
Chapter 1

SUBSETS CHARACTERIZING THE NUMERICAL RANGE

1.1	 Introduction

This chapter is largely expository. In it we consider

the numerical range of an operator on a Hilbert space as a

convex subset of the complex plane. We also study the behaviour

of certain sets of vectors associated with different points of

the numerical range.

Convexity of the numerical range is well-known, however,

because we shall later use the technique given in the proof by

Raghavendran (1969) and also because of its simplicity we include

that proof in section 1.2.

In section 1.3, following Embry (1970), we associate a

set of vectors from the Hilbert space to each point of the

numerical range and show that linearity of the set forces the

point to be an extreme point of the numerical range. Stampfli

(1966) proved the converse of this result. We also include the

results of Embry (1970) for the case when the point is a non-

extreme boundary point or an interior point of the numerical

range which show that although the corresponding set is no longer

linear, we can always associate a subspace with it.

In the last section we state the Cauchy-Schwartz type

inequalities proved by Embry (1975) for the vectors from these
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particular sets and provide different or modified proofs for

them. Similar proofs will be later applied when we extend these

results to cover the case of unattained boundary points of the

numerical range.

1.2	 The Numerical Range

The numerical range W(T) for an operator (that is, a

bounded linear transformation) T over a finite dimensional

inner product space was first defined by Toeplitz in 1918. If

H is a Hilbert space and T E B(H), we have the following

definition.

Definition 1.1	 For a Hilbert space H and an operator

T on H,	 the nur:e2 , -:cc,Z,	 c
	 is the: set

W(T) = { ‹ Tx,x> :	 = 1,	 x E H er,

that is, W(T) is the image of the unit sphere of H under

the quadratic form associated with T.

It is well-known that the numerical range is convex.

There are many proofs of this theorem. We give below a modifi-

cation of Raghavendran's (1969) proof which is simple and

interesting. We shall later make use of the technique given in

his proof.
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Theorem 1.2 (Toeplitz-Hausdorff) 	 The numerical

range W(T) of an operator	 -Lo a convex subset of the

complex plane.

Proof	 Let

= <Tf,f>,	 = ‹Tg,g>

with

=	 = 1,
	 f ,g e

Let
A = aT +

- 11

Hence

<Af,f> = a<Tf,f> + <f,f> = aC + 13 = 1

and

<Ag,g> = a<Tg,g> + C-) <g,g> = an +	 = 0 .

We will first show that

+ (1 -	 E W(T)



or,

1 
[tC + (1 - t) n - n] = t .

- ri
<Ah,h> =

if and only if

t E W(A) .

Let

tC + (1 - t)n E W(T) .

So there exists h E H,	 Ihl = 1 such that

<Th,h> = tC + (1 - t)n

4.

So t E W(A).

esrnve	 C W(A) so that <Ah,h> = t,Converse 	 if t h = 1,

then

1 
t = <Ah,h> =	 <Th,h>

-	 C	 n •

So

<Th,h> = t + (1 - t) n 6 W(T) .

The proof is completed by showing [0,1] c W(A). In

fact we show that for any t c (0,1) , it is always possible to

get a complex scalar z = x + iy such that



<A (f + zg), f + zg> = t
<f + zg, f + zg>

This is equivalent to

<Af,f> + lz1 2 <Ag,g>  + z<Ag,f> + z <Af,g>
<f,f> + 1z1 2 <g,g> + z<g,f> + "E<f,g>	 = t

or

1 + z<Ag,f> + z<Af,g> 	 =
1 + ' zi 2	 z<g,f> + 2<f,g>

or

z1 2 t + t + 2t Re(z<f,g>) = 1 + z<Ag,f>
	 z<Af,g> .

Separating the real and imaginary parts we get an expression of

the form

-x2	 ty2 + ax + by +	 1= 0 ...(1.1)

and

cX + dy = 0	 -(1.2)

where a, b, c and d are some real numbers independent of

5.

t

x, y.



Now

< 0,	 since 0 < t < 1 .t

Hence equation (1.1) is a circle enclosing the origin and

cx + dy = 0 is a line through the origin so that we shall

always get a real pair (x,y) satisfying equations (1.1) and

(1.2).

This proves the existence of z = x + iy. Hence

[0,1] c W(A) and consequently the numerical range is convex.

O

We shall use the following terminolo gy for the convex

set W(T)•

Definition 1.3	 An ex7:,2ene- p o int of W(T) is an element

of W(T) which is not contained in the interior of any line

segment lying in W(T).

