ASPECTS OF THE DYNAMICS OF RAINFORESTS IN NORTH-EAST AUSTRALIA

by

Geoffrey C. Stocker M.Sc., B.Sc.For., Dip.For.

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

July 1983

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged.

Preface

The studies described in this thesis were carried out while I was employed by the CSIRO Division of Forest Research and I gratefully acknowledge the encouragement and support provided by the immediate past Chief of the Division, Dr M.F. Day, and the present Chief, Dr J.J. Landsberg. The forests in which the studies were carried out, were nearly all controlled by the Queensland Forestry Department and I thank members of that Department for valuable advice and conscientiously protecting my experimental sites.

I extend my gratitude to many members of the Division for their tolerance and help. Special thanks go to Anthony Irvine for assistance with the sorting and identification of diaspores during the study of dispersal of rainforest plants by Cassowaries; Don Fitzsimons, Tom Risley, Keith Sanderson and Greg Unwin for help with the establishment and maintenance the study plots; Don Fitzsimons and Ron Knowlton for of assistance in the glasshouse and laboratory; Keith Sanderson for preparing most of the line drawings; Bernard Hyland for checking many of the botanical collections and identifying unfamiliar species and Ludeck Wolf for writing the computer programs providing the initial analysis of the plot data. Greg Unwin and Dr Philip West deserve particular mention for their contributions to the analysis of the permanent plot data. Greg Unwin also provided many helpful comments on the final draft. Drs Margaret Anderson and Wesley Taylor are to be thanked for their advice on aspects of the quantification of the light environment in forests.

Headquarters based library staff, especially Heather Howard and Murial Hord, helped locate many obscure references. Roslyn Solly ably undertook the typing of the first draft, while Les Gampe reduced my administrative load to a minimum enabling me to spend more time on my studies. Finally 1 thank my supervisor, Dr R.B.D. Whalley for his enthusiasm, support and assistance and my wife, Jacquie and daughters, Lucia and Elise, for their help and tolerant understanding during periods when I was away from home either undertaking field studies or using library or laboratory facilities in Armidale and Canberra.

Summary

The aims of this study were to show that the structural and floristic features of some tropical rainforests in north-east Australia appear to be largely the result of characteristics of the individual plant species available at each site and the history and nature of disturbance at that site.

Features of the present environment of the region are the marked winter/spring dry season, the periodic occurrence of tropical cyclones and the absence of shifting cultivation by the indigenous inhabitants. Studies of the vegetational history suggested that the floristics of many sites could be a reflection of differences in dispersal efficiency for, during the Quaternary, the rainfall seems to have fluctuated greatly and rainforests may have been confined to small refuge areas during dry periods. Lower sea levels during the ice ages would have often linked Australia and New Guinea. Given a favourable regional climate this corridor could have permitted the ready migration of rainforest plants in both directions. It was observed that many rainforest patches had recently expanded. Most of this expansion was attributed to a change in the fire regime of adjacent open forests following European settlement.

A series of 19 plots, each of 0.5 ha, was established in unlogged rainforests to provide data on their structural and floristic features. These plots also yielded information on regeneration, growth rates and mortality. Α species relationship was found between plot basal area and elevation. This was tentatively explained by the growth and mortality species occurring characteristics of the in the more frequently disturbed, lowland rainforests. Stand diversity to be greatly influenced by any not seem measured did environmental parameter. The regeneration of some canopy tree species appeared to be continuous while that of others was intermittent.

Field observations indicated that gaps created by the death of a canopy level or larger tree were important in rainforest regenerative processes. The role of gaps was more closely examined using a theoretical model and field and glasshouse experiments. The model predicted the temporal and spatial distribution of sunlight on the floors of gaps of various different latitudes. It showed that there were sizes at important differences in the light environments on floors of gaps in temperate and tropical environments. An hypothesis that these differences could help to account for observed latitudinal trends in diversity, was formulated. A simple integrating solarimeter was developed to quantify the light environments of artificial gaps in which seeds of selected rainforest species had been sown. "Small gap" species (shade tolerants) survived in gaps of all sizes and grew taller in gaps than under an intact forest canopy. Although "large gap" species (shade intolerants) only survived in the large gaps, they grew much more rapidly than the "small gap" species. A glasshouse shading trial supported these trends and indicated that "large gap" species tended to use more of their dry matter production to increase their height than did "small Arboretum records and observations of gap" species. the regeneration on an area which had been felled and burnt, yielded additional information on the relative height growth of a large number of rainforest species. The felling and burning experiment also indicated that vegetative modes should not be overlooked in studies of rainforest regeneration.

