THE EFFECTS OF THE VENOM OF
AIPYSURUS LAEVIS ON ITS PREY SPECIES

By
Kenneth D. Zimmerman

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY
OF THE UNIVERSITY OF NEW ENGLAND
June 1989
DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree.

I certify that to the best of my knowledge any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.
Acknowledgements

I would like to sincerely thank my supervisor, Associate Professor Harold Heatwole, for his expert help and guidance especially during the writing stages of this thesis.

I would also like to gratefully thank Dr. Ian Davies for his help with the statistical portions of the thesis, Dr. Richard Gates for his help with the behavioural portions and Professor Clifford Hawkins and Dr Diane Watters of the University of Queensland for their assistance and the use of their lab facilities during the venom fractionation.

Special thanks and appreciation is also given to the following for their help.

For the following people who graciously offered their help and/or suggestions along the way: Dr. D. Adams, Dr. D. Davey, Mr. J. deBavay, Professor W. Danthanarayana, Mr. E. Hannah, Dr. A. Menez, Dr. J. Miller, A/Professor K. Rohde, Dr. P. Vickery, Dr. D. Watson, Ms. S. Zimmerman.

The technical staff of the zoology department, both past and present, for their help in countless different ways. The zoology secretaries, Mrs. V. Watt and Mrs. S. Higgins, for their help and patience in many matters. Mr. Peter Garlick of the Electron Microscopy Unit for his help over the years, especially during the venom fraction study, and Mrs B. Ward for the earlier micrograph development. The staff of the computer science centre, especially Ms. Lorraine Roberts for her expert help in many computer matters. The staff of the Media Resources Unit for their help with all of the photographs and photographic plates in this thesis. The staff and my research assistants at the Heron Island Research Station for countless hours of help during the field research.

Ms. Debbie Shohet for typing parts of this thesis and for her patience and support, especially during the last month before completion.

I would also like to thank my family for their support during my many years of schooling and Mr. and Mrs. R. C. Stone Jr. for their support and concern during the years of this study.

This thesis is dedicated to Mr. Rick Stone III (1947 – 1988), a man who touched deeply all those that knew him. He will certainly be missed and remembered by all.
Contents

Acknowledgements iii

Abstract xvii

1 Introduction 1
 1.1 Snake Venom ... 1
 1.1.1 General Information 1
 1.1.2 Hydrophiid venom 6
 1.1.3 Neurotoxic components 6
 1.1.4 Myotoxic components 8
 1.2 Skeletal Muscle .. 12
 1.2.1 General information 12
 1.2.2 Muscle organization 13
 1.2.3 Muscle ultrastructure 14
 1.2.4 Muscle contraction 15
 1.3 Fish Ventilation Mechanism 16

2 General Materials and Methods 20
 2.1 Venom Collecting and Processing 20
 2.2 Venom Injection Procedures 21
 2.3 Prey Species and Collecting Procedures 21
 2.4 Stock Tank Holding Facilities 23
 2.5 Experimental Tank Holding Facilities 23
 2.6 Whitespot Prevention .. 24
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Probability values (venom fractions)</td>
<td>206</td>
</tr>
<tr>
<td>J</td>
<td>Profiles of probability (venom fractions)</td>
<td>211</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Venom dosages and injection volumes for *Aipysurus laevis* venom... 30
2.2 Information on marine prey species used during the study. ... 34

4.1 Probit analysis results ... 55
4.2 Probit line comparisons ... 57
4.3 LD50 values .. 58
4.4 Mean time to death with different venom doses 59

5.1 Means and standard deviations for total number of fish, ventilation data. 74
5.2 Means, standard deviations and n values for total number of living fish, ventilation data. .. 78
5.3 Probability comparisons from LSD computations 80

6.1 Ethogram of behavioural changes resulting form envenomation 97
6.2 Mean values, standard deviations and n values for analysis of time to each stage. .. 101
6.3 Means, standard deviations and n values for analysis of time in each stage. .. 102