Definition 1.4	 Two extreme points of W(T) are said

to be ac7aceKt extreme points if the line segment joining them

lies in the boundary of W(T).

Definition 1.5	 A line L is a line of support for

W(T) if W(T) lies in one of the closed half planes determined

by L and L contains at least one element of the closure of

W(T).

6.

t - 1
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Definition 1.6	 An extreme point z of W(T) is a

of W(T) if there exist more than one line of support

for W(T), passing through z.

1.3	 Characterization of the Numerical Range

Embry (1970) associated certain subsets of the Hilbert

space H with different points of the convex set W(T). The

definitions of these subsets are given below.

Definition 1.7 The set M(T) corresponding to eachz

point z in W(T) is given by

M(T) = x E H: <Tx,x> - z
	

' = 0	 .
z 

YI'lz(T)	
is the linear span of M (T).

The set M(T) corresponding to a line of sup port L of

W(T) is defined by

M(T) = 
{X 

E H: <Tx,x>	 11)(	 2 = 0,	 E L n W(T)

NOTE: Since Mz
(T) is homogeneous,

yM
z
(T) = M

z
(T) + M z (T)

= {x + y : x, y E Mz (T)} .



Also

M (T) =	 u(T)zze L

Both M(T) and M(T) are closed.
z

The question arises of when M z (T) is linear and hence

a subspace. Another question is how we can relate a subspace

of H to Mz
(T) when it fails to be linear. Lemma 2 of

Stampfli (1966) and theorem 1 of Embry (1970) answer these

questions. Before giving their proofs we develop some necessary

lemmas.

The following standard lemma gives a special property

of positive operators which we shall use frequently in this

chapter. Its extension to bounded se quences of vectors will

be important in subsequent chapters.

Recall an operator S is rosit-,:ve if for all x in

H,	 <Sx,x>	 0.

Lemma 1.8	 For a posive oerator S and x in H,

<Sx,x> = 0 if and only if Sx O.

Proof	 If Sx = 0, obviously <Sx,x> = 0.	 For the

converse, let	 be the positive square root of S. Then

<Sx,x> = 0 implies	 x	 = 0

8.
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and hence

Sx = ti S ,z/E x = 0 .

Lemma 1.9	 Let L be a line of support of W(T) and

M(T) = x E H : <Tx,x> - ti 11 x11 2 = 0, some s c L n W(T)

Let 0 = 0 if 7 is parallel to the real axis, otherwise

let 6 be the acute angZe between L and the real axis.

Then

('L) M(T) = 

' 

E R : e	 (L - z	 - e ms` -	 = LO

(ii) M(T) is a closed subspace of H, and

(iii) M(T) = H if and onlz, if W(T)

Proof	 (i) Since W(aT + 1ST) = aW(T) + 	 for any

complex scalars	 by carrying out the standard reduction

T	 e ie (T — zI) we can assume, without loss of generality, that

L is the imaginary axis, and

Re W(T)	 0

Then	 M(T) = {x E H : Re <Tx,x> = 0}

= x E H	 <Re Tx,x> = 0/ (where Re T = 1/2(T+T*))

X E H : Re Tx = 0}
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by lemma 1. as Re W(T)	 0 implies Re T is positive.

This proves part (i) of the lemma. 	 (ii) and (iii) follow

immediately from (i).

The above proof is a modified version of that given by

Embry. For the next lemma instead of giving Embry's proof, we

shall use an argument similar to that given in the proof of

theorem 1.2.

Lemma 1.10	 Let	 E W(T) and 2 be an interior

point of the 'tine segment with end points a and b. If

E M
a

( T),	 7,1 E (T)%.1	 a (T), 2) = 1,	 then

x f XL) E	 (2" )

for two distinct complex values of X. Consequently,

(T) c yi (T) .
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Proof	 As shown in the proof of theorem 1.2, without

loss of generality, we may assume a - 1, b	 0. The same

proof shows that for z E (0,1), we have a non-trivial circle

enclosing the origin and a line passing through the origin so

that we shall always have two distinct complex values of X,

say X1, X 2 such that

x + A iy E M2 (T),	 i = 1,2 .

This, together with the homogeneity of M z (T), gives

-	 )x E	 (T) + M (T) ,
2

that is,

X E N z (T)	 Nz (T) = 1M (T) .

Hence

Ma (T) C 
iMz (T) .

