over surfaces with curvature, such

as the surface of the earth. He supports Oldham (1900) who had earlier suggested that in

such cases there will be an increase in the minor tremor compared to the planar case due to

the presence of a direct transmission path. The main shock, on surfaces with curvature,

however, will still be caused by the Rayleigh waves travelling over the surface.

Sezawa (1927) considered the propagation of Rayleigh waves in the circumferential

direction of a cylindrical surface, i.e., the inner surface of a hollow cylinder. He obtains a

recursive relation involving Bessel functions whose arguments and orders are

dimensionless wavenumbers. This equation is solved to give the dispersion relation

between velocity and dimensionless radius of curvature. However, as this solution is



effectively concerned with circumferential propagation on the inner surface of a tube, it

does not consider the added complexity of radiation into a surrounding medium.

Nakano (1928) discussed the particle motion of curved surfaces traversed by

Rayleigh waves. He compares his solution to that of the Rayleigh solution for wave

propagation on a planar surface where the particle motion is a retrograde ellipse with the

excursion on the vertical axis being approximately twice that of the horizontal. Nakano

notes that this is only true on curved surfaces for large distances from the origin and that

in general the orientation of the major axis of the ellipse is dependent on distance from the

source.

Cook and Valkenburg (1954) showed experimentally that Rayleigh waves at ultra-

sonic frequencies may propagate on cylindrical surfaces and that they can traverse a

curvature of radius of the order of a wavelength and larger.

Viktorov (1958) derived the frequency equation for the cases of surface wave

propagation on both convex and concave surfaces. He discusses in detail the dispersive

nature of the Rayleigh type propagation in the convex case and shows that similar

dispersive behaviour occurs in the concave case. Viktorov's frequency equations are

fundamental to any problem involving the dynamic behaviour of cavities in elastic media.

They will be discussed in detail in chapter 3.

All discussions concerned with disturbances propagating on surfaces with curvature

had concluded that the minor tremor (P and S components) will increase in amplitude with

respect to the planar case. These arguments were concerned with convex surfaces such as

the earth's surface. However, on concave surfaces such as the surface of boreholes it is

suggested that the converse will be true, i.e the preceding P and S components in the

wave train will be more effectively radiated into the surrounding medium and will be



consequently reduced in amplitude with respect to the planar case. They will also be

reduced in amplitude with respect to the Rayleigh component.

2.2 Elastic wave/cavity interactions

The response of cylindrical cavities in infinite elastic media to various forms of axi-

symmetric loading, e.g., pressure loading such as that generated in blasting, has been

extensively discussed in the literature. Selberg (1952) considered the waveforms of stress

waves emanating from both uniformly loaded spherical and cylindrical cavities in infinite

elastic media (Poisson solids). In the cylindrical case the integral that is required to be

evaluated for the radial stress-distance function involves a denominator which has only

one complex root, namely,

-0.442057 + 0.447357i.

This root (allowing for sign convention changes) will be shown in later chapters to

correspond to the P-wave branch of the cavity normal modes ( given by solution of

the Viktorov equation), i.e., the radially symmetric component of radiation only is

involved. The tallies with Selberg's starting assumptions of a uniformly loaded cavity and

short times such that no reflected energy is involved. Heelan (1953) considers the

radiation of energy from a cylindrical cavity containing a cylindrical charge of finite

length. The cavity walls are uniformly loaded. Thus, this paper appears to be an

extension from Selberg's treatment of a cylindrical cavity of infinite length. However,

there is some controversy concerning the validity of Heelan's boundary conditions (see

Abo-Zena, 1977, for example).

In the late 1950's and throughout the 60's a great deal of attention was focused on

the behaviour of underground structures such a tunnels and shelters when exposed to

disturbances originating from surface blasts. This prompted many fundamental studies

into elastic wave front interaction with cavities. Nishimura and Jimbo (1954) appear to

have pre-empted this trend with a discussion of dynamical stress concentration factors



when spherical inclusions (both rigid inclusion and cavity are considered) are subjected to

incident harmonic P-waves. They consider reflected and refracted waves at the cavity

boundary. The refracted wave is treated as a standing wave on the cavity boundary. The

authors conclude that the stress concentration at the cavity boundary exceeds the static case

and is a maximum when 27c divided by the radiation wavelength is approximately 0.5.

The scattering of plane compressional and shear waves incident on a cylindrical

discontinuity in an elastic solid was investigated by White (1958). A theoretical

description of the mode conversions and directivity of the radiation scattered by the

inclusion is backed up by an experimental investigation. Both empty and fluid-filled

boreholes in aluminium are considered with the wavelength of the radiation being

comparable to the borehole diameter.

The stresses around a cylindrical cavity in an elastic medium (Poisson solid) due to

an incident step-function wavefront were examined by Baron and Matthews (1961).

Stresses are derived by an integral transform approach. An expression for the

singularities (poles) of the integrands for the stresses has a similar form to that of the

Viktorov equation. However, Viktorov's equation is not mentioned. The stress

amplification, particularly the hoop (circumferential) stresses, are considered to be due to

the decay time-constant associated with the pole, 0.2862 + 0.2786i (this pole in fact

corresponds to the n=2 normal-mode on the Rayleigh branch of the Viktorov equation

roots). Baron and Parnes (1962) extend the previous paper (Baron and Mathews, 1961)

to consider velocities and displacements.

A Fourier-Bessel series solution is described by Pao (1962) for the interaction of a

plane compressional wavefront with a circular cavity in an elastic plate. Dynamic stress

concentration factors 10% higher than the static values are calculated. The series solution

for the cavity hoop stresses consists of Hankel function terms of similar form to the

Viktorov equation although no reference is made to Viktorov. Pao (1962) states that for



the dimensionless wavenumber equal to 4, at least 16 terms are required for an accuracy of

1 part in 105 . No mention of the significance of normal modes on the stress amplification

effects are made. Pao and Mow (1962) extend Pao's (1962) paper to consider both fixed

and movable rigid inclusions in the elastic plate. This work is followed by a further

Fourier-Bessel solution by Mow and Mente (1963) for plane harmonic shear waves

incident on a cavity (radius, a) in an infinite elastic medium. The case of a rigid inclusion

is also considered. The response of the cavity for the dimensionless shear wavenumber,

13a, in the range, 0.1<13a<3.0 is considered for Poisson's ratio, 0.15, 0.25, and 0.35.

Miklowitz (1963) in his earlier studies of the line-load cavity interaction, had

predicted that Rayleigh waves could exist on the cavity walls, following transient

excitation, which were non-decaying in time and were independent of angular position

(0). In a later paper (Miklowitz, 1966) attention is focused on the plane compressional

wave interaction with the cavity where Rayleigh waves are shown to exist on the cavity

walls. They are still sizeable disturbances and predominate in the long-time solution.

However, they are spatially attenuated with 0. The solution method is that of integral

transforms where residues of the Viktorov poles provide the dominant contribution to the

evaluation of the integrals. The full significance of the poles (roots of the Viktorov

frequency equation ) are discussed and it is shown that the Rayleigh contributions have the

least damping. This work is described in detail by Miklowitz's research student, Peck, in

his Ph.D dissertation (Peck, 1965).

Peralta et al. (1966) consider the solution described by Pao (1962) for the interaction

of a plane compressional wavefront with a cavity and provide a simplifying approximation

to the integrals to enable easy evaluation of the stresses. The resulting approximation

matches the exact solution quite well and would be satisfactory for engineering purposes.

However, the weakly oscillatory nature of the exact stress-wavenumber relation is lost.

Cheng and Jananshahi (1967) discuss the dynamical stress concentration factors around a

rigid circular inclusion and a cavity in an elastic plate excited by a line harmonic source at a



distance from the discontinuity, i.e., in contrast to previous work the incident wavefield is

given by Lamb's solution for a line source in an infinite medium.

Peck and Miklowitz (1969) evaluate the " shadow zone " response, illustrated in

Figure 2, of the diffraction of a compressional wavefront by a circular cavity. A "wave-

sum" solution method is used in which the cavity response, as a function of 0, is

represented by a sum of circumferentially propagating wave modes. This work shows

that rapid convergence of the integrals is obtained in the shadow zone for step-function

loading of the cavity. Only seven modes are required for an accurate solution. However,

the solution is only applicable to the shadow zone. The authors note that the evaluation of

the poles for this solution (roots of the Viktorov frequency equation) in the complex

frequency plane presents many difficulties.

Pao and Mow (1973) provide a comprehensive review of the diffraction of elastic

waves and the effects of dynamic loading on underground structures and openings. This

work also contains a detailed analysis of the interaction of P and S waves with cavities.

The latter chapters are essentially a re-iteration of Pao's and Mow's earlier publications

However, there is included a discussion of the contribution of the poles of various transfer

functions describing the cavity response.

Eason (1973) considered the radiation from spherical and cylindrical cavities in

mildly anisotropic media following step-function loading of the cavity walls. A wavefront

expansion method for calculating the stress field is used.

Pao and Sachse (1974) describe some experimental observations of the scattering,

by a fluid filled hole in an aluminium block, of ultra-sonic pulses. The presence of strong

resonance effects is noted. Sachse (1974) describes the experimental spectral analysis of

wide-band ultra-sonic pulses scattered by a circular fluid-filled cavity in an aluminium

block. Various fluids including air were considered. Similar work was reported by
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Roever et al. (1974) who described the response in the radial, circumferential, and axial

directions of a fluid filled borehole. The borehole fluid was excited by a sparker source

lying on the borehole axis. The borehole wall response was not considered.

