GENETIC AND PHYSIOLOGICAL ASPECTS OF GROWTH, BODY COMPOSITION AND FEED EFFICIENCY IN MICE

by

RAMESH CHANDER MALIK

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF NEW ENGLAND

AUGUST 1985

.

CANDIDATE'S CERTIFICATE

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used have been acknowledged in this thesis.

Ramesh C. MALIK

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Associate Professor S.K. Stephenson for permission to use his mouse lines as an experimental material in this study, generous advice in planning and execution of this investigation, and constructive criticism during the preparation of this manuscript.

I wish to record my sincere thanks to Professor J.S.F. Barker, Head of the Department of Animal Science for his advice in the preparation of this thesis and for providing Departmental facilities. Dr. B. Kinghorn and Dr. J. Thompson gave invaluable suggestions for the improvement of the text.

In particular I owe many thanks to Associate Professor A.B. Lloyd for moral support, friendly warmth and the facilities that I have enjoyed in his laboratory.

I have been generously helped by Dr. J.H. Claxton both academically and socially. It is a pleasure to acknowledge my indebtedness to him for all his assistance including that during the experimental work and in preparation of the literature review section of the thesis. My sincere gratitude is expressed to Dr. M.H. Soliman with whom I have enjoyed subject discussions.

I have been benefited from valuable discussions with Dr. K. Hammond and Mr. A.E. McClintock of the Animal Genetics and Breeding Unit at various stages of the present investigation. Dr. C.A. Morris, formerly a member of this Unit helped by his advice on Section 4.

Considerable assistance provided by Messrs D.K. Fredline in breeding and feeding of mice, their dissection and chemical analyses; Alan Jones for overall management of the mouse colony; Dick Kent for organising the laboratory facilities and Graham Chisholm for construction of the feeding devices is gratefully acknowledged.

My fellow students of the Department of Animal Science have offered many helpful suggestions. Special mention should be made of Mr. Tony McRae, Mr. Andrew Parratt and Dr. Jerry Taylor for the exchange of ideas and generating healthy discussions from time to time.

I am grateful to Mrs. Dorothy Cordingley and Mrs. Julie Gedalia for painstaking efforts in typing of the thesis.

My wife, Santosh assisted me in many ways during the course of the investigation; by working in the laboratory, singularly handling the household and looking after our two children while I was busy in a seemingly unending array of experimental work, computation of research data and searching of library shelves. It is no exaggeration to say that without her help this investigation would have not been completed. For all her help, I would remain in debt for ever.

All financial support received from the University of New England during the period of the investigation and grant of study leave by the Indian Council of Agricultural Research are gratefully acknowledged.

TABLE OF CONTENTS	T.	AB	LE	OF	CON	TENTS
-------------------	----	----	----	----	-----	-------

ACKNO	WLEDGEMENTS	(iv)
TABLE	OF CONTENTS	(vi)
INDEX	TO TABLES, FIGURES AND APPENDICES	(ix)
SUMMA	RY	(xv)
SECTI	ON 1	
02011		
	REVIEW OF THE LITERATURE	1
1.1	INTRODUCTION	2
1.2	GROWTH PATTERN OF THE MOUSE	3
1.3	GENETIC VARIATION IN GROWTH RATE AND BODY WEIGHT	4
1.4	BODY COMPOSITION	8
	1.4.1 SELECTION RESPONSES IN BODY COMPOSITION	9
1.5	MATERNAL EFFECTS ON GROWTH AND BODY COMPOSITION	12
1.6	FEED EFFICIENCY	16
	1.6.1 THE HERITABILITY OF FEED EFFICIENCY	17
	AND SELECTION RESPONSE	
	1.6.2 THE RELATIONSHIP OF FEED EFFICIENCY	18
	WITH OTHER TRAITS	
	1.6.3 BODY WEIGHT, FEED INTAKE AND FEED	19
	EFFICIENCY	
	1.6.4 BODY COMPOSITION AND FEED EFFICIENCY	20
	1.6.5 FEED INTAKE AND ENERGETIC EFFICIENCY	23
	1.6.6 RESTRICTED FEEDING AND FEED EFFICIENCY	25
1.7	PARTITIONING OF GENETIC EFFECTS OF OFFSPRING	27
	AND DAM	
SECTI	ON 2	
	A COMPARISON OF THE LINES SELECTED FOR INCREASED	31
	AND DECREASED EIGHT WEEK BODY WEIGHT	
	I. GROWTH AND BODY COMPOSITION	
. .		2.2
2.1	INTRODUCTION	32
2.2	MATERIALS AND METHODS	34