0
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Now we are ready to prove the main theorem.

Theorem 1.11	 Every point z in W(T) can be charac-

terized as follows:

i) z is an extreme point of W(T) if and onZy if M
z

1777.1

is a subspace, where

z 
(	 = x c H :	 -	 0-,11 2 = 0} .

If z is a nonextreme boundary point of W(T), then

yM
z
(T), the "Linear span of M

z
(I) is a closed sub-

space of H and

yM (T) =

where

{
M(T) = x E H : <Tx,x> - 211.-2 2 = 0, zE LnW(T)

being a line of support or W(T) passing through z.

In this case W( T) C L and only, 	
z
	 H.if yM(T) =

iii) If W(T) is not a line segment, then 2 is an interior

point of W(T) if and only if y1 (T) = E.
z 

Proof
	

i) Suppose z is an extreme point of W(T).

	

Without loss of generality we may take z = 0 and Re W(T)	 0.

For x,y E Mz (T) and X = ±1, we have

<T(x +	 x + -Av>

= <Tx,x> + 1X1 2 <Ty,y> +	 + X<Ty,x>

= X<Tx,y> + X<y,T*x>

= X<Tx,y> - A<y,Tx> (since by lemma 1.8, Re W(T) 	 0
implies Re Tx = 0)

= 2iX Im<Tx,y> .
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If Im <Tx,y> = 0, with )■ 	 ±1, we have two nonzero

points of W (T) on the positive and negative imaginary axes contra-

dicting that 0 is an extreme point of W (T) .

Thus Im <Tx,y> = 0 and hence homogeneity being obvious,

Mz (T) is a subspace.

For the converse, if z is a nonextreme point of

W (T)
	 z is in the interior of a line segment with end points

a and b in W(T) and lemma 1.10 gives

But a	 z. Hence

This shows

M	 Y(T)	 M z (T) .a 

Ma (T) n M
z
(T) = 00 1 .

M
z
(T)	 iMz (T) ;

that is, M z (T) is not a subspace.

(ii) Let z be a nonextreme boundary point of

W(T). Then lemma 1.10 implies

M
a
(T) C IMz (T)	 for all a E W(T).



Consequently,

M(T) = u

ac L

Ma (T)	 c ym
z (T)

14.

But M(T) is a subspace by lemma 1.9 (ii) . Hence

IM (T) c M(T)
z

as ym z
(T) is the smallest subspace containing M

z (T). Thus

YM z (T) = M (T) .

Hence, by lemma 1.9 (iii) ,

W (T) c L if and only if ym z (T) = H .

(iii) If W (T) is not a line segment and z is an

interior point of W(T) , lemma 1.10 gives

Ma (T) c "YM z
 (T)	 for each a E W (T) .

Thus

H = u
aEW (T

Ma (T) r C II/1 z (T) .



Hence

On the other hand, if z is a boundary point of W(T),

111- z (T) = rMz(T)
	

when z is extreme,

41(T)	 when z is nonextreme,

and thus lemma 1.9 (iii) gives

YM z (T)	 H .

1.4 A Cauchy - Schwartz Inequality

Embry (1975) deduced a Cauchy-Schwartz inequality for

the elements of

M(T) =	 E H : <Tx,x> - zlix11 2 = 0,	 z E L n- W(T)}

where L is a line of support of W(T). We give the inequality

in the next theorem with a proof different from that given by

Embry.

15.
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Theorem 1.12	 Let L be a line of support for W(T)

and

A:(T) = x € H : <Txx> --it 112 zELnW(T)} .

Je L,
	 be an element of	 such that either b is an extreme

oint of W(T) or c	 W(f).	 Then for all x and y in

T - b)x,y> 2	 <LT -	 <y,(7 - o)y> .

Proof	 First note that by virtue of lemma 1.9 (i), the

right hand side of the inequality is real. Without loss of

generality we may take

b	 0,

W(T) n L c R
+

and	 Im W(T)	 0	 (or < 0

Let us exclude the obvious case when x = 0 or y = 0.

Let t 1 , t 2 E R
+
 be such that

<Tx,x> 	
t
	 and
	 <Ty,y> 	

t2 .
H x
	 2	

li Y
	 2



Consider points of W(T) of the form

<T (x + Xy), x + Xy> 

Ilx +	 -2,Y112

where A is any complex scalar.

We have assumed x + Ay 0 0 because if x + Ay = 0,

the inequality is trivially true.