Glass (1974) reviewed seismic considerations in siting large underground openings

in rock. His thesis is essentially a literature review of aspects of the diffraction of elastic

waves by cavities in elastic media. The mathematical treatments of Pao and Mow (1973)

and Miklowitz are reproduced in detail. Glass's own contribution is a numerical

evaluation of some of the relevant expressions and a relatively simplistic (compared to the

present investigation) dynamic finite element model. Eigenvalue and time-domain

response solutions of single and multiple rectangular cavities are considered. He

concludes that no resonant behaviour is observed in the numerical solutions for excitation

frequencies in the range 1 - 100Hz.

Pao and Mow (1976) discuss the theory of normal modes (eigen-values) and their

effects on the scattering of ultra-sonic pulses. The case treated in greatest detail is that of

the fluid-filled cylindrical cavity in an elastic medium. However, the empty cavity is also

considered as a limiting case.

Liberal! (1977) points out the similarity of the Breit-Wigner resonance scattering

formalism used in nuclear physics to that of the acoustic and elastic scattering. In both

cases the interaction between the incident wave and the resonances of the scattering object

determine the scattered wave amplitude. The author examines several cases in the light of

this scattering theory including that of a water-filled cavity in an aluminium medium. He

identifies various resonance peaks in the scattered wave field mainly due to fluid/cavity

resonances. The empty cavity modes appear as a soft background, i.e., they are weakly

excited in this case.



Buchwald (1978), in a mathematical note, considers the diffraction of elastic waves

by small cylindrical cavities. This work amounts to an approximate solution to the

Viktorov equations for small values of wavenumber via an asymptotic expansion of the

Besse' functions involved. Greenfield (1978) derived the radiation pattern for the 3-

dimensional case of a point source acting on a cavity. The method of formulation

essentially follows the 2-dimensional case. However, a third wave-number is involved

arising from the consideration of radiation down the axis of the cylindrical cavity. The

scalar potentials thus involve a further integration over this wavenumber which has the

effect of greatly increasing the difficulty of solution ( in fact the solution is considered by

some researchers to be analytically intractable). Greenfield applies a far-field

approximation which has the effect of reducing the solution .of the problem to that of the 2-

dimensional case.

Miklowitz (1980) provides an excellent review of elastic wave interactions including

his work and that of others in "Elastic Waves and Waveguides". In his chapter on

scattering by cylindrical obstacles he discusses the scattering of an elastic pulse by a

cylindrical cavity. A line source is considered acting at a distance from the cavity. Two

limiting cases are considered; that of a line source on the cavity wall and that of a line

source at infinity. The latter case corresponds to a plane wave travelling towards the

cavity whereas the line source on the cavity wall, as Miklowitz states, is "basically a Lamb

type problem for the interior space r>a". Miklowitz discusses integral transform methods

of evaluating the cavity response with particular emphasis placed on the significance of the

Viktorov poles, following Peck (1965). He restricts his analysis of the near-field case to

that of the shadow-zone response and derives an integral expression for this case which is

essentially a summation over the residues of the Viktorov poles. Miklowitz also considers

the long-time, far-field solution in which the Rayleigh waves predominate since the

limiting wavenumbers on the Rayleigh branch of the Viktorov equation are the only real

wavenumbers in the spectrum. An approximate solution is derived for the circulating

Rayleigh wave displacements. Similar methods, i.e., that of an asymptotic expansion



method, are applied by El-Akiliy and Datta (1980) to the analysis of the seismic response

to buried pipes in an elastic medium.

Experimental observations of the interaction of longitudinal and transverse elastic

waves with cylindrical cavities in a glass plate are described by Ying et al (1981). A

strobed photoelastic technique is used to visualise the wavefront interactions. The

authors discuss the presence of a "creeping wave " which travels from the illuminated

side of the cavity to the shadow zone. The "creeping wave" is observed to radiate bulk

waves into the surrounding medium as it progresses around the cavity loosing energy in

the process --see Figure 3. The radiation process is accompanied by a phenomenon of

"shooting successive tips". No doubt this "creeping wave "corresponds to a circulating

Rayleigh wave first postulated by Miklowitz. However, the authors state that they are

unaware of any analysis of interactions involving such a wave. In the longitudinal case

the authors claim that the creeping wave velocity is approximately equal to the incident

longitudinal-wave velocity whereas in the case of transverse-wave illumination the

creeping wave has a velocity equal to 80% of the transverse wave velocity. The first

observation is puzzling; however, in the latter case the creeping wave velocity is

approximately equal to the expected value, i.e., that of Rayleigh waves.

Blair (1982) describes a dynamic finite element method (DEEM) analysis of the

interaction of a step-function compressional wavefront with a cylindrical cavity. Good

agreement is obtained with the results of Baron and Parnes (1962). The DEEM model is

extended to include elastic inclusions, representative of seismic detector mounts, within

the cavity. The amplitude transfer functions for the response of a seismic detector

mounted on the walls of a borehole are discussed by Blair (1984) for the case of an

incident compressional wavefront. The Fourier-Bessel series solution described by Pao

and Mow(1973) is developed for this treatment and numerically evaluated for large

dimensionless wavenumbers Cases considered include both fluid-filled boreholes and

empty boreholes with wall mounted detectors.



Figure 3. Direct observations of the interaction of a longitudinal wavefront with a cavity.

A stroboscopic photoelastic technique was used -- after Ying et al. (1981)



The far-field displacement radiation patterns arising from a point source acting on

the wall of a fluid-filled borehole are discussed by Lee (1986). The analysis considers

only wavelengths large compared to the borehole diameter. This has the effect of

restricting the normal-modes required to the 0th, 1st and 2nd orders.



2.2.1 Applications of seismic reciprocity to wave/cavity interactions

The principle of reciprocity states that a reciprocal relation holds between a point

force and the resulting particle displacement at any two points respectively in an elastic

medium. Knopoff and Gangi (1959) review the general principles of reciprocity in

physics and apply these to the reciprocity between source and receiver in elastic wave

propagation. The theoretical discussion is backed up by experimental observations.

Thus, it should be possible to use reciprocity principles to deduce the far-field radiation

pattern arising from a source within a borehole if the borehole response to an incoming

plane wave is known. An application of reciprocity to calculate the far-field waveform

arising from a localised force pulse within a borehole is discussed in Siggins and Stokes

(1987) and in Chapter 5 of this dissertation. White (1960) applies seismic reciprocity

principles to the derivation of the far-field particle displacement-distance relation for a pair

of diametrically opposed forces acting on a borehole. He also considers, in a similar

manner, the displacements in the far-field arising from a uniformly loaded borehole and

shows how the use of reciprocity leads simply to the results of Heelan (1953). An

experimental verification of reciprocity is demonstrated for the case of a hole in a plate.

Similar conclusions concerning the use of reciprocity for the determination of far-field

radiation patterns were reported by Gupta (1965).

Seismic reciprocity is invoked by Lee (1987) to compute the borehole wall

displacements, arising from an incoming plane wave, from his earlier solution. Again the

analysis is restricted to wavelengths larger than the borehole diameter.

2.3 Non-destructive testing applications of circumferentially

propagating waves.

Little use has been made of the circumferential propagation of elastic waves as yet

for geophysical and non-destructive testing, possibly because of the complexity of the



analyses required. However, Vogel and Herolz (1981) have described a borehole

logging tool which propagates several wave modes around the walls of a fluid filled

borehole. The largest amplitude wave is thought by the authors to be a circumferentially

propagating guided fluid wave. The amplitude of an additional wave, the "refracted shear

wave", is shown experimentally to be sensitive to the presence of cracks in the borehole

walls.

Su et al. (1983) describe the experimental measurement of the stress field around a

borehole in a sandstone block using ultra-sonic transducers. The transducers, a

transmitter and a receiver, are clamped within a borehole in a sandstone block. Velocities

of first arrivals propagating from the transmitter to the receiver, over a small arc of the

borehole circumference, are measured. The authors make the assumption that all wave

modes generated will be compressional. This is justified by an argument using the

radiation pattern of a "piston-source" in which the compressional-mode lobe of the

radiation pattern is extended by a suitable choice of wavelength and transmitter diameter

to reach the receiver element. However, it is debatable whether or not the piston source (

a well known representation of an acoustic source in air such as a loud-speaker ) is truly

representative of what amounts to a Lamb type problem on a surface with curvature and

possessing a finite shear modulus. The data were obtained by first testing the cores taken

from the sandstone blocks to obtain a stress-velocity calibration function. The biaxially

loaded blocks were then tested by measuring velocities in increments around the inner

circumference of the boreholes. Angular separation between transducers was 36 degrees.

Velocities measurements were made every 30 degrees with the transducers being rotated

from the origin in 30 degree steps. In that manner it was claimed that the stress

distribution around the borehole was obtained. However, a suprisingly high stress-

velocity sensitivity was reported. The work of Su et al. (1983) represents an interesting

application of the use of circumferential propagation of elastic waves and would possibly

benefit from the results presented in this dissertation.