8.1 Dose levels for venom fractions 140
8.2 Means and standard deviations for the venom fraction study. 142
8.3 Probability comparisons from LSD computations for the venom fraction study. .. 143
8.4 Behavioural signs for the venom fraction study. 144
List of Figures

1.1 Schematic representation of normal vertebrate skeletal muscle 19
2.1 Map of collecting and experimental sites 27
2.2 *Aipysurus laevis* ... 28
2.3 Collecting *Aipysurus laevis* 28
2.4 The fang of *Aipysurus laevis* 29
2.5 Milking *Aipysurus laevis* .. 29
2.6 *Chromis nitida* .. 31
2.7 *Chromis atripectoralis* ... 31
2.8 *Dascyllus aruanus* .. 32
2.9 *Istiblennius meleagris* ... 32
2.10 *Istiblennius edentulus* .. 33
2.11 Intramuscular injection site 33
2.12 Stock holding tanks ... 35
2.13 Experimental holding tanks 35
2.14 Head region of *Dascyllus aruanus* 36
3.1 *Carassius auratus* ventilation rates. 44
3.2 Goldfish *Carassius auratus* control micrograph. 45
3.3 Goldfish *Carassius auratus* saline-injected micrograph. 45
3.4 Goldfish *Carassius auratus* envenomated micrograph. 45
4.1 All species’ probit curve .. 53
4.2 Fiducial limits .. 54
4.3 Comparisons of mean time to death with different venom doses . . 56
5.1 *Chromis nitida* mean ventilation, 2800 minutes, n = total fish number 71
5.2 *Chromis nitida* mean ventilation, 400 minutes, n = total fish number 71
5.3 *Dascyllus aruanus* mean ventilation, 2880 minutes, n = total fish number 72
5.4 *Dascyllus aruanus* mean ventilation, 450 minutes, n = total fish number 72
5.5 *Istiblennius meleagris* mean ventilation, 2880 minutes, n = total fish number 73
5.6 *Istiblennius meleagris* mean ventilation, 450 minutes, n = total fish number 73
5.7 *Chromis nitida* mean ventilation, 2880 minutes, n = total number of living fish 75
5.8 *Chromis nitida* mean ventilation, 400 minutes, n = total number of living fish 75
5.9 *Dascyllus aruanus* mean ventilation, 2880 minutes, n = total number of living fish 76
5.10 *Dascyllus aruanus* mean ventilation, 450 minutes, n = total number of living fish 76
5.11 *Istiblennius meleagris* mean ventilation, 2880 minutes, n = total number of living fish 77
5.12 *Istiblennius meleagris* mean ventilation, 450 minutes, n = total number of living fish 77
5.13 Ventilation divisions 79

6.1 Behavioural profiles of *Chromis nitida* for 3 venom doses . 98
6.2 Behavioural profiles of *Dascyllus aruanus* for 3 venom doses . 98
6.3 Behavioural profiles of *Istiblennius meleagris* for 3 venom doses . 98
6.4 Percent of behavioural stage entry for *Chromis nitida* . 99
6.5 Percent of behavioural stage entry for *Dascyllus aruanus* . 99
6.6 Percent of behavioural stage entry for *Istiblennius meleagris* . 99
6.7 Behavioural line profiles through to stage two . 100
6.8 Behavioural line profiles through to stage three . 100
6.9 Behavioural line profiles through to stage six . 100
6.10 Ventilation rate and behavioural profile comparison for *Dascyllus aruanus* low dose envenomation. ... 103