~ • 4	LINT PICTU	Into And All Hereb	.) -
	2.2.1	CHEMICAL ANALYSES	36
	2.2.2	STATISTICAL ANALYSIS	37

Page

vii

Ρ	a	q	e
		5	-

		2
2.3	RESULTS	39
	2.3.1 COMPOSITION OF THE FRESH BODY	39
	2.3.2 COMPOSITION OF THE DRY BODY	50
	2.3.3 COMPOSITION OF THE FAT-FREE BODY	53
2.4	DISCUSSION	56
	2.4.1 COMPOSITION OF THE FRESH BODY	56
	2.4.1.1 WHOLE BODY	56
	2.4.1.2 CARCASS AND NON-CARCASS PARTS	59
	2.4.2 COMPOSITION OF THE DRY WHOLE BODY	61
	2.4.3 COMPOSITION OF THE FAT-FREE WHOLE BODY	62
SEC	CTION 3	
	A COMPARISON OF THE LINES SELECTED FOR INCREASED	64
	AND DECREASED EIGHT WEEK BODY WEIGHT	
	II. FEED AND ENERGETIC EFFICIENCY	
3.3	INTRODUCTION	65
3.2	EXPERIMENT 1: EFFICIENCY OF FEED AND	67
	ENERGY UTILIZATION	
	3.2.1 MATERIALS AND METHODS	67
	3.2.2 RESULTS	71
3.3	B EXPERIMENT 2: (a) MAINTENANCE REQUIREMENTS OF	84
	GROWING MICE ON RESTRICTED	
	INTAKE	
	3.3.1 MATERIALS AND METHODS	84
	3.3.2 RESULTS	85
3.4	EXPERIMENT 2: (b) MAINTENANCE REQUIREMEN'IS	87
	OF ADULT MICE	
	3.4.1 MATERIALS AND METHODS	87
	3.4.2 RESULTS	87
3.5	5 EXPERIMENT 3: DIGESTIBILITY DETERMINATION	88
	3.5.1 MATERIALS AND METHODS	88
	3.5.2 RESULTS	88
3.0	5 DISCUSSION	89
SE	CTION 4	
	BREEDING SCHEME FOR ESTIMATION OF HETEROSIS	97
	AND RECOMBINATION EFFECTS	
4.	INTRODUCTION	98

4.1 INTRODUCTION

viii

			Page
4.2	MATING S	SCHEME FOR PARAMETER ESTIMATION	99
4.3	DISCUSS	ION	99
SECTI	ON 5		
	AND MATE	SSING EXPERIMENT-ESTIMATION OF DIRECT ERNAL ADDITIVE AND NON-ADDITIVE EFFECTS DSSING THREE LINES OF MICE	103
5.1	INTRODUC	CTION	104
5.2	MATERIA	LS AND METHODS	104
	5.2.1	DESIGN OF THE EXPERIMENT	104
	5.2.2	FEEDING AND MANAGEMENT OF THE MICE AND COLLECTION OF DATA	105
	5.2.3	STATISTICAL ANALYSIS	106
5.3	RESULTS		106
5.4	DISCUSS	ΙΟΝ	116
	5.4.1	DIRECT GENETIC EFFECTS	117
	5.4.2	MATERNAL GENETIC EFFECTS	118
	5.4.3	THE RELATIONSHIPS BETWEEN DIRECT	120
		GENETIC, MATERNAL GENETIC AND	
		COMPENSATORY GROWTH EFFECTS	
	5.4.4	HETEROSIS	122
	5.4.5	RECOMBINATION EFFECTS	125
SECTI	ION 6		
	GENERAL	CONCLUSIONS	128
APPEN	DICES		130
BIBLI	IOGRAPHY		151

.

