THE ROLE OF PENNING COLLISIONS IN

HOLLOW CATHODE HELIUM CADMIUM LASERS

by

MARK DAVID AINSWORTH

This thesis was submitted for the degree of Doctor of Philosophy of the University of New England

February 1984

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

i.

TABLE OF CONTENTS

CHAPTER	ONE	INTRODU	CTION	1
	1.1	The Hel	ium-Cadmium Laser	1
	1.2	Histori	cal Introduction	2
		1.2.1	Fundamental studies of the helium-metal	2
		1.2.2	Afterglow studies	9
	1.3	An Over	view of this Present Study	10
CHAPTER	TWO	THEORY EXPERIM	OF THE FRACTIONAL ABSORPTION ENT	12
	2.1	Introdu	ction	12
	2.2	Optical	Design Criteria	13
	2.3	The Sel:	f Absorption Experiment	15
		2.3.1 2.3.2 2.3.3	Analysis of the self-absorption experiment The influence of the upper level Extension to complex Doppler broadened	15 18 20
		2.3.4	Structure of the helium 3889 Å and 5875 Å and codmium 3261 Å and 2144 Å lines	22
		2.3.5	Measurement of gas temperature and calculation of Doppler width	23
	2.4	Axial E: Single A	xtent of the Negative Glow from a Anode	25
CHAPTER	THREE	STUDIES	OF THE HELIUM-CADMIUM DISCHARGE	28
	3.1	Introdu	ction	28
	3.2	Electron Function	n Density, Electron Energy Distribution n and Electron Temperature	30
	3.3	The Opt	ical System	39
		3.3.1 3.3.2	Optical alignment procedure Check of alignment	39 40
	3.4	Density	Measurements in Pure Helium	4 2
		3.4.1 3.4.2 3.4.3	Upper level effects Gas temperature effects Density measurements in pure helium	42 43 43

ii.

Page

	3.5	Effects of Adding Cadmium Vapour to the Discharge		49
		3.5.1	Excited state populations as a function	49
		3.5.2	of increasing cadmium concentration Variation with discharge current and	51
		3.5.3	helium pressure Check of upper level effects with cadmium added to the discharge	53
	3.6	Errors A Metastal	Associated with Determination of the ole Density	53
	3.7	Signific Density	cance of the Helium Metastable Results	55
		3.7.1	Comparison of the 4416 \AA spontaneous emission with the Penning rate as a	56
		3.7.2	function of current Comparison of the 4416 Å spontaneous emission with the product N(2 ³ S).N(Cd)	59
		3.7.3	as a function of cadmium concentration Comparison of the 4416 Å spontaneous emission with the product $N(2^{3}S).N(Cd)$ as a function of helium pressure	61
	3.8	Cadmium	Ion Ground State Density	62
	3.9	Results	in an Ar-Cd Hollow Cathode Discharge	65
	3.10	Summary		66
CHAPTER	FOUR	MEASUREN SPONTANI	MENT OF THE DECAY OF 4416 Å	70
	4.1	Introduc	ction	70
	4.2	Experime	ental Details	74
		4.2.1 4.2.2	Experimental method The pulse system	74 76
	4.3	Response	e Time Considerations	77
	4.4	Decay of	E Electronically Excited Transitions	79
	4.5	Decay of Afterglo	f 4416 Å Spontaneous Emission in the ow	80
		4.5.1	4416 \mathring{A} decay as a function of cadmium concentration	81
		4.5.2 4.5.3	Decay as a function of discharge current 4416 Å decay as a function of helium pressure	87 93