3. Theoretical analysis

3.1 Nomenclature

elastic wave displacement potentials.

a	 cavity radius (m)

circular frequency, radians per second (equal to 21tf, where f is

frequency in Hz)

k 1 	dilatational wavenumber (m- 1 )

k2 	shear wave number ( " )

k3 	Rayleigh wavenumber ( " )

k	 generalised wavenumber ( " )

CD	 dilatational wave phase-velocity (m/s)

Cs	 shear wave phase-velocity ( " )

CR . 	 Rayleigh wave phase velocity ( " )

p	 density, kg In-3

X, 11	 Lame' elastic constants (Pa)

Young's modulus (Pa)

v	 Poisson's ratio

Ur, ue, u z 	 displacement components in cylindrical polar coordinates (m)

GrO, Grz	 stresses	 " (Pa)

Jn	 Bessel function of order, n.

Hn	 Hankel function of order n.(equal to J + iY, where Y is a

Bessel function of the second kind)

5	 Dirac delta function.

x,y	 dimensionless wavenumbers equal to k l a and k2a respectively

x,y	 dimensionless wavenumbers equal to (k2 - k 1 2) 1f2a and

(k2 - k22) 1'2a respectively.



3.2 The frequency equation for cylindrical cavities in elastic media

The geometry of the problem is defined by Figure 4. The discussion is limited to

the plane-strain case. Thus, when the problem is defined in cylindrical coordinates, r, 8

and z, the z dependence can be ignored. The solution procedure consists of expressing

the displacement potentials, 1, and 'F, arising in the elastic wave equations, in terms of a

Fourier-Bessel expansion. Stresses are derived from the potentials and boundary

conditions are applied resulting in the desired solution.

The wave equations for an elastic continuum are

V2 (1) + k2i (134 = 0

v2 + k22 111 = 0

where the operator, V2 is given by

v2 .	 a (r )	 1 a2
r ar ar	 r2 a82

The potentials, 1 and 'F, apply to dilatational (longitudinal) and distortional (transverse)

waves respectively. The wavenumbers k i and k2 are given by,

k 1 = ovCD and 1c2 = co/CS

where (.0 is the circular frequency and CD and Cs are the dilatational and shear wave

phase velocities respectively. Phase velocities are given by

C
	 (X + 2/1)1/2
D

p

CS =	 )1/2

p

---(2 )



Figure 4. Geometry of the line-force/ cavity interaction.
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aos aq'U
e 

=--

too	 ar
---(4)

where X and t are Lame elastic constants.

The radial displacement, ur , and the tangential displacement, ue , are given by,

u = +!ap
r ar	 r "

---(3)

The corresponding stresses are given by

x a2c, nia20 +idaxp.)]
a = 72 2 + `	 2 ,i. ` r aorr v'T at	 ar	 0

2,D ao d2W ]
[ 
i ,32y 2,	 _ 	 _ 	 )

s
G = 11 7 n 2 + a a 2ao arer r	 rre	 C ut

---(5)

---(6)

The wave equations, (1) in cylindrical coordinates, are in the form of Bessel's

differential equations and thus have Bessel function solutions. Viktorov (1958) makes

the assumption that a generalised Rayleigh wave will exist on a curved surface. Thus the

solution will be a function of eiP0 where i has its usual meaning ( i2 = -1) and p is a

dimensionless quantity which Viktorov terms an "angular wavenumber". It should be

noted that, in general, p does not have to be restricted to integer values, but in Viktorov's

treatment p is integer.

Thus, the solutions sought for propagation on a surface with curvature will be in the

form

cP = A e
ip0 

J (k1 r)	 ---(7)
P	 1

'P = B eiPe JP (k2 r)	 ---(8)

where A and B are arbitrary constants. JP (k i r) and Jp(k2r) are Bessel functions of order

p. However, these solutions do not satisfy the requirement of radiation into the



surrounding medium, i.e., they are only applicable for the case of surface wave

propagation on the surface of a cylinder. In the case of a cavity the solutions required are

ip0 (1)
= Ae Hp (k1r)	 ---(9)

ip0 (1)
= Be Hp (k2r)	 ---(10)

where H(1) are Hankel functions of the first kind which are defined in terms of the

Bessel functions of the first kind and second kinds , J and Y respectively, as,

H( 1 ) = J + iY

(refer Abramovitz and Stegun, 1965).

The Hankel functions for r > a represent cylindrical waves travelling out along the radius.

The time dependence for the displacement fields is e-i".

The boundary conditions for the problem are zero stresses, ar, and are , at the cavity

boundary, at r=a. The appropriate differentiations of expressions (9) and (10) are then

substituted into (5) and (6). Applying the boundary conditions and making use of the

recursion relations

H (x) + Hp+1 (x) = 2p H
P-1	 X	 P

H (x)	 - Hp±i(X)]

where x is the argument of the Hankel functions of order p and H P signifies the

derivative of Hp with respect to argument, leads to Viktorov's frequency equation in the

form of the recursion relation
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Hp+2 + Hp-2(x) - 2(y2/x2 - 1) Hp (x) Hp+2(y) - Hp-2(y)
---(13)   

	

Hp+2(x) - Hp-2(x)	 Hp+2(y) +Hp-2(y)

(Note that the superscript, ( 1 ), has been dropped to avoid confusion with the derivative in

later expressions).

The arguments x and y are the dimensionless wave-numbers, k 1 a and k2a, respectively.

In terms of the Lame' constants, x is given by coa(p/(A, + 21.)) 112 and y is given by

coa(p/)..L)1/2, where p is density.

Viktorov (1958) does not attempt to evaluate the zeros of (13), but makes the

observation that, for real x and y, p will be complex. He applies an asymptotic expansion

for the Bessel functions and concludes that, in an analogous manner to the convex case,

circumferential propagation of elastic waves on a cavity will be dispersive.

As is shown by Stokes and Siggins (1987) the complex zeros of equation (13) are

common to a number of transfer functions described in the literature. For, example Pao

and Mow (1973) derive a Fourier-Bessel series for the cavity hoop-stress response to an

incoming plane compressional wave. The transfer function for this case is also discussed

in detail by Blair (1984).

With a change of notation its pth coefficient has a denominator, Dp , given by,

D = )(H (x)[(	 1) H ( ) ( 
3	

+ 
2
/2)14 (Y)]p	 p-1	

2	
p-1	 Y

-Hp(4(p3 - p +y2/2)yHp 1 (y) - (p2 + p - y2/4)y2Hp(y)] ---(14)

(There appears to be an error in Pao and Mow (1973) in that y 2 in the last term of (14) is

omitted).

By using the recurrence relations (11) and (12) it is possible to reduce (14) to the form



2
YD = (p2 - 1)xyll 

(x)Hp (y) - —ExH (x)H (y) + yH (y)H (x)]
PP	 2PP	 P	 P

2
[ p2 (p2 y )21H

H(x)Hp(Y)
 (y)

2	 P	 P

Viktorov's equation, Vp, defined as

H (x) + Hp 2 (x) -2(y
2
/x

2
 - 1)Hp(x)

V – 1)+2
H2(x) - Hp 2(x)
P+ 

Hp+2(y) - H (y)p-2
H 2(y) + Hp-2(y) = 0P+ 

---(15)

---(16)

can then be shown (Stokes and Siggins, 1987) to be given by, 

-8D
P – 0	 ---(17)

P	
X

2
y

2
[Hp+2(x) - Hp-2 (x)][Hp+2 (y) + Hp-2(y)]

Since Hankel functions have no singularites, except at x = y = 0, the zeros of Vp are

those of Dp. Stokes and Siggins (1987) show that other transfer functions, such as that

described by Miklowitz (1980) for the cavity response to a line-source within an elastic

medium, have the same poles (zeros of the denominator).

Dividing Dp by Hp(x)Hp(y) yields

(p2 - 1)F(x)F(y) - y2
/2[F(x) +F(y)1 +p

2
 - (p

2
 - y

2
/2)

2
 = 0	 ---(18)

where F(x) = xifp(x)/Hp(x).

The Hankel function ratios, F(x), can be conveniently computed by the use of continued

fraction expansions. The expansion is derived from the recurrence relation for the

confluent hypergeometric function ( Abramovitz and Stegun,1965, 13.4.15). The theory

is set out by Temme (1975), but in the present case is simpler because a normalising sum

is not required. Then

F(x) = ix - 1/2+	
p- 1/4

V

2 - 2ix
	

(p - 9/4)
4 - 2ix - (P - 25/4)	 ---(19)

6 -2ix...



3.2.1 Calculation of the Viktorov poles.

Expression (18) is analytic in both p and x (and hence y). Consequently the

equation implicitly determines either p as a function of x or vice-versa, and that function is

generally multi-valued and analytic except at branch points. For physical considerations

discussed later in this dissertation it is convenient to hold p real and consider poles in the

complex plane of x (and y). However, other authors, such as Miklowitz (1980),

constrain x to be real and examine poles in the complex p-plane. Table 1 gives a

comparison of some poles calculated by the above method with others in the literature for

Poisson's ratio, v, equal to 0.25 (v = X/2(?. +11) ).