INDEX TO TABLES, FIGURES AND APPENDICES

TABLE NO.	CONTENTS	PAGE
2. 1	Numbers of mice sampled from three to eight weeks of age for composition analysis	36
2.2	Least-squares averages for weight and chemical constituents of the fresh whole body	40
2.3	Least-squares averages for weight and chemical constituents of the carcass part of the fresh body	41
2.4	Least-squares averages for weight and chemical constituents of the non-carcass part of the fresh body	42
2.5	Coefficients a and b of allometric equation $y = ax^{b}$ for the whole body	46
2.6	Coefficients a and b of allometric equation $y = ax^{b}$ for carcass part	47
2.7	Coefficients of a and b of allometric equation $y = ax^{b}$ for non-carcass part	48
3.1	Number of mice available from each line for weight gain, feed intake, feed efficiency and energetic efficiency analyses at different age intervals	68
3. 2	Regression equations for predicting fat and protein weights as a function of body weight	69
3.3	Least-squares means for weight gain, feed intake and feed efficiency	73
3.4	Analyses of variance showing degrees of freedom, mean squares and tests of significance for weight gain, feed intake and feed efficiency between 3 and 8 weeks of age	74
3.5	Least-squares means for change in body energy (ABE), digestible energy intake (DEI) and efficiency of energy utilization (EEF) during 3-5 and 3-8 weeks of age	77
3.6	Least-squares means for change in body energy (ABE), digestible energy intake (DEI) and efficiency of energy utilization (EEF) during 5-8 weeks of age	78

TABLE NO.	CONTENTS	PAGE
3. 7	Analyses of variance showing degrees of freedom, mean squares and tests of significance for digestible energy intake (DEI), change in body energy (ABE) and energetic efficiency (ABE/DEI)	79
3.8	The relationship between the change in body energy (ABE) and digestible energy intake (DEI) of the L, H and R lines and sexes within lines	81
3.9	Least-squares averages for maintenance energy requirements per gram body weight per week for the 3 to 8 week growth period	82
3.10	Maintenance feed requirements (g) per week per g of body weight of the growing mice of the L, H and R lines	85
3.11	Least-squares averages of body weight and weekly feed consumption of adult mice	87
3.12	Least-squares means of percent digestibility and related traits (kJ) measured over a three day period	88
4.1	Partitioning of crossbred performance as a deviation from purebred mean into heterosis and recombination effects	98
4. 2	Estimation of genetic effects	101
5.1	Number of mice sampled at 3 and 8 weeks for the analysis of body weight and other traits	106
5.2	Least-squares means for body weight and carcass traits at 3 and 8 weeks	108
5.3	Least-squares means for feed intake, weight gain and feed efficiency between 3-8 weeks	108
5.4	Degrees of freedom, mean squares and tests of significance from the least-squares analyses of variance for weaning traits	111
5.5	Degrees of freedom, mean squares and tests of significance from the analyses of variance for 8 week body weight, protein weight, and 3-8 week feed intake, weight gain and feed efficiency	112

.

х

TABLE NO.	CONTENTS	PAGE
5.6	Differences in direct genetic effects between H and L, H and R, and R and L lines	112
5.7	Differences in maternal genetic effects between H and L, H and R and R and L lines	113
5.8	Direct heterosis exhibited in F ₁ crosses	114
5.9	Maternal heterosis and recombination effects in the crosses between H and L lines	115
FIGURE NO.	CONTENTS	PAGE
2.1	A diagrammatic presentation of history of the lines used	35
2.2	Water, fat, protein and ash as percentages of fresh whole body weight	43
2.3	Water, fat, protein and ash as percentages of weights of carcass and non-carcass parts of the fresh body	44
2.4	Allometric relationship between log fat weight and (a) \log_{10} fresh whole body weight (b) \log_{10} dry body weight in the L, R and H lines	49
2. 5	Fat, protein and ash as percentages of dry body weight	51
2.6	Fat, protein and ash as percentages of weights of carcass and non-carcass parts of the dry body	52
2.7	Water, protein and ash as percentages of fat-free body weight	54
2.8	Water, protein and ash as percentages of weights of carcass and non-carcass parts of fat-free body	55
3.1	Averages of weight gain, feed intake and feed efficiency per week between ages of 3 and 8 weeks	72
3.2	Least-squares regression of (a) log weight gain on log feed intake (b) log increase in body energy (log ABE) on log digestible energy intake (log DEI) for the data pooled over the three lines	76