Since x E M(T) and L is the real axis,

Im <Tx,x> = 0 .

Thus since Im W(T) �, 0, lemma 1.8 gives Im Tx = 0 where

Im T =(T - T*) .21

So Tx = T*x and hence

g(A)	
<Tx,x>= 

12 <Ty,v> A <Tx,y> + A <Tv,x>

+ Xy 112

t	 X112	 t2 ► 2 Hy 2	 2Re	 <Tx,y>)

17.

2



This shows g(A) is real and hence positive, since

g(X) E L n W(T) .

So we have

t 1 1
 

X11 2 	t 2 •
	 12 1 111,711 2 + 2Re(T<Tx,y>)	 0.

...(1.3)

Choose A such that

Re(A<Tx,y>) = + 1<Tx,y>1

Then the condition that	 satisfies (1.3) gives

4 j<Tx ,y> 2 -4t	 '112 t LX11 2
2 '	 1	 1	 1

	 0

Hence

<Tx,y>	 - <Tx,x> <Ty,y> .< 0 ,

and so

1<Tx,y>1 2 - < Tx,x> <y,Ty>	 0 .

0

As given in theorem 1.11 (i), Stampfli (1966) proved

18.

that M
z
(T) is a subspace if z is an extreme point of W(T).



This result can also be deduced from theorem 1.12.

Corollary 1.13	 If b is an extreme point of W(T),

Mien !VT) = :r E R : <!-Tx,:r> - b1.1-{	 12 = 0	 is a subspace.

Proof	 Homogeneity being obvious we only have to prove

the linearity.

Let

X1 
	

X2	 Mb (T)

Thus X 1 , x 2 E M(T)	 as M T, ( ) c M(T)Mb

But M(T) is a subspace by lemma 1.9 (ii).

So

X i + X., C M(T) -

Now since x, x 2 EMb
(T) and x + x E M(T), theorem 1.12

1	 2	 1	 2

gives

<(T-b) (x l +x 2 ), x. + x 2 > = 0

So, X	 X 2 E Mb (T).1

El

19.
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Corollary 1.14	 If b is an extreme point of W(T),

then

<(T-h)x,y> = 0	 and <(T''-T)x,y> = 0

fo-r? aZi x E P4 (T) and ? E Au T) where

and

{M(7) = "" E H : <Tx,x> - z1

	
}2 = 0 , z € 1-_, n W(T) ,

25,, ina a line of support for W(T) passing tk.rouak h.

Proof	 Obvious from theorem 1.12 and lemma 1.9 (i).

Corollary 1.15	 the same notations as in corollary

E A:- ( 7 ) and fx E A:LT , then

Mm	 = Dx

Proof	 Since by lemma 1.9 (ii) , M(T) is a subspace,

Tx E M(T), x E M
b
(T) a M(T) together imply

Tx - bx E M(T) .

But by corollary 1.14,

<Tx - bx, y> = 0 whenever y E M(T) .

1 . 1
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Taking y = Tx - bx, we have 1Tx - bx11 2 = 0. Consequently

Tx = bx and so by lemma 1.9 (i), T*x = Sx.

All the above corollaries are due to Embry. We give

below another inequality given by her (with modified proof),

from which orthogonality of subspaces associated with adjacent

extreme points of W(T) can be deduced.

Theorem 1.16	 Let b and c be adjacent extreme

Points of W(T) and

c	 _T) and 2;	 nen

<x7	 Hx,I R4 •

In particular,	 = 0 wiienever
	

(T) and

M (T)

Proof	 Without loss of generality, we may take

b = 0,

c = 1,

Im W(T)	 0 (or .� 0)

and L n W(T) c R
+ 

.

For any complex scalar A, if x + )7 = 0, we have
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<x,y>	 —	 )(11	 y 1
=o.

So let us assume that x + Ay 	 0.

Consider elements of W(T) of the form

g n)
	 2\\.7)

	
+

11X	 Xy L 2

i 2 <Ty,y> + 7 <Tx,y> +	 <Ty,x>
x + Xy112

X 2	 (1 - t)
	 l v 1! 2

7

since lemma 1.8, with our assumptions, gives Tx = T*x and

by corollary 1.14, <Tx,y> = 0.

Thus g(X) is real and hence must belong to [0,1].