Being an expansion for large argument, equation (18) seems to avoid the numerical

difficulties encountered by other authors for increasing p. Convergence difficulties arise

only when x closely approaches the negative imaginery axis. Continuous trajectories of

the poles in the complex x-plane were calculated using a modified Newton-Raphson

method for positive p up to p = 10 (Appendix 1 lists a Fortran programme, NIKZX for

this purpose). These are shown in Figure 5. As noted in Pao and Mow (1973), for

positive integer values of p = n, there are n poles if n is odd and n + 1 poles if n is even.

All but one of the trajectories approach the imaginary axis as p diminishes, cross at p = 2n

- 1/2, then continue as a mirror image reflected about the imaginary axis. The exception is

a single trajectory which reaches p = 0; since (18) is an even function of p, the trajectory

here meets its negative p counterpart at a branch point.

The p-values are marked on the trajectories where p is an integer. The trajectories

are plotted as far as p = 10. Asymptotically the behaviour of the various branches is as

described by Peck and Miklowitz (1969) with x regarded as the independent variable

rather than p. Most of the poles arise when either H p(x) or Hp(y) enter the transition

region for Bessel functions where the argument is approximately equal to the order, and

an expansion for the Bessel function in terms of the Airy function applies. For p x,

then,

X p _	
(p/2)113 w	 j = 1,2,...	 ---(20)



P Our value Pao and Mow, 1973 Baron and Parnes, 1962

0 0.4474 - 0.4420 i 0.44647 - 0.44127 i 0.4464 - 0.4410 i
1 1.09272 - 0.7653 i 1.09272 - 0.7653 i 1.0929 - 0.441 i
2 1.90754 - 0.8978 i 1.90754 - 0.8978 i 1.9076 - 0.897 i
3 2.75652 - 0.9915 i 2.75652 - 0.9915 i
4 3.63132 - 1.0666 i 3.63132 - 1.0666 i
5 4.52440 - 1.1314 i 4.52440 - 1.1314	 i

Table 1. Comparison of calculated eigenvalues for circular cavities in
elastic media. Poisson's ratio = 0.25.



4	 6	 8
R

P2

1 	 ii)4	 i	 I 

8.0

P1
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Figure 5. Locii of poles in the complex x-plane. R, P, S indicate Rayleigh,

compressional and shear wave modes respectively. Integer values of p are marked on

pole trajectories.
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Table 2.

p x value at zero of D Derivative
Real	 Imag Real	 I	 Imag

P1 branch
0.000 0.4474 -0.4420 -0.4999 -0.2448
1.000 1.0927 -0.7654 -4.9668 7.4510
2.000 1.9075 -0.8978 -30.0801 36.8774
3.000 2.7565 -0.9915 -99.0362 105.8696
4.000 3.6313 -1.0666 -241.8189 235.9453
5.000 4.5244 -1.1314 -492.8187 451.8991
6.000 5.4306 -1.1899 -889.7499 781.5193
7.000 6.3467 -1.2440 -1473.0596 1255.3524
8.000 7.2702 -1.2950 -2285.5579 1906.5410
9.000 8.1998 -1.3435 -3372.2041 2770.6892
10.000 9.1342 -1.3900 -4779.8574 3885.7664

R branch
2.000 0.2862 -0.2786 -4.9601 1.4331
3.000 0.7946 -0.3245 -26.0566 -6.9026
4.000 1.2979 -0.3437 -71.0670 -30.3484
5.000 1.8027 -0.3525 -151.0883 -74.4564
6.000 2.3098 -0.3559 -278.2668 -144.4714
7.000 2.8192 -0.3560 -465.3952 -245.1723
8.000 3.3307 -0.3542 -725.7965 -380.8448
9.000 3.8440 -0.3510 -1073.1565 -555.3453
10.000 4.3588 -0.3469 -1521.5138 -772.0622

P2 branch
2.000 0.4041 -1.7852 64.5148 -77.1535
3.000 1.2325 -2.2281 381.3022 -23.6993
4.000 2.0782 -2.5798 874.4141 395.4999
5.000 2.9359 -2.8760 1414.0438 1339.6630
6.000 3.8033 -3.1336 1860.6656 2926.2717
7.000 4.6787 -3.3625 2074.7217 5252.8540
8.000 5.5612 -3.5692 1917.3248 8407.5664
9.000 6.4501 -3.7580 1249.5570 12474.1729
10.000 7.3446 -3.9322 -68.2529 17534.6934
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Table 2 (continued).

S1 branch
4.000 0.2580 -1.1025 -85.9125 193.4471
5.000 0.7711 -1.3573 -428.2726 306.4424
6.000 1.2858 -1.5530 -1015.4634 306.9080
7.000 1.8036 -1.7144 -1868.3984 129.3510
8.000 2.3246 -1.8528 -3012.7083 -288.1648
9.000 2.8486 -1.9745 -4474.5874 -1009.1045
10.000 3.3752 -2.0835 -6279.9517 -2099.0527

p x value at zero of D Derivative

P3 branch
4.000 0.4155 -3.1005 496.9440 -1230.6393
5.000 1.2554 -3.6245 2376.0454 -1691.7261
6.000 2.1053 -4.0664 5293.3813 -1130.9962
7.000 2.9635 -4.4518 8977.6406 911.3301
8.000 3.8289 -4.7958 13116.4980 4775.0220
9.000 4.7005 -5.1076 17393.8184 10721.2168
10.000 5.5777 -5.3938 21501.0898 18962.2012

S2 branch
6.000 0.2542 -1.8734 -321.9348 1263.5731
7.000 0.7625 -2.1746 -1445.1500 1955.0776
8.000 1.2721 -2.4264 -3231.8972 2488.4888
9.000 1.7840 -2.6448 -5729.9917 2727.8069
10.000 2.2983 -2.8387 -8987.1289 2553.8904

P4 branch
6.000 0.4199 -4.4230 1669.4871 -6051.8496
7.000 1.2660 -4.9842 7091.9971 -8432.7812
8.000 2.1185 -5.4749 15154.9092 -8953.7119
9.000 2.9771 -5.9140 25458.0840 -6767.7256
10.000 3.8410 -6.3131 37521.6367 -1206.1699

Table 2. Table of zeros of Dp (x) for small integer p, and complex x. The
derivatives of D with respect to x at the zeros are also given; these are needed in
calculating residues.
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where w = exp(-276/3) and ai is the j th zero of the Airy function, Ai.

The phase velocity approaches that for P-waves, and the trajectories are labelled

Pl,P2,...

Similarly there are trajectories for which

y p - aj (p/2) 113 w	 j. 1,2,...	 ---(21)

These have phase velocities approaching that for S-waves and are labelled S 1,S2,...

Finally there is a pole which is obtained from the Debye expansion for H(x) where

lx1,1y1< Ipl. This is the Rayleigh wave pole,with

x E_-- (CR/CD)p + constant	 ---(22)

where CR is the phase velocity for Rayleigh waves.

Table 2 presents zeros for integer values of p, together with derivatives of Dp with

respect to x. These are needed in order to calculate the residues, if the integral arising

from the use of a Fourier-Bessel series as a transfer function is to be evaluated by residue

calculus.

3,3 A line-source on a cavity wall

The analytical treatment of this problem follows similar lines to that of the cavity

frequency-equation treatment in that Fourier-Bessel methods are employed. The method

used is similar to that of of Pao and Mow (1973) for incident wave problems and

Miklowitz (1980), but a more elegant solution is arrived at.

The geometry of the line-source/cavity interaction is summarised in Figure 4.

Applying separation of variables, solutions of the following form are sought,

00

(1) = EanHn(k i r) e
rne

n =

00

=	 [3nHn(k2r) erne
n

where an and fan are the Fourier coefficients.

---(23)

---(24)



---(28)

a
n

2
y	 2

(--- - n) Hn(y) + y Hn (y)
a

2 2

2111).
in[Hn(x) - xln(x)]

As in the previous treatment, Hankel functions of the first kind, H(' )„ , arise as a result of

radiation away from the cavity walls. The time variation of the displacement field is given

by e-ice and has been omitted from (23) and (24).

The line-load will produce a normal stress at r = a which can be represented by a

Dirac delta-function, 8(0) at 0 = 0, as is illustrated in Figure 4. The stresses ar, and 0,9

can be represented by ,

an,

and

the
=	 e

rrn
n = -00

---(25)

are =0. 0.	 ---(26)

Hence for each n, stress Gan = 1, since,

8(0) =	 e
ine

n = -00

This enables an and 13 n to be determined by equating coefficients, i.e, the

appropriate differentiations of the potentials, (23) and (24), are substituted into the

equations for the stresses, (5) and (6), and the boundary conditions, (25) and (26) are

applied. This yields,

x2H (x) - xHn (x) + (n2 - x2)Hn(x)	 in[ yfin (y) Hn(y)]
n

2p,

in[ xl n (x) Hn(x)]
2

y	 2
(T - n) Hn(y) + yH (y)

n

.1W WV

an

a
an

■•••

a

0
as

2

•••

---(27)

Solving for an and On gives



u = e
-icot I 

eine [ank 1 Hn (k 1r) + i21- [3 H (k2r)]
r	 r 	 n

'

n = -00

---(30)

Where Dn , is the determinant of the square matrix in (27) and is given by,

Dn = xy (n
2
 - 1)14n (x) Hni (y) - 4 xHni (x)Hn(y) + yHn(y)Hn(x)]

{
+ n2 - (n2 - 4)2 Hn(x)Hn(y)	 ---(29)

Thus, when n is replaced by p, equation (29) can be seen to be identical to equation (15)

and consequently the zeros of (15), i.e., the Viktorov poles, will determine the poles of

the transfer function for the line-source on the cavity wall.