6.11 Ventilation rate and behavioural profile comparison for *Dascyllus aruanus* medium dose envenomation. ... 103

6.12 Ventilation rate and behavioural profile comparison for *Dascyllus aruanus* high dose envenomation. ... 103

7.1 Osmolarity study with 32 parts / thousand sea water buffer. 112

7.2 Osmolarity study with 24 parts / thousand sea water buffer. 112

7.3 Osmolarity study with 10 parts / thousand sea water buffer. 112

7.4 Electron micrograph of control sternohyoideus muscle (low mag.). 113

7.5 Electron micrograph of control sternohyoideus muscle (high mag.). 113

7.6 Electron micrograph of saline-injected control sternohyoideus muscle (low mag.). ... 113

7.7 Electron micrograph of saline-injected control sternohyoideus muscle (high mag.). ... 113

7.8 Electron micrograph of envenomated sternohyoideus muscle (low mag.). 113

7.9 Electron micrograph of envenomated sternohyoideus muscle (high mag.). 113

7.10 Electron micrograph of envenomated sternohyoideus muscle, 72 hour sample (low mag.). .. 114

7.11 Electron micrograph of envenomated sternohyoideus muscle, 72 hour sample (high mag.). .. 114

7.12 Electron micrograph of envenomated sternohyoideus muscle, 96 hour sample (low mag.). .. 114

7.13 Electron micrograph of envenomated sternohyoideus muscle, 96 hour sample (high mag.). .. 114

7.14 Electron micrograph of envenomated sternohyoideus muscle, 120 hour sample (low mag.). .. 114

7.15 Electron micrograph of envenomated sternohyoideus muscle, 120 hour sample (high mag.). .. 114
7.16 Electron micrograph of envenomated sternohyoideus muscle showing vacuolation and degeneration of muscle.

7.17 Electron micrograph of envenomated sternohyoideus muscle showing interfibrillar space increase.

7.18 Electron micrograph of envenomated sternohyoideus muscle showing affected mitochondria.

7.19 Electron micrograph of envenomated sternohyoideus muscle showing Z line streaming.

7.20 Electron micrograph of control sternohyoideus muscle, transverse section, showing normal muscle morphology.

7.21 Electron micrograph of envenomated sternohyoideus muscle, transverse section, showing swelling of the sarcoplasmic reticulum and mitochondria.

7.22 Image enhanced electron micrograph of control sternohyoideus muscle showing normal muscle morphology, used for image analysis (transverse section).

7.23 Binary image from image enhanced electron micrograph of control sternohyoideus muscle used for image analysis (transverse section).

7.24 Image enhanced electron micrograph of envenomated sternohyoideus muscle showing sarcoplasmic reticulum swelling, used for image analysis (transverse section).

7.25 Binary image from image enhanced electron micrograph of envenomated sternohyoideus muscle used for image analysis (transverse section).

8.1 Chromatograph for seven venom fractions of *Aipysurus laevis* venom.

8.2 Mean ventilation rates for venom fractions, recombination of fractions and control groups (2880 minutes).

8.3 Mean ventilation rates for venom fractions, recombinations of fractions and control groups (150 minutes).

8.4 Venom fraction 1 electron micrograph showing a low magnification of muscle.
8.5 Venom fraction 1 electron micrograph showing a medium magnification of muscle. 145
8.6 Venom fraction 1 electron micrograph showing a high magnification of muscle. 145
8.7 Venom fraction 1 electron micrograph showing a low magnification of muscle nucleus. 145
8.8 Venom fraction 1 electron micrograph showing a high magnification of muscle nucleus. 145
8.9 Venom fraction 1 electron micrograph showing muscle mitochondria. .. 145
8.10 Venom fraction 2 electron micrograph showing a low magnification of muscle. 146
8.11 Venom fraction 2 electron micrograph showing a medium magnification of muscle. 146
8.12 Venom fraction 2 electron micrograph showing a high magnification of muscle. 146
8.13 Venom fraction 2 electron micrograph showing a low magnification of muscle nucleus. 146
8.14 Venom fraction 2 electron micrograph showing a high magnification of muscle nucleus. 146
8.15 Venom fraction 2 electron micrograph showing muscle mitochondria. .. 146
8.16 Venom fraction 3 electron micrograph showing a low magnification of muscle. 147
8.17 Venom fraction 3 electron micrograph showing a medium magnification of muscle. 147
8.18 Venom fraction 3 electron micrograph showing a high magnification of muscle 147
8.19 Venom fraction 3 electron micrograph showing a low magnification of muscle nucleus. 147
8.20 Venom fraction 3 electron micrograph showing a high magnification of muscle nucleus. 147
8.21 Venom fraction 3 electron micrograph showing muscle mitochondria. .. 147