So we have

X 2 (1 - t)
	
Y 2	 ix + Ay 2

or

A 2 (1 - t) 2 +	 2 Hy 2	 2Re (X <x/Y>)



Choose any A so that

Re (T <x,y>) - i<xv>
i 	 r 1

Hence

t2 2 HY11 2 ± 2	 1	 < x ,Y > 1 + 11 x 11 2	 �- 0 -

23.

...(1.4)

Then the condition that

41<x,y	 2	 4t

that is ,

1<x,v>1

satisfies (1.4) gives

lyl 2	 C

XIII,	 HY

The following theorem of Embry (1975) considers two

lines of support of W(T) and relates the subsets associated

with them to each other.

Theorem 1.17
	

Let L and L he two non-parallel lines
 2

of support intersecting at the point 	 Let

{M
. (T) = X E H• < mx,x> - 2 H1/4711 2= 0,	 E L,	 j = 1,2.

Then

<(L - c)x, 2x> = 0 wheneverl E	 1,2.
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Proof	 Let 0 j be the acute angle between L j and

the real axis. Let

x.EM.(T),	 j = 1,2.

Then by lemma 1.9 (i),

ie •
(T*-c)x.=0,	 j = 1,2.

D	 3

Thus

2i0
e	 1 <(T - c)x,, x2>

= <(T* - C)xl,

= <x 1 , (T - c) x2>

= <x , e-21e2 (Tw	 c)x 2

= e
2ie2 

<(T	 C)X1,

Since L 1 and L2 are non-parallel, e
2ie 1 0 e 2ie 2

and hence <(T - c)x l , x 2 > = 0.

E

In this chapter we have dealt with the numerical range

as a convex set and defined subsets M z
(T), M(T) associated

with its different points and lines of support.
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In section 1.3, conditions for linearity of these sub-

sets have been examined. We also saw how the argument given in

the proof of convexity of the numerical range from section 1.2

can be conveniently applied to the proof of the main lemma

required for characterization of the numerical range by these

subsets.

In section 1.4, we gave two inequalities for the vectors

from these subsets and saw how a result from. the previous

section, namely, linearity of Mz
(T) when z is an extreme

point of W(T), can be deduced as a corollary of one of these

inequalities.

Note that all these theorems are inaiplicable to the

unattained boundary points of the numerical range. So a need

for extension of these results to all points in the closure

of the numerical range is realized. In our next chapter we

attempt to supply such an extension.



Chapter 2

SUBSETS CHARACTERIZING THE CLOSURE

OF THE NUMERICAL RANGE

2.1	 Introduction

In this chapter we attempt to generalize all the results

of Embry given in the previous chapter. We define certain sub-

sets associated with each point of the closure of the numerical

range. As we see in section 2.2, these sets are very similar in

properties to those defined in Chapter 1. But they consist of

bounded sequences of vectors from the Hilbert space.

Let W(T) denote the closure of W(T). 	 Since W(T)

is convex, so is W(T) . 	 But an extreme point of W(T) need

not be an extreme point of W(T) 	 and vice versa. Also a non-

extreme boundary point of W(T) 	 can be an extreme point of

W(T) or may not belong to W(T) at all.

In sections 2.3, 2.6 and 2.9 we show that the subset associ-

ated with an extreme point of the closure of the numerical ranae

is in fact a subspace and if the subset associated with a

point of W(T) 	 is linear, then the point has to be extreme.

We then consider the case when the point is a nonextreme

boundary point or an interior point of W(T) 	 and achieve

results of the same type, but not exactly similar to those given

by Embry for corresponding points of the numerical range.

26.



27.

To prove some of these results a modification of a

technique given by Berberian (1962) and Berberian and Orland

(1967) proves very useful, though the results can be obtained

without the use of this technique as well. For example, Das

and Craven proved the linearity of the subset associated with

an extreme point of W(T) by a direct method. This has been

illustrated in section 2.3. However, since our technique has

many applications we shall use it frequently throughout our

dissertation.

By using this technique we extend the Hilbert space to

another Hilbert space and consider a faithful *-representation

of our operator on this new s pace. The numerical ranges of

these two operators are related; in fact the numerical range

of the new operator is the closure of the numerical range of the

original one. This was first shown by Berberian and Orland

(1967). However, we shall prove this result without a Banach

algebra approach. This enables us to use known results

on numerical ranges 	 for this new space and operator. Often

this involves some calculations. Thus we obtain results for

the closure of the numerical range. Sections 2.4 and 2.5 of

this chapter explain this technique in detail.