A series solution for the radial displacement, ur, is obtained in the following

manner:

The expressions for the coefficients, (28), are substituted into (23) and (24) and the

appropriate derivatives into the equation for the radial displacement, (3). A similar process

can be followed for u 9; however, the discussion at this stage is confined to the radial

displacement.

ur is then given by

Then at r = a

,	 ,-icot I in° a
u = e	 e -- [ xyHn (x) Hn(y)

r
n = _eo	 23.1.13n

2

+ Y x1-1 (x)H (y) - n2Hn(x)Fin(Y)].
2 	 n	 n

Hence ,
0.

_icut I in0 a
u = e	 e 	 Nn/ Dr	 n 

n = -00	 2p.

where

---(32)

Nn = Fn(x) Fn(y) + (y2/2) Fn(x) - n2,	 ---(33)

and



(n2 - 1)Fn(x)Fn(Y) - (3/2/2{ Fn(x) + Fn(y)1

+ n
2 

- (n
2
 - y

2
/2)

2
	---(34)

F(x) is defined, as in the previous case, as xl-lin(x)/Hn(x).

It is convenient to carry out the summation for u r in the complex x-plane using the

continued fractions expansion (19) for the Hankel function ratio, F n(x). The summation

is dominated by the Viktorov poles associated with the denominator, Dn. The series for

u r is convergent in 0 except for 0 approaching zero since its terms tend to eine/Inl.

However, (32) can be made to converge at 0 = 0 by subtracting the following expression,

00 '	 in0
a	 e

La In!211(x2
/
,y2 

1) n =

where the prime denotes that the summation excludes the n = 0 term.

The series,

is equal to ln[2(1 - cos0)]. Thus, this process is equivalent to subtracting a Lamb (1904)

type singularity, which has similar logarithmic properties, at the source and ignoring the

radially symmetric component of the radiation. Implications of this step will be discussed

in later chapters.

The series for ur, (32), was summed to convergence for selected values of 0 and for

small increments of k i a [Re (x)] in the range 0.05.sk i a.s.5.0. Appendix 1 lists a

computer program, LLD2, for this purpose. Figure 6 presents the convergence behaviour

of (32). Convergence is achieved to an accuracy of 5 significant figures with 30 terms in

the above range. The results are presented in Figures 7 to 10. Since the complex

displacements (amplitude and phase ) are effectively normalised by the applied stress

these plots are equivalent to the compliance transfer functions of the cavity.
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The impulse response of these transfer functions can be convolved with various

stress pulses to calculate the associated radial-displacement waveforms of the cavity

walls.

3.4 Point source on cavity wall

The three dimensional case of seismic radiation arising from a point source on the

wall of a cylindrical cavity in an elastic medium has been examined by Greenfield (1978)

and will be briefly discussed here. The analytical description is in the form of a Fourier -

Bessel series and is an extension from the line-source treatment described above.

Greenfield's notation (with some modifications) is used.

Figure 8 illustrates the coordinate system used. The components of particle

displacement, ur, ue and uz, at a point in the medium, in terms of the cylindrical polar

coordinates, r, 0, and z, are given by,

	

a;	 a2
 't'	 1 a3c+ 

	

r ar	 araz	 r ao

1 A)	 1 a2' 	 5"•c

r ao	 r azao	 ar

a2
u z =	 +	 + k2711

az	 az2	 2

The potentials, (13,	 and X obey the wave equations,

v2 43

2
V 2T = –k2

02R — k225C

---(36)



Figure 8. Geometry of the point source/cylindrical cavity interaction --after Greenfield

(1978)



As in the 2-dimensional case, solutions for the potentials may be expressed in the form of

the Fourier-Bessel series,
_co

...Ef 0 1 (k) clic
1 = 0

00
00

---T = E, 	 dk	 ---(37)
1 = 0

00

R = 	 Xi(k) dk
1 = o_

where,

cl)1 = Al (k) eilu H (vr) cos 10,1

If = B_ (k) eilcz H1 (v r) cos 10,	 ---(38)1	 1

acz	 .
X1 = C1 (k) e	 H1 (v r) s in 10

The wave numbers, v , and v', are given by,

2 . Tk2 _ k2
v = .1k - k

2 
and v•i	 2

(the wavenumber, v, should not be confused with Poisson's ratio, v ).

The stresses at r = a are given by,

1
G = L 5(z) 5(0) —

a
00

00

= DJ D1 (k) e' cos10 dk,	 ---(39)
1 = o

G = G = 0.
r0	 rz

where L is source "magnitude" and,

D1 (k) = L/(47r2a) for 1 = 0,

D1 (k) = L/(27t2a) for 1 � 0.

Thus, when the appropriate derivatives of the potentials are substituted into equations for

the stresses ( obtained from (35) using linear elasticity theory, as in the 2-dimensional



case) and the boundary conditions (39) are applied, equations for the coefficients, A 1, B1,

and C1 are obtained. In an analogous manner to the 2-dimensional case this can be

expressed in matrix form as,     

[G]

A (k)1

B (k)1 

D (k)1

0

0

---(40) 

C1 (k)       

The elements of G are gij. Expressing the dimensionless wavenumbers, va, and v'a by x

and y gives;

+ 21-1;(x ) ]g11 = /4 —1 k2i 
H1(x)

11,	 1	 1

g12 = 1.12ikli1 (y )

2	 •	 21
g13 = 11 [—

a
1H

1
(y) - —} I (y )]

a 	
1

=-- 122ikH i (X )g21

= ( - 2k2 + k2) Hi (y .)g22

g23 = 1-t k ikl HP )

21	 •	 21
g31 = µ[ H 1(x) ) + ---i Iii(x )]a 

a
2

g32 = Pi ---a- ilkHP	
2ild

) + —7" H1 (Y )]
a

-1	
A

2	
1

g33 = 14— I-11(.y ) + -- H1(y) - H i (y2 -	 a- 
a

---(41)

Thus, the complexity of the 3-dimensional case of the point source acting on the cavity

wall is considerably greater than that of the analogous line-source problem. The added

complexity arises from the necessity to incorporate an additional transform in the Fourier-

Bessel formulation which allows for the z-dependence. This has the effect of making the
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near-field evaluation difficult. In fact, Greenfield (1978) restricts his attention to the far-

field with the use of the following far-field relation,

2e	  1+1
-ik,R 

.
I(k) H (vr) edk I (-kcosh) ---(42)

R	 R 1 

where I(k) is an arbitrary function of k. This simplification readily leads to the evaluation

of the far-field displacement transfer function which can be shown to be equivalent to the

far-field transfer function derived from the 2-dimensional case using seismic reciprocity

principles. This will be discussed at greater depth in the following chapters.

The poles of the near-field transfer function relating cavity wall displacement to

input stress will be indirectly related to the zeros of det.G. There is a further complexity

involved in that additional Fourier transforms are required before the poles can be directly

evaluated. Nevertheless, calculation of det.G yields lengthy expressions which include

expressions of similar form to the Viktorov equation although the author is unaware of

any attempt to extract the poles. The implication is that each Viktorov pole trajectory (in

the 2-dimensional case, refer Fig. 5) will now form a surface of poles with the additional

poles being associated with propagation down the borehole axis. However, the Rayleigh

modes will still be dominant.

00
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4. Dynamic Finite Element studies

4.1 Introduction

The Dynamic Finite Element Method (DEEM) is now a well established numerical

solution procedure for many geophysical and engineering applications. The method, in

the past had been largely restricted to modelling the vibrational response of foundations

and structures, but was shown by Shipley et al. (1967) to be applicable to elastic wave

propagation studies. Bathe and Wilson (1976) provide a comprehensive review of the

Finite Element method including its application to dynamic problems The method is

concerned with a spatial discreiisation of the problem under study to produce a grid or

mesh. (A portion of a typical mesh is represented in Figure 9). This is followed by

numerical time integration of the d'Alembert equation for equilibrium at each nodal point

in the mesh to arrive at nodal displacements.

The relevant equations are in the form

L u = F(t)	 ---(43)

where u is a vector of nodal displacement and F(t) is a time dependent load vector. L is

an operator of the following form,

Mat 4_ c	 K

ate	 at

where M, C and K are mass, damping and stiffness coefficient matrices.

---(44)

Belytscho and Mullen (1977) show that, with certain restrictions, solution of (43) is

equivalent to solution of the elastic wave equations (1) and (2) in the form,
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Figure 9. Portion of a typical Di-EM mesh.
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1 a2cD
Val =

CD 
ate

— 1 a2T
— Cs at2

---(45)

where, in the case of a Cartesian coordinate system, the Laplacian operator, V 2, is given

by

N72 -	 a2
ay2 ---(46)

Thus, DFEM can provide a convenient means of solving the elastic wave equations with

little restriction on the complexity of the problem geometry.