хi

FIGURE	O. CONTENTS	PAGE
3.3	Least-squares regression of maintenance energy requirements on body weight for the data pooled over the three lines	83
3.4	Body weights of mice offered a maintenance diet at the rate of 1.25, 1.35 and $1.5g$ per g of body weight per week for H, R and L lines respectively	86
4.1	Mating Scheme	100
5.1	Least-squares regression of body weight gain on feed intake of the selection lines and their derived crossbreds versus purebred R and crossbreds with an R parent	110

APPENDIX	NO. CONTENTS	PAGE
λ	Sex differences in the chemical composition of the fresh whole body	131
В	Sex differences in the chemical composition of the carcass part of the fresh body	132
С	Sex differences in the chemical composition of the non-carcass part of the fresh body	133
D	The effect of sex on the fat percentage of the fresh body	134
E.	The effect of sex on the fat percentage of the dry body	135
F	Least-squares averages for the chemical constituents expressed as percentages of the fresh whole body	136
G	Least-squares averages for the chemical constituents expressed as percentages of the carcass part of the fresh body	137
Н	Least-squares averages for the chemical constituents expressed as percentages of the non-carcass part of the fresh body	138

xiii

APPENDIX	NO. CONTENT'S	PAGE
Ι	Least-squares averages for the chemical constituents expressed as percentages of the dry whole body	139
J	Least-square averages for the chemical constituents expressed as percentages of the carcass part of the dry body	140
К	Least-squares averages for the chemical constituents expressed as percentages of the non-carcass part of the dry body	141
L	Least-squares averages for the chemical constituents expressed as percentages of the fat-free whole body	142
14	Least-squares averages for the chemical constituents expressed as percentages of the carcass part of the fat-free body	143
N	Least-squares averages of the chemical constituents expressed as percentages of the non-carcass part of the fat-free body	144
P	Figure: Postweaning growth curves	145
Q	Figure: Postweaning growth curves of carcass and non-carcass parts of fresh, dry and fat- free body	146
R	Figure: Average weights of chemical constituents of the fresh whole body from 3 to 8 weeks of age	147
S	Figure: Average weights of chemical constituents of carcass and non-carcass parts of the fresh whole body from 3 to 8 weeks of age	148
Т	The effect of sex on weight gain, feed intake and feed efficiency	149

APPENDIX NO.	CONTENTS	PAGE
U	Equations for expected contribution of genetic	150

effects in purebreds and their crosses

SUMMARY

Genetic and physiological aspects of growth, body composition and feed efficiency between 3 and 8 weeks of age were studied in three lines of mice, two of which had been selected over 10 generations for high (H) and low (L) 8-week body weight; and a third, randombred control (R). The physiological parameters studied were: chemical composition of the whole body (WB) and its carcass (C) and non-carcass (NC) parts, digestible energey intake (DEI), and energy requirements for maintenance and for growth. The genetic parameters measured were: direct and correlated selection responses, direct genetic effects of the offspring (g^{O}), maternal genetic effects (g^{M}), direct heterosis (h^{O}), maternal heterosis (h^{M}) and recombination effects in the offspring (r^{O}).

Individual body weights, feed intake and determinations of water, fat, protein and ash for the WB, C and NC were available for 421 mice sampled weekly from 3 to 8 weeks of age. The NC parts accounted for 60.2 to 66.8 percent of the WB. The H line mice grew faster and were heavier than the controls at all ages, whereas the L mice showed slower growth rate and were lighter. Weights of water, fat, protein and ash increased as a result of selection in the H line and decreased in the L line. Expressed as percentage of the fresh WB, the protein and water showed a decrease but fat and ash an increase in the H line. Difference between the R and L lines for percent chemical components was generally not significant. Fat showed larger between-line variation than any other chemical constituent. Although leaner than both the R and L lines at low body weight, H line became fatter with increasing body weight. When chemical composition traits were expressed as percentage of dry body, differences between lines for fat, protein and ash were accentuated. On a fat-free basis, between -line differences for water, protein and ash were reduced.