Seed was usually produced by rainforest tree species at intervals of two or more years. A few species, notably those characteristic of regeneration in large gaps, produced annual seed crops. Interspecific differences in seed predation were Overall, predation considerable. appeared to extend considerably the interval between effective seed crops for The seeds of most species were dispersed by many species. birds. The Cassowary was particularly important in dispersing The absence of frugivorous mammals from this large seeds. region and adjacent Papua New Guinea, provides an interesting contrast between the dispersal characteristics of trees in the rainforests of these regions and those of the remainder of the tropics. Viable seeds of most species appeared to germinate soon after they fell. Only a few species appeared to produce seed capable of lying dormant in the soil from one seed crop to the next. Although all medium to large sized seeds seemed to be recalcitrant, those examined appeared able to withstand

۷

for at least a few days, the range of temperature and humidity conditions likely to be encountered on the floors of large gaps. However, the environments of large gaps often appeared to limit seedling establishment.

The niche characteristics of rainforest plants were examined in relation to potential establishment environments and some conclusions were drawn concerning the nature of succession, diversity and stability in rainforests. Many basic processes such as those involved in regeneration, growth and competition appeared to be the same as those in temperate forests. The important differences in the tropics seemed to be the greatly increased role of stochastic events in determining the spatial and temporal patterning of opportunities for establishment and growth, and the availability of a particular species at an appropriate time and place.

From a forest management viewpoint, studies of processes associated with regeneration in gaps suggested that there might be important limitations to the maximum growth rates achieved by the restricted be silvicultural which can tropical rainforests. Nevertheless, the modification of development of improved techniques for managing these forests is essential. This goal might be best achieved by continuing to develop an understanding of rainforest dynamics through of studies the regeneration, growth and mortality characteristics of their component species.

	Contents	Page
Tit	le page	i
Dec	laration of originality	ii
Pre	face	iii
Sum	nmary	iv
1.	Introduction	
	1.1 Scope of the thesis	1
	1.2 Nomenclature	3
2.	Review	9
	2.1 The natural environments of rainforests in north-east	
	Australia	9
	2.1.1 Geographic limits	9
	2.1.2 Climate	9
	2.1.3 Geology and geomorphology	17
	2.1.4 Soils	20
	2.1.5 Disturbances	22
	2.2 Characteristics of the region's rainforests	46
	2.2.1 Present day flora	46
	2.2.2 Phytogeography	48
	2.2.3 Prehistory of the flora	52
	2.2.4 Ecological studies	72
	2.3 Review of rainforest research and current concepts of	
	diversity, succession and stability	83
	2.3.1 Diversity	83
	2.3.2 Succession	92
	2.3.3 Stability	102
3	Floristic, structural and dynamic features of selected sites	107
	3.1 Introduction	107
	3.1.1 Rationale	107
	3.1.2 Site selection	108
	3.1.3 Plot size	109
	3.1.4 Plot demarcation	109
	3.1.5 Initial data collection	110
	3.1.6 Remeasurement and maintenance	112

	3.1.7 Data processing	112
	3.2 Results	113
	3.2.1 General site and vegetation characteristics	113
	3.2.2 Individual plot characteristics	119
	3.3 Discussion of plot data	187
	3.3.1 Floristics	187
	3.3.2 Structure	197
4	Regeneration: establishment, survival and early growth	209
	4.1 Introduction	209
	4.2 Sunfleck gaps	210
	4.3 Disturbance gaps	213
	4.4 Forest disturbances - field observations	219
	4.4.1 Individual tree deaths	219
	4.4.2 Cyclone damage	226
	4.4.3 Deaths due to Phytophthora cinnamomi	227
	4.4.4 Podocarpus neriifolius decline	231
	4.5 Light measurement in gaps	238
	4.6 Seedling establishment and growth in gaps	244
	4.7 Glasshouse shading trials	258
	4.8 Survival and growth in a rainforest species arboretum	265
	4.9 The significance of the vegetative mode in regeneration	269
5	Propagule production, predation, dispersal and germination	282
	5.1 Production	282
	5.1.1 Precociousness	282
	5.1.2 Frequency	283
	5.1.3 Seasonality	288
	5.1.4 Duration	289
	5.1.5 Quantity	290
	5.2 Predation	291
	5.3 Dispersal	294
	5.3.1 Birds	295
	5.3.1.1 Cassowaries	298
	5.3.2 Bats	311
	5.3.3 Other mammals	311