4.2 Limitations of the method

In applications where elastic continua are spatially discretised, it is clear that particle

motion with wavelengths shorter than the distance between nodal points cannot be

accurately modelled. A regular mesh with 4 - nodes per element can be reasonably

approximated by a single - pole, low-pass filter with the corner frequency given by 4-

nodes per wavelength. Figure 10, from White et al (1977), shows the influence of

element size per wavelength on mean - error in nodal displacement for one-dimensional

wave propagation. Two element types were considered; a constant strain element

(allowing linear displacement variation within the element ) and a linear strain element

(allowing quadratic displacement variation within the element).

Dynamic finite element models are susceptible to additional sources of error

including dispersion, as indicated in Figure 11, internal reflections arising from aspect

ratio contrasts between elements and from excessive gradation contrasts. Valliappan and

Murti (1984) provide a recent review of these limitations.
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4.3 Representation of infinite media

The presence of artificial boundaries in finite element representations of wave

propagation problems that require boundaries at infinity is unavoidable due to limitations

of computer memory. These model boundaries can produce unwanted reflections of

energy. However, model boundaries that absorb this incident energy, and thereby

provide a representation of an infinite medium, can be approximated in DFEM with

suitable nodal damping such as the "unified viscous boundary" described by Lysmer and

Kuhlemeyer (1969) and extended by White et al. (1977). Figure 12 illustrates the effect

on pulse reflection of changes to viscous boundary damping in a one-dimensional mesh.

Boundaries are said to be transparent to incident energy if stresses equal in

magnitude, but opposite in sign to those caused by the arriving wave are applied at the

mesh boundaries. This can be achieved by using the damping term in equation (43).

Lysmer and Kuhlemeyer (1969) arrived at the following expression for boundary

stresses,

= aPcD un

(ft = PpCs tit
-- -(47)

where a and 13 are dimensionless parameters and the subscripts, n and t, refer to normal

and tangential components respectively. Lysmer and Kuhlemeyer (1969) found that a =

= 1 will produce frequency independent absorbing boundaries with an efficiency of the

order of 95%.

However, the above boundaries perform badly with angles of incidence less than

30° . White at al. (1977) extended the above approach by calculating a and f3 to give

better incident angle independence. They give the following expressions for a and 13,
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a = 8 [ 5 + 2s - 2s2]
15n

13 = A43 + 2s]
157-

---(48)

where s2 = (1 - 2v)/2(1 - v) and v is Poisson's ratio.

These boundary conditions can be implemented in DFEM computer programs such

as ADINA (Bathe, 1975) with the use of concentrated nodal dampers. The values of the

damping coefficients (for a particular node) are given by,

cn = AapCD	 ---(49)

ct = A13pCs

where A is the effective area surrounding the nodal point in question.

4.4 Application of DFEM to a line-source on the surface of a half-

space

The problem of a concentrated source acting on an elastic half space was first

described by Lamb (1904) and is consequently known as Lamb's problem. (Mooney,

1974, has reviewed numerical solutions to a selection of Lamb type problems). As is

stated elsewhere Lamb's problem represents a limiting case of the problem of a line-

source acting on a cavity wall. It represents the case where wavelengths are small with

respect to cavity radius.

The analysis described here begins with Lamb's (1904) solution for the normal

component of the surface displacement resulting from a harmonic source, concentrated to

a line, acting on the surface of an elastic medium. This solution is then extended in this

dissertation (and by Siggins, 1982) by Fourier methods to that of a pulse line-source.

The choice of a modified Gaussian function (with similar form to the Ricker pulse,



Robinson and Treitel, 1980) greatly simplifies the calculations. The resulting solution is

then compared to the results of a DFEM analysis.

4.4.1 The Lamb solution

The normal surface displacement , u n, is given by Lamb (1904) as,

un(x,t) = xpc
,_2 2 ,_2‘1/2

3 - Ki)	 i(cot _ ic3x)

F (k3)
(i)

2iQ 2 1/2	
k21	 i(cot -k2x -7t/4)

)( 1	 ) 	
2

k2 	 (k2X)3"

(ii)	 ---(50)

	

k2i ,_2	 i(on - k i x -7,m)
2 ,1/2	 K2	 e

211. IL	 (k
2

2 — 2k 1
2

)
2
	 (kix)3/2

where Q is the line-source "magnitude".

F'(k) is the first derivative of the Rayleigh function, F(k), with respect to the generalised

wave-number, k, where,

	

F(k) = (2k2 - IC22)2 - 4k2(k2 - k2d 1/2(k2 - k2) 1/2	 ---(51)

The roots of the Rayleigh equation,

F(k) = 0	 ---(52)

are the Rayleigh wave-numbers, k3 . Equation (51) is most conveniently expressed as a

cubic in k2 giving both real and complex roots. For the case of a Poisson solid the roots

are real and k3 = kil0.9194.



Thus the solution consists of three terms, (i), the Rayleigh wave term, (ii) the shear

wave term and (iii), the longitudinal wave term. If the time dependence of (50) is ignored

the resulting expression can be regarded as the transfer function of the half-space relating

the surface normal displacement response to the line load. Denoting this transfer function

by U(co) it is then possible to calculate the half-space response to an arbitrary load-time

function, p(t), by the following Fourier convolution integral

un(x,t) =
1

U(o)fiTc P(co) . U( e i°xcico ---(53)

where P(co) is the Fourier transform of p(t). It should be noted that the three wave types

in (50) are travelling in the negative i-direction. The choice of the sign convention

shown in (53) results in waves travelling in the positive x-direction.

As shown in Siggins (1982) un(x,t) is given by

un(x,t) = I 1 + I2 + I3---(54)

provided P(co) is an odd function of (0, where,

00

I = -AS P(co).sin co(t + -c--.x ) do)

0
– the Rayleigh pulse

= B siLLq . sin w(t +d-E-
3/2	 3/2	

x	 +
s)
	 it/4 o)

x 0 co

- the shear pulse

C	 P(co)

•
sin[ co(t + —0 ) + n/41 du)

3/2 0)3/2x	 0 0)

- the compressional pulse

12

1.3 =

--(55)

and the co-independent constants, A, B and C are given by



2 	 2	 ,_2,1/2

A = (
2

)
1/2 K2k 1C3 - K1) 

7E 11F (lc)
2

4	 k,
B =	 ( 1 -	 )

k
2
2

1	 2k
2
k

2
1 

C =
(k2 	21(2)22 -	 1

Depending on the form chosen for p(t) (and consequently, P(a) )) it is relatively

straight forward to evaluate the integrals, 12 and 13 by numerical integration. The

singularity in co can be avoided by a suitable choice for 13(co); a suitable root of 1/x3a is

chosen to give real displacements for the shear and compressional waves. The upper limit

of integration can be estimated from the plot of P(co) versus co. Appendix 1 lists a

FORTRAN program, LLDISP, which calculates u n(x,t) by numerical integration for each

selected time step. The integration scheme is based on Patterson's rule (Patterson, 1967)

and is a NAGS (Oxford Univ., 1977) computer library routine, DO1ACF.

4.5 A DFEIVI model of the line-source/half space problem

A rectangular finite element mesh with dimensions of 20 m x 35m was constructed

from 4-node, constant strain, quadrilateral elements. A high degree of element refinement

was introduced near the central portion of the upper mesh boundary, i.e.,at the location

where the forcing pulse was to be applied. Material properties representative of

sedimentary rock were allocated to the elements. These properties were,

Lame's constants, X =	 = 8 x 109 Pa.,

Density, p	 2.5 x 105 kg/m3

(Poisson's ratio, v, = 0.25)

The phase velocities of compression, CD ,and shear waves, Cs, given by equations (2)



are respectively 3098 mis and 1789 m/s.

The average element size in the mesh was 2m. This implies that the spectral content

of the forcing pulse applied to the mesh should not contain significant amplitude at

frequencies in excess of 2000 radians/sec.

DFEM analyses were then carried out using the general purpose finite-element

program ADINA (Bathe, 1975). The consistent mass formulation was used since, in

general, higher accuracy can be achieved for wave propagation studies. Newmark's

method was used for time integration (Newmark, 1959). Prior to the line-source study

the response of the mesh, including viscous boundary damping applied to the lower mesh

boundary, was checked by driving the upper boundary with a uniform pressure pulse.

The pressure-pulse waveform applied was in the form of a derivative of a Gaussian ,

P(t) = -2b2 t e -132t2
	

---(56)

where b is a constant determining pulse band-width; t (time in seconds) can be replaced

by t - to, where to is an arbitrary time shift.

The displacement waveform of the resulting plane compressional wavefront can be

determined from basic geophysics as

1
u(t) = -	 f p(t) dt	 ---(57)

pCD

Application of (57) to (56) yields

y
u(t) =	

1	
e

_b

p CD
---(58)
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Figure 13(a) presents the displacement response of the upper mesh boundary, both

theoretical (according to equation (58)) and predicted by the DFEM model. In this case

there is no boundary damping present and an in-phase reflected pulse returning from the

bottom boundary of twice the incident amplitude should be present as is indeed the case.

Figure 13(b) presents the response of the mesh with boundary damping present with

dashpot constants of various values including those calculated from the equations of

White et al. (1977). Thus the DFEM model, with appropriate boundary conditions,

provides an accurate representation of a semi-infinite medium.