4.6 Summary

100

Page

			page
CHAPTER	FIVE	MEASUREMENTS OF HELIUM METASTABLE DENSITY DECAY	103
	5.1	Introduction	103
	5.2	Theory and Experimental Method	105
		5.2.1 Theory5.2.2 Experimental method5.2.3 Experimental difficulties	105 108 112
	5.3	Influence of the Upper Level Populations	112
	5.4	Results	
		5.4.1 Variation with oven temperature of the decay of the 2^{3} S density	113
		5.4.2 Comparison with the 4416 \overrightarrow{A} decay 5.4.3 Variation with oven temperature of the decay of the 2 ¹ S density	122 123
	5.5	Summary	130
CHAPTER	SIX	INVESTIGATION OF THE EARLY AFTERGLOW COLLISION MECHANISMS	
	6.1	Introduction	133
	6.2	Radial Profiles of the Cadmium Ion Excited State Densities	139
	6.3	Slow ₂ Electron Collisions Populating the 5s D _{5/2} Level of Cd II	146
	6.4	Recombination of Cd ⁺⁺	148
	6.5	Mechanisms which may cause changes in the He(2°S) Population	149
		6.5.1 Recombination 6.5.2 Electron de-excitation of the helium 2 ³ S metastable atom	150 160
		6.5.3 De-excitation of higher lying helium levels into the He (2 [°] S) level	162
	6.6	Decay of the Gas Temperature (Tg) in the Afterglow	164
	6.7	Effect of a Residual Field on the 4416 ${ m \AA}$ Decay	164
	6.8	Conclusion	165

		1	page
CHAPTER	SEVEN	PROPOSED MODEL OF THE HOLLOW CATHODE HELIUM CADMIUM AFTERGLOW	170
	7.1	Introduction	170
	7.2	Development of the Rate Equations	174
		 7.2.1 Decay of the helium 2³S metastable density 7.2.2 Decay of the higher lying helium levels 7.2.3 Decay of the helium ions 7.2.4 Decay of the electron density 7.2.5 Decay of the electron temperature 	174 175 176 178 181
	7.3	Discussion	184
·		 7.3.1 Qualitative description of the model 7.3.2 Dependence on cadmium concentration 7.3.3 Dependence on discharge current 7.3.4 Dependence on helium pressure 	184 186 188 190
	7.4	Electron De-excitation of the $5s^{2}$ $^{2}D_{5/2}$ Level of Cd II	191
	7.5	Solution of the Simplified Coupled Differential Rate Equations	191
	7.6	Direct Experimental Evidence for an Increase in the 2 [°] S Metastable Population in the Early Afterglow	198
	7.7	Summary	198
CHAPTER	EIGHT	CONCLUSION	202
	8.1	Summary	202
	8.2	Steady State Discharge	203
		8.2.1 Helium discharge8.2.2 Helium-cadmium discharge8.2.3 Discussion	203 204 207
	8.3	Afterglow	
		 8.3.1 4416 Å decay 8.3.2 2³S decay 8.3.3 2¹S decay 8.3.4 Investigation of the early afterglow 8.3.5 Model of processes in the afterglow 	210 212 213 214 217
	8.4	Significance of the Present Result 21	
	8.5	Aspects Requiring Further Investigation	220

	page
APPENDIX A1	221
APPENDIX A2	226
APPENDIX A3	234
ACKNOWLEDGEMENTS	239
BIBLIOGRAPHY	240

ABSTRACT

The excitation mechanisms leading to the formation of the $5s^2 \, {}^2D_{5/2}$ level, the upper level of the 4416 Å transition of Cd⁺, have been investigated. Experiments were carried out in both a helium cadmium discharge and corresponding afterglow.

A self absorption technique was used to measure the variation, with current, pressure and oven temperature, of the densities of selected excited helium levels and the cadmium ion ground state. A comparison of the parametric behaviour of the Penning collision rate with the 4416 Å spontaneous emission provided good evidence that Penning ionization was the dominant mechanism leading to laser oscillation at 4416 Å. Gas temperature effects were found to have a significant influence on the interpretation of the experimental results.

Signal averaging techniques were employed to record the pressure, current and oven temperature dependence of the 4416 Å spontaneous decay in the hollow cathode helium cadmium afterglow. The decay was more complex than anticipated but was eventually attributed to the temporal evolution of the helium triplet metastable species in the afterglow. A simplified model of the afterglow was developed and, using the available excited state densities and estimates of the electron and helium ion densities and electron collision rates, the system of coupled differential rate equations was solved and found to be in reasonable agreement with the experimentally observed trends of the 4416 Å decay.

Taken as a whole, the results of the study of the helium cadmium d.c. discharge and afterglow show beyond doubt that Penning ionization is the dominant excitation mechanism of the $5s^2 \, {}^2D$ level of Cd II.

vii.