Allometric coefficients b obtained from the regression of log fat weight on log weight of the WB for the L, H and R lines were respectively 1.60 \pm 0.12, 1.48 \pm 0.10 and 1.73 + 0.10 for the fresh and 1.61 \pm 0.08, 1.61 \pm 0.09 and 1.87 + 0.09 for the dry body. Neither slopes nor elevations of the regression lines for fat were significantly different between the R and L lines, whereas H and R line comparisons were significant for both slopes and elevations. The higher *h* value for fat on a dry weight basis in the H line was at the expense of *h* values for protein and ash which were reduced considerably.

Water percentage was significantly lower and fat percentage higher in the NC than in C parts. The proportion of ash was higher in the C part. However, in spite of important differences in the C and NC for the proportion of different tissues, the pattern of growth of tissues in the individual parts followed an overall pattern of growth of the whole body.

Females had higher fat percentage than males between 3 and 8 week growth period but not significantly so at 6 and 8 weeks. Differences in fat percentage between the two sexes increased when compared on a dry weight basis.

There was no indication of differences between lines in percent digestibility. Weekly maintenance food and energy requirements during active growth period on a restricted level of feeding were 1.25g, 1.35g and 1.50g, and 21.0kJ, 22.7kJ and 25.2kJ per g of body weight for the H, R and L lines, respectively. Adult mice showed 10 to 16 percent less maintenance food needs than the growing mice. The ranking of the lines for maintenance food requirements was consistent over the two feeding trials involving young or adult mice. The estimates of maintenance food requirements for growing H, R and L mice, calculated from the extrapolation of the regression of weight gain between 3 and 5 weeks on *ad libitum* feed intake during this period, were respectively 1.26 ± 0.10,1.32 0.14 and 1.29 ± 0.20 per g of body weight per week. Average weekly maintenance energy requirements per gram of body weight on *ai libitum* feeding calculated as the difference between DEI and increase in body energy as fat and protein during 3 to 8 week growth period were 19.52 ± 0.36kJ, 21.84 + 0.29kJ and 23.36 + 0.33kJ for the H, R and L lines respectively. The weighted averages for weekly maintenance energy requirements on a per gram of body weight basis on restricted and *ad libitum* feeding for the H, R and L lines were 20.11kJ, 22.09kJ and 23.95kJ respectively.

It was concluded that the increased gross efficiency of the H mice over the controls was due to their relatively reduced maintenance requirements and greater efficiency of energy utilization for growth. There were no significant differences between the H and L lines in the efficiency of energy utilization and a higher gross efficiency of the H line relative to the L line was because of significantly lower maintenance requirements of the H line. The differences between the R and L lines for gross efficiency were small. The R line had a lower maintenance requirement and a greater proportion of energy available for growth as compared with the L line. However, because of a comparatively less efficient use of energy available for growth by the R line, the differences in the overall efficiency of the two lines were not significant. The mean efficiencies of utilization of energy for growth for the H, R and L lines were 10.3 ± 0.6, 7.8 \pm 0.7 and 13.9 \pm 2.1 percent, respectively.

Phenotypic differences between the H, R and L lines were partitioned into g^O , g^M , h^O , h^M and r^O . The traits studied were body weight, body composition, weight gain, feed intake and feed efficiency. A mating scheme was designed and procedures for calculating unconfounded estimates of the genetic effects developed. An experimental study was made by using a three-way crossing scheme by which 13 genetic groups were produced.

xvii

Differences in direct genetic effects between the H and L lines were significant for all traits. Comparisons between the H-R and R-L were significant for a majority of traits. Direct genetic effects favoured the larger line in every comparison between lines. Maternal genetic effects were more important for weaning traits than for postweaning F_1 crosses between the H and L lines showed heterosis traits. for body weight and fat weight at 3 weeks and feed efficiency. Heterosis in the HxR F1 was significant for 8-week body weight, feed intake and weight gain and in F_1 crosses between the R and L lines for body weight and protein weight at 3 weeks and feed intake. Maternal heterosis was calculated in crosses involving H and L lines and was significant for body weight and protein weight at 3 weeks. Recombination effects were not significant for any of the traits studied.

It was concluded that the direct genetic effects account for a major part of the differences between the H, R and L lines. The proportion of maternal genetic effects was relatively small, but important for weaning traits and declined in postweaning traits. Heterosis observed in a number of traits in this study provided evidence of existence of significant non-additive genetic variance between these mouse lines. Maternal heterosis in the F_1 dams was responsible for an enhanced preweaning growth of the progeny.