4.5.1 The choice of driving pulse for the line-source

Since, as discussed earlier, DFEM models will behave dynamically as low-pass filters,

any applied forcing pulse has to be band-limited in accordance with those frequency

constraints. A convenient forcing pulse for the line-source is a modified Gaussian,

P(co)	 0)3 e -B(02	
---(59)

where B is a constant determining band-width. The time-domain form of (59) is of the

form,

p(t) = t	
-

- ct2) 
e Dt2

---(60)

where, as with the previous pulse, t can be replaced with t - to . Figure 14 presents this

pulse and its Fourier transform. The above pulse has disadvantages from filter theory

considerations in that it is not strictly causal ; e., it is not physically realisable as a time

waveform since a time-shifted form of (60) will have non-zero amplitude at times less

than zero due to the asymptotic manner of the approach of the tails of the pulse to zero.

This disadvantage can be overcome by forcing (60) to zero at times 5 0. This produces a

small departure in the phase spectrum from linear phase. Theoretical waveforms arising

from this pulse were generated using LLDISP to evaluate equations (55). Comparisons

between theory and DFEM results will be presented in Chapter 5.
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4.6 A DFEM model of a line-source on the wall of a cavity in an

infinite medium

The geometry (refer to Figure 4) in the line-source/cavity interaction is symmetric about a

plane bisecting the cavity and co-incident with the source, so it is only necessary to

consider a semi-circular mesh. In the near-field displacement gradients are high, so a

high level of spatial discretisation is required near the source in contrast to the outer

regions of the mesh. To avoid aspect ratio contrasts, the aspect ratio for all elements was

fixed at 1.5:1. This results in the following equation describing nodal point locations

along a radius at 0 = 0:

r. = a( 1 + 1.5E/a)i-1
	

---(61)

where,

i = 1, 2, 3,..., j

j is the number of rings of elements required,

a is cavity radius,

E is the element size.

For example, if 48 elements are required around the semicircle,

E = ita/48

Selecting j = 26 and rotating the nodal intercepts through it radians in increments of it/48

gives a semicircular mesh with 1274 nodes and 1200, 4-node elements. Elements

increase in size geometrically according to equation (61) as the outer boundary is

approached. The outer boundary is at approximately 10.4 a. Figure 15 presents a portion

of the resulting mesh.



Figure 1 Semi-circular DFEM model representing a cylindrical cavity in an infinite

elastic medium.



4.6.1 Boundary conditions.

Viscous dampers, acting both radially and tangentially, were used on the outer mesh

nodes with dashpot constants calculated from the equations of White et al. (1977),

equations (48). No nodal points were fixed; however, nodes lying on the axis of

symmetry were constrained to displace in the r-direction only. The mesh is thus

unconstrained in the r-direction which imposes restrictions on the types of driving pulse

allowed. In particular, any d.c. component (0 Hz) will result in acceleration of the mesh

as a whole. The pulse described in (60) satisfies the requirement of zero d.c component

and was used to drive the cavity wall. Figure 16(a) illustrates the pulse waveform plotted

against dimensionless time ; in 16(b) the force pulse spectrum is superimposed on the

DFEM cavity-model filter characteristics.

As in the previous case DFEM solutions were performed using the general purpose

finite element program, ADINA (Bathe, 1975). A variety of meshes with differing

numbers of elements (ranging from 24 to 48) around the semi-circle were used. All

analyses were run on a Cyber 76 computer with solution times ( cpu times) of the order of

100 seconds. However, the analysis described here was carried out with 48 elements

around the semi-circle, i.e., a total of 1200, 4-node, constant strain, elements for the

mesh as a whole. Material properties assigned to the elements were representative of rock

encountered at an experimental site (the Broken Hill site, described more fully in chapter

8). Laboratory tests on rock cores taken from this site were used to establish the elastic

constants. Since there was some discrepancy between static and dynamic Poisson's ratio,

v was taken to be 0.1. These elastic constants result in CD and Cs equal to 4730 m/s and

3154 mis respectively. The consistent mass formulation was used and Newmark's

method was used for the time integration (Newmark, 1959). Comparisons between

analytical and DEEM predictions are presented in the following chapter.
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Figure 16 (b) Source pulse spectrum superimposed on DFEM mesh filter characteristics.
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5. Comparisons between theory and DFEM solutions

5.1 Line source on a semi-infinite medium

When the analytical solution for the line-source on a semi-infinite medium

(equations 54 and 55) is examined it can be seen that as x approaches zero the shear and

compressional displacements approach infinity. This is in agreement with the static case

for a line-load on the surface of a half-space with x approaching zero where,

un a log(x)

(Timoshenko and Goodier, 1970). Displacements also approach infinity for all values of

x as co approaches zero. However, this singularity can be avoided by restricting the

driving pulse to odd functions of co . This is the basis of the derivation presented in

Siggins (1982).

With the finite element model singularities will be avoided because of limitations

associated with finite-element size. In particular, with the constant strain elements used,

displacement variation within the elements will be linear and thus the solution accuracy

will decrease markedly near the source. Figure 17 presents a plot of theoretical peak

surface displacements (calculated with LLDISP) and the corresponding DFEM results

versus distance from the source. Two pulse bandwidths, B1 and B2, were investigated.

It is clear that the DFEM solution approaches the Rayleigh asymptote rapidly, i.e., at

much smaller values of x than the theoretical predictions. This is undoubtably due to the

smoothing effects of the small elements near the source which remove the singularity by

effectively increasing the loaded area. This reduces the stresses and consequently the

displacements to finite values at the source. Nevertheless, the far-field solution (the

Rayleigh component which is not attenuated with distance from the source in the two-

dimensional case) is accurately predicted for both pulse band-widths.
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Figure 20. DFEM model of propagation of a cylindrical wavefront into an elastic half-

space with a rectangular cut-out. Contours of equal displacement are shown at various

solution times.
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Better agreement between theory and DFEM predictions in the near-field can be

obtained by reducing the theoretical compressional and shear wave amplitudes using

empirical scaling constants as is also indicated in Figure 17. (This approach is put on a

more rigorous basis in the discussion of the near-field behaviour of the line-source on the

cavity wall.)

Figure 18 present displacement waveforms, both theoretical (with scaled P and S

components) and DFEM. The propagation of the disturbance into medium, as predicted

by the DFEM models, is presented in Figure 19.

A major strength of DFEM is the ability to model complicated geometries with

relative ease. Figure 20 presents the propagation of a disturbance into an infinite elastic'

medium with a rectangular cut-out. This model can also represent the excitation of an

opening in an elastic medium, such as a mine-tunnel of rectangular cross section, by a

pulse applied to the floor or roof. The presence of standing waves on the opening is

clearly indicated on the displacement contour plots at long solution times.

Thus the DFEM model of the line-source/half-space problem, whilst not performing

accurately near the source, produced accurate far-field solutions and served to point out

restrictions of the method when attempting to model problems which have singular

behaviour. The analysis was valuable in that it suggested methods of dealing with the

near-field behaviour which would be of use in the DI-EN! analysis of the line-source/

cavity interaction



5.2 Line source on cavity wall

5.2.1 A comparison of the DFEM results with a theoretical solution

for the far-field

A seismic reciprocity approach, similar to that described by White (1960) and

Greenfield (1978), can be invoked to describe the far-field plane wave arising from a line-

source acting on the cavity wall. Figure 21 illustrates the seismic reciprocity between

stress and displacement at two points in an elastic medium containing a cavity.

A Fourier-Bessel series solution for the interaction of plane compressional wave

with a cylindrical cavity has been described by Pao and Mow (1973). This series solution

was evaluated numerically by Blair (1984) for large wavenumbers. It can be regarded as a

transfer function relating displacement of the cavity wall to the incoming compressional

wave displacement. This solution, in the form of a computer program, was kindly made

available to the author. The computer code was adapted to run on a Hewlett-Packard

1000 F-series processor. The displacement-ratio transfer-function for the wave-incident

side of the cavity is presented in Figure 22 for a cavity in an elastic medium with

Poisson's ratio equal to 0.1. The transfer-function was then evaluated as a "compliance"

transfer-function relating output displacement to input stress for the wave-incident side of

the cavity.

With the use of the transfer-function in this form it is now possible to calculate the

far-field displacement waveform travelling away from the cavity arising from the

application of a line-pressure pulse to the cavity wall. As can be seen from Figure 21 this

is achieved by a Fourier convolution of the driving pulse (Figure 16 ; equation 60) with

the impulse response of the compliance transfer-function. The result of this convolution,



Pi, U1
4
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Figure 21. Seismic reciprocity between stress and displacement at two points (A and B)

in an elastic medium can be used to obtain the far-field displacement waveform at B due to

a source at A if the transfer function T is known.
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carried out with the use of the Fast Fourier transforms described by Singleton (1967), is

presented in Figure 23(a) and (b).

Figure 23(c) presents the theoretical waveform obtained in this manner together

with the normalised DFEM predicted waveform near the mesh outer boundary (r = 9.8a).

Agreement is acceptable with discrepancies most probably due to the fact that r = 9.8a is

not sufficiently far from the cavity to be "far-field".
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Figure 23 (a). The far -field displacement waveform obtained using seismic reciprocity .
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Figure 23 (c). DFEM predicted waveform at r = 9.8a and the analytical waveform.
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5.2.2 Near-field (r = a) analytical and DFEM predictions

Normalised radial displacement waveforms at 0 values of 7r/4, 7r/2, 37t/4 and 7r,

both analytical and predicted by DEEM, are presented in Figures 24(a) to 24(d). The

analytical waveforms were calculated by Fourier convolutions of the driving pulse

(equation 60) with the impulse response of the respective complex compliance transfer

functions (presented in Figures 7 (a) to 7(d)).