		5.3.4 Wind	312
		5.3.5 Water	313
		5.3.6 Gravity	313
		5.3.7 General discussion of dispersal	314
	5.4	Germination	315
6	Synt	hesis	324
	6.1	Introduction	324
	6.2	Succession	327
		6.2.1 Basic features	327
		6.2.2 Species attributes	327
		6.2.3 Regeneration niches -environmental attributes	338
		6.2.4 Role of chance	344
		6.2.5 Successional models	344
	6.3	Evolutionary trends	348
	6.4	Diversity	350
	6.5	Stability	359
	6.6	Forest management implications	362
	6.5	Concluding remarks	366
Re	fere	nces	369
		Appendices	
A	Plot	species data	401
В	Plot	z profiles	411
С	Anal	lysis of plot data	430
D	For	nulae for calculating sunlight patterns	440
Ε	Diag	grams for Figures 61 and 62	441
F	Arbo	pretum data	449
G	Publ	lications relating to the thesis	
	i) Fire in the tropical forests and woodlands of northern	
		Australia	455
	i	i) Regeneration of a north Queensland rainforest after felling	
		and burning	470
	i	ii) Seed dispersal by Cassowaries (<u>Casuarius casuarius</u>)	
		in north Queensland's rainforests	477

•

Tables

	100100					
No.	Description	Page				
1	Regional meteorological data	13				
2	Seasonal occurrence of cyclones					
3	Return periods for cyclonic winds of various speeds	27				
4	Rainfall of Atherton during 1915	33				
5	Reference plot summaries - location and physical environment	114				
6	Reference plot summaries - soil characteristics	115				
7	Analysis of site data	117				
8	Reference plot summaries - structure and floristics	118				
9	Tree mortality in plots	117				
10	Important species data - Plot l	122				
11	" 2	126				
12	" " " 3	131				
13	11 11 11 4	134				
14	" " 5	137				
15	" " 6	141				
16	" " <u>7</u>	144				
17	" " 8	147				
18	11 II II 9	151				
19	" " 10	154				
20	" " 11	158				
21	" " 12	162				
22	" " 13	166				
23	" " <u>1</u> 4	169				
24	" " 15	172				
25	" " 16	175				
26	" " 17	178				
27	" " 18	182				
28	" " 19	185				
29	Tree species density in plots	192				
30	Altitudinal ranges of widespread tree species	192				
31	Growth rates of widespread tree species	202				
32	Carbon 14 dates for trees in the region	206				
33						
34						
35		232 233				
36						
	Light received in establishment and growth trials 25					
37	Mean height growth in establishment and growth trials 25					
38	Weed growth in first establishment and growth trial 25:					
39	Species and regression constants for the glasshouse shading tr	ial 263				

40	Height growth among tree species in the arboretum	268
41	Tree species present before clearing	272
42	Mode of regeneration by species (n = >10)	274
43	Mode of regeneration by species (n = <10)	275
44	Regeneration modes and height growth	276
45	Fruiting intervals from litter trap collections	285
46	Fruiting intervals from Cassowary dung collections	286
47	Seed predation experiment 1	293
48	Seed predation experiment 2	293
49	Primary dispersal agents	296
50	Rainforest species regenerating on Green Island	296
51	Cassowary dung collection statistics	301
52	Rainforest fruit consumed by Cassowaries	303
53	Time for seed germination	316
54	Effects of high temperatures and dehydration on seeds	321
55	Species attributes	337