xiv
8.22 Venom fraction 4 electron micrograph showing a low magnification of muscle. .. 148
8.23 Venom fraction 4 electron micrograph showing a medium magnification of muscle. .. 148
8.24 Venom fraction 4 electron micrograph showing a high magnification of muscle. .. 148
8.25 Venom fraction 4 electron micrograph showing a low magnification of muscle nucleus. .. 148
8.26 Venom fraction 4 electron micrograph showing a high magnification of muscle nucleus. .. 148
8.27 Venom fraction 4 electron micrograph showing muscle mitochondria. .. 148
8.28 Venom fraction 5 electron micrograph showing a low magnification of muscle. .. 149
8.29 Venom fraction 5 electron micrograph showing a medium magnification of muscle. .. 149
8.30 Venom fraction 5 electron micrograph showing a high magnification of muscle. .. 149
8.31 Venom fraction 5 electron micrograph showing a low magnification of muscle nucleus. .. 149
8.32 Venom fraction 5 electron micrograph showing a high magnification of muscle nucleus. .. 149
8.33 Venom fraction 5 electron micrograph showing muscle mitochondria. .. 149
8.34 Venom fraction 6 electron micrograph showing a low magnification of muscle. .. 150
8.35 Venom fraction 6 electron micrograph showing a medium magnification of muscle. .. 150
8.36 Venom fraction 6 electron micrograph showing a high magnification of muscle. .. 150
8.37 Venom fraction 6 electron micrograph showing a low magnification of muscle nucleus. .. 150
8.38 Venom fraction 6 electron micrograph showing a high magnification of muscle nucleus. 150
8.39 Venom fraction 6 electron micrograph showing muscle mitochondria. 150
8.40 Venom fraction 7 electron micrograph showing a low magnification of muscle. 151
8.41 Venom fraction 7 electron micrograph showing a medium magnification of muscle. 151
8.42 Venom fraction 7 electron micrograph showing a high magnification of muscle. 151
8.43 Venom fraction 7 electron micrograph showing a low magnification of muscle nucleus. 151
8.44 Venom fraction 7 electron micrograph showing a high magnification of muscle nucleus. 151
8.45 Venom fraction 7 electron micrograph showing muscle mitochondria. 151
Abstract

The aim of this investigation was to examine the effects of *Aipysurus laevis* venom on its prey species. This was accomplished through LD50 studies with whole venom, and ventilation, behavioural and ultrastructural studies with both whole venom and venom fractions.

LD50 studies demonstrated differences in resistance to *A. laevis* venom among the species *Chromis nitida*, *Chromis atripectoralis*, *Dascyllus aruanus*, *Istiblennius meleagris* and *Istiblennius edentulus*.

Further investigations with whole venom showed *A. laevis* venom to significantly affect the ventilatory process, with ventilation and other behavioural signs proving to be similar in all fish tested (*C. nitida*, *D. aruanus* and *I. meleagris*). An ethogram showing the hierarchy of behavioural changes, as the result of envenomation, was constructed.

Ultrastructural examinations using muscle from *D. aruanus* revealed the occurrence of muscle necrosis resulting from envenomation. This suggests the presence of myotoxic components that affect the muscle of lower vertebrates, i.e. marine fish.

Venom fractions had different effects from whole venom. These differences are thought to be due to (1) the overshadowing of some components by more potent toxins, (2) cumulative effects producing stronger responses and (3) inhibition of the effects of some components by other constituents of the whole venom.

Ultrastructural examinations showed evidence of muscle necrosis caused by many of the fractions, but fraction 4 proved to possess the most potent myotoxic component(s). Fraction 6 had the greatest effect on ventilation and appeared to be the most potent neurotoxic fraction.