In the analytical case as 0 approaches zero, u r will tend to infinity. This is

manifested in the failure of the . series solution (32) to converge as 0 nears zero. As

discussed in the case of the DFEM model of the line-source/half space interaction, this

singularity is smoothed in the DFEM analysis due to finite element limitations. The

analytical solution for the line-source cavity interaction can be adapted to describe the

compliance at 0 = 0 in manner that allows comparisons with the DFEM results at 0 = 0.

Consider a load distribution, A(u),0), concentrated about 0 = 0. Let the transfer

function for u given by the series (32) be represented by T(a),0). Then the amplitude

response at 0 is given by

ur(c.0,0) = (A*T)	 ---(62)

where the asterix denotes convolution. If T is represented by a smoothly varying

component, T 1 and a singular component, T2 and if A(co,0) can be separated as

A1(cu) A2(0), it is possible to show for 0 = 0,

ur(co,0) = [T i (o),O)A (w) + KA(o.))] e i"	 ---(63)

where A(6)) represents total load and K is a constant independent of co . This is the
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justification for deriving a convergent series at 0 = 0 from (32) by subtracting the co -

independent expression described in Chapter 3.3.

In general, however, equation (32) will be multiplied by a complex constant so that

phase can be incorporated. Thus, both amplitude and phase components of K are

required for comparison with the DFEM results at 0 = 0. A convenient method of

evaluating K is to convolve the impulse response of the convergent series for T at 8 = 0

with a pulse possessing a well-defined onset such as the impulse response of a

Butterworth filter s , B(f), defined by,

IB(co)1
2 = 111 + (cokoc)2n1
	

---(64)

where n is the order of the filter and coe is the selected cutoff (-3db) point of the filter.

A poor guess for the amplitude of K will appear after convolution as a superposition of an

additional pulse, thereby distorting the onset of the displacement pulse. The amplitude of

K can therefore be adjusted until a displacement waveform with a similar well defined

onset results from subsequent convolutions. The phase component of K can be

determined from the phase lag between the input pulse and the DFEM results.

This process was followed and yielded the compliance transfer function for 0 = 0

presented in Figure 25. This dynamic compliance is then applicable to a cavity excited at

the origin by a source distributed over a small extent in 0 sufficient only to remove the

singularity in the stresses and displacements. (Smoothing of singularites will also occur

experimentally due to the finite width of any loading device). Consequently, direct

comparisons can be made with this transfer function and the DFEM model.

Theoretical displacement waveforms, obtained by convolving two load pulses in

turn with the impulse response of the above transfer function, together with the

corresponding finite element waveforms at 0 = 0 are presented in Figure 26. The two



source pulses were, (a) the modified Gaussian and (b) the impulse response of a fourth

order (n = 4) Butterworth filter with the cut-off frequency selected at k ia = 1.33.

1
The impulse response of the Butterworth filter described above, although a causal

pulse, is not suitable as a driving pulse for the DFEM model for solution times exceeding
10.4a/CD since the pulse has significant energy at 0 Hz which will eventually produce
acceleration of the mesh as a whole.
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5.2.3 Cavity compliances from the DFEM model

As can be seen from the theoretical waveforms for the near field (r = a) and the

waveforms for the far-field (r >> a), the waveforms are characterised by a well defined

signature (Figures 23 and 26). This signature can be described as consisting of a primary

displacement pulse, similar in shape to the source waveform, followed by a train of

secondary pulses with amplitude decreasing logarithmically. They are separated by a

"dead-band" arising from the approximate time taken for a Rayleigh wave to circuit the

cavity. Thus, following transient excitation, the cavity continues to pulse into the

surrounding medium as trapped energy circulates around the cavity walls. The energy,

retained on the cavity walls as predominantly Rayleigh type modes, is rapidly diminished

by radiation damping. Similar conclusions concerning circulating Rayleigh waves have

been drawn by Miklowitz (1980)

In the dynamic finite element waveforms, at least the first secondary pulse can be

distinguished, although for solution times longer than 200 time-steps, spurious

oscillations occur in the solution presumably due to inter-element reflections. Due to its

relatively high amplitude, the first secondary pulse is mainly responsible for the mild

oscillations in the compliance transfer functions.

As 8 increases, the primary pulse decreases in amplitude with respect to the

secondary pulse and the pulses tend to merge_ However, the total length (in time ) of the

waveform packet remains approximately constant. This facilitates calculations of

compliance transfer functions from the DFEM waveforms using spectral ratio techniques

(again using the Fast Fourier transforms of Singleton, 1967). An example of compliance

predicted by the DFEM together with the analytical predictions (at 0 = 0) is presented in

Figure 27.
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6. Steady-state and resonance behaviour of cylindrical cavities

in elastic media

The resonance behaviour of cavities in elastic media has been discussed by many

authors, particularly by Pao and Mow (1973). However, attention has been largely

focused on resonances of fluid-filled cavities with little discussion of resonances in the

empty cavity case. For example, Uberall (1977), in his review of resonance scattering,

discusses the case of a water filled cavity where as he states "the relatively strong

resonances of the water inclusion are superimposed on a soft background of cavity wall

resonances". (My italics).

The resonances of the empty cavity are governed by the poles of the cavity

compliance transfer function as presented in Figure 5 . As shown earlier in this thesis and

in Stokes and Siggins (1987), these poles are common to many transfer functions. For

each integer value, n, on a particular pole trajectory, the corresponding complex wave-

number, x, is the eigenfrequency of the cavity. Eigenfrequencies correspond to natural

resonances (normal - modes) and in this case the imaginery component is associated with

the radiation damping of that mode, i.e., the damping coefficient for a particular mode is

given by the imaginary component of the eigenfrequency.

It can be seen from Figure 5 that eigenfrequencies associated with dominant modes,

i.e., those eigenfrequencies with least damping, lie on the Rayleigh branch of the pole

trajectories and are followed in importance by contributions from a compressional branch

(P1). Table 3 presents some eigenfrequencies from the Rayleigh branch for a cylindrical

cavity in an elastic medium with Poisson's ratio equal to 0.1.

Glass (1974) attempted a dynamic finite element solution for low frequencies with

rectangular cavities and concluded that his results showed no evidence of cavity

resonance. However, the analytical compliance transfer functions presented in Figures 7,

together with the corresponding DfiEM results, all show evidence of lossy resonance



behaviour with Poisson's ratios equal to 0.1 and 0.25. These effects appear to diminish

with increasing Poisson's ratio. The wavenumbers at which these resonant amplifications

occur can be conveniently obtained from the positions of maxima in the derivative of

compliance phase with respect to wavenumber. Wavenumbers computed in this way, for

both analytical and DFEM compliances at 0 = 0, are shown in Table 4.

As can be seen from a comparison of Tables 3 and 4, there is an approximate

correspondence between the real components of the eigenfrequencies and the frequencies

at which resonant amplifications occur in the transfer functions. This demonstrates that

the resonances arise from predominantly Rayleigh contributions. The unequal separation

between resonances is a result of the dispersive behaviour of Rayleigh waves on curved

surfaces such as cavity walls where the wavelengths are. of the order of the cavity radius.

This was originally predicted by Viktorov, 1958.

The steady -state displacement amplitudes of the cavity walls, as a function of 6, at

the above wavenumbers can be considered as the mode-shapes of the cavity. These can

be readily obtained from equation (32). Radial mode-shapes (amplitudes) up to n = 6 are

presented in Figures 28(a) to 28(e) together with the corresponding DFEM results. The

DI-EM mode shape data were obtained from transfer functions computed using spectral

ratio techniques for increments of it/48 in 0 for 0<0<n.

Table 3. Eigenfrequencies from the Rayleigh branch for Poisson's ratio equal to 0.1

Mode number
	

Eigenfrequencies
(n)	 (x)

2	 0.3073 - 0.2737i
3	 0.8681 - 0.3147i
4	 1.4303 - 0.3286i
5	 1.9965 - 0.3328i
6	 2.5662 - 0.3321i
7	 3.1930 - 0.3283i
8	 3.7144 - 0.3158i



Table 4. Wavenumbers at which resonant amplifications occur in both analytical and

DFEM predicted compliance transfer functions at 0 = 0, Poisson's ratio = 0.1.

Wavenumber (kia)

Maximum (no.) Analytical

2 0.288
3 0.836
4 1.403
5 1.970
6 2.542
7 3.117
8 3.694

Percent error of
DFEM results.

DFEM

	

-	 -

	

0.800	 -4.3
	1.364	 -2.8

	

1.940	 -1.5

	

2.513	 -1.1

	

3.083	 -1.1

	

3.642	 -1.4
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Figure 28. Radial mode shapes (amplitude) of the cavity wall at "resonance"
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(c)

(d)

Figure 28 (continued). Radial mode shapes of the cavity wall at "resonance ".
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(e)

Figure 28 (continued). Radial mode shapes of the cavity wall at "resonance ".
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