Figures

			Γ1.	gures		
No.	Descriptio	n				Page
1	Interrelat	ionships	between	rair	forest and environmental	
	characte	ristics				1
2	Distributi	on of rai	nforest	s in	north-east Australia	10
3	Thunder-da	у тар				12
4	Rainfall i	sohyets f	for nort	h-eas	st Australia	14
5	Comparison	of rainf	all sea	sonal	ity for selected localities	15
6	Rainfall e	ffectiver	ness wit	hin t	the region	16
7	Developmen	t of the	modern	lands	scape	18
8	Aspects of	relief a	and expe	erimer	ital site locations	19
9	Cyclone fr	equency i	in north	n Aust	ralia	26
10	Frost/fire	influenc	ces on a	n rain	nforest/eucalypt forest edge	33
11	Postulated	ancient	closed	fores	st continuum	39
12	Phytogeogr	aphy of H	Pacific	regio	n	50
13	Relationsh	ips among	gst flor	ristio	provinces	50
14	Tertiary p	ollen sed	luence			57
15	Quaternary	pollen d	liagram	for A	Atherton Tableland	61
16	Rainfall a	nd Myrta	ceae pol	len		63
17	Sea level	changes (luring t	he Qu	laternary	68
18	Acevedo's	model of	rainfor	est (lynamics	100
19	Cluster an	alysis of	f plots			116
20	Graphical	summaries	s - Plot	: 1		121
21	**	**	"	2		127
22	**	**	11	3		130
23	**	**	**	4		133
24	**	11	11	5		136
25	**	**	**	6		140
26	**	**	11	7		143
27	**	**	**	. 8		146
28	**		11	9		150
29	**	11	**	10		153
30	**	**	**	11		157
31	**	11	**	12		161
32	**	**	**	13		165
33	**	**	"	14		168
34	**	11	**	15		171
35	**	**	"	16		174
36	**	**	**	17		177
37	**	**	,,	18		181
38	**	11	11	19		
50				19		184

X111

39	Ordination of species density data	188
40	Species distribution amongst plots	193
41	Stem numbers in diameter classes	199
42	Relationships of plot elevation, growth, basal area and	
	mortality	200
43	Relationships between proportion of fast growing species	
	and elevation	203
44	Relationships between log exchangeable Ca and maximum tree	
	height	203
45	Sunfleck geometry	211
46	Spatial and temporal sunlight patterns in gaps	216
47	Latitude and critical gap size	218
48	Sunlight received in gaps at various latitudes	218
49	Ground plan of tree fall	222
50	Health status of trees in Phytophthora affected forest	228
51	Plan of <u>Phytophthora</u> invasion in plot 6	230
52	Changes in Podocarpus neriifolius health and survival	235
53	Light integrator design	240
54	Integrator response to changing angles of incidence	241
55	Integrator calibration	242
56	Seedling establishment - Field trial l	251
5 7	Growth/light relationships - Field trial l	252
58	Seedling establishment - Field trial 3	255
59	Growth/light relationships - Field trial 3	256
60	Shading bench design	260
61	Growth/light relationships - Glasshouse trial	261
62	Dry matter/light relationships - Glasshouse trial	262
63	PAR and seedling growth and survival	281
64	Distribution of Casuarius casuarius	301
65	Distribution of large fruited species in Australian rainforests	315
66	Germination of Arytera and Toona	320
67	Water loss by seeds over silica gel	320
68	Relationships among major topics	326
69	Gap size on floristics and growth	343
70	Regional trends in diversity	351
71	Factors contributing to regional diversity	354

•

— .

No.	Description	Page
1-2	Lowland rainforest showing effects of cyclones	30
3	Frost damage to upland rainforest	42
4	Bark stripping, presumably by Pademelons	42
5	Tree deaths in a flying fox camp	44
6	Regeneration beneath an old flying fox camp	44
7	Interior of part of Plot l	124
8	Interior of part of Plot 2	124
9	Fan palm, <u>Licuala ramsayi</u> in Plot 3	129
10	Interior of part of Plot 9	129
11	Interior of part of Plot 11	159
12	Aerial photograph of Plot 11 and surrounds	159
13	Edge closure on a newly exposed face	215
14	Edge closure along a stream	215
15-19	Sequence showing the effects of the toppling of a large tree	223
20-22	Vertical 180 canopy photographs illustrating different canopy	
	conditions	246
23	Protective covers with light integrator	247
24	Seedlings of <u>Darlingia darlingiana</u> after 4 years under an	
	intact canopy	247
25	Seedlings of <u>D. darlingiana</u> after 4 years under a small gap	248
26	Seedlings of Acacia aulacocarpa and Alphitonia petriei in	
	a large gap	248
27	View of part of the Atherton arboretum	268
28	Fresh pile of Cassowary dung	299
29	Seedlings from an old pile of Cassowary dung	299
30-31	Fruiting displays on <u>Ficus spp.</u>	308
32	Some seedlings of wind and bird dispersed tree species	331