In section 2.4 we develop a technical lemma to show

the existence of a normalized positive linear functional which

strictly separates any non-null sequence of positive numbers

from the set of real null sequences. This functional has all
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the properties of a Banach-Mazur generalized limit except

translation invariance. We modify Berberian's technique in

that we use this new functional instead of the Banach-Mazur

generalized limit to define a pseudo-inner product on the space

of bounded sequences of vectors- from our Hilbert space.

Positivity of this functional is essential to our proofs.

In sections 2.8 and 2.9 we generalize the Cauchy-

Schwartz type inequalities given in the first chapter to

sequences of vectors. To do this we first use Berberian's

technique and then use a direct method by which stronger ine-

qualities can be obtained. From one of these inequalities we

see that the results of Das and Craven can be deduced as a

corollary.

2.2	 Certain Subsets and Their Properties

Let	 (H) be the set of all bounded sequences of

vectors from H. We associate certain subsets of 	 (H) with

different points of the convex set W(T).	 The definitions

of these subsets are given below.

Definition 2.1	 The set
	

N z (T) corresponding to each

point z in W(T) 	 is given by

N
z
 (T) =	 (xn

)(H
oc,

: <Tx,x 
n 

- zn n



and

NL (T) =	 (xn
) E	 (H) : infl<Tx n ,xn > -- z1

zEL
x	 1121'4-0n "

29.

yN (T) is the linear span of N z (T). The sets N(T) and

NL (T) corresponding to a line of support L of W(T) are.

defined by

N(T) = {(xn ) E i co (H) : <Txn ,xn> - z xn 112	 0, zeLn W(T)

NOTE:	 i) N z (T) is closed and homogeneous.

ii) Since N z
(T) is homogeneous,

iN z (T) = N z (T) + Nz(T)

{=
	 (x n + yn ) : (xn ), (yn ) E N z (T)j .

iii) N(T) =	 u	 1\1 (T)	 .
zEL	 z

iv) If we look upon H as embedded in 2,(H)

with the correspondence x 	 (x,x,...), then

Mz
(T) (defined in the last chapter) is embedded

as subset of N z (T) whenever z E W(T). For

unattained boundary points of W(T), M z (T)

will consist of the zero vector only, while

Nz
(T) will be a nontrivial set of sequences.

Similar relations hold for M(T) and N(T).



v) If L is a line of support of W(T) and

	

zcl,r1W(T),	 then

N z (T) c N(T) c NL (T)

A question likely to be asked is whether N(T) and

NL (T). are closed subspaces. The author is unable to prove the

linearity of N(T), though lemma 2.3 will show that N(T) is

closed.

The following standard theorem from Real Analysis is

needed in the proof of lemma 2.3.

Theorem 2.2 (Iterated Limit Theorem)	 Let (a ) be
mn

a double sequence	 Suppose tkat the single limits

- = -; m f
- ,,a	 -,, exst for all natural numbersb

m 
= lim(a

mn
),

n	 mnn	 m

m and n, and that the convergence of one of these collections

is uniform. Then both interated	 = m ) and

c = Gim(c ) exl.st and are
n n

Lemma 2.3
	

Let L be a line of support of W(T) and

N(T) = {(xn) 
E	 (H) : <Tx

n'
x
n 

—1

I

co
"	 0, SeLnW(T)1 .

Then 17(T) is closed in the norm topology of Z.(1-.7).

Proof
	 If L n W(T) 	 consists of only one point z

then N(T) = N z
(T) and without loss of generality we may take

30.

z = 0.



Let x (m) x °	 in k (H) as m	 0. where
00

31.

	

x (m) = (x (m)	 (m)(m x (m), x	 )

	

1	 2 ,	 •••"	 n	 •

and

°x (0) = ( x (o)	 x(o)1 ,	 2 ,	 •' x
(
 n

)
	 '-')

Thus

11(1-1)	 (c	 p- x ) !	 0

and hence (x (m) ) converges uniformly to

(m)Let x	 E N (T) for each m, that is, for each m,

<Tx (m) , x (m) >	 0	 as n	 0z)

(	 )	 ( ° )We have to show <Tx	 , x	 -÷ 0 .	 Obviously as

1 1 	 (m)	 (°),HX	 — X sup	 (m)x	 - x (0) 11	 0

we have for each n

x (m) Y x ( ° )	 as	 M –>- co

n	 n

Thus for each n,

<Tx (m)	 v (m) >	 <Tx ( ° )	 )
, x

(	
> as

n n
M	 CO
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lirn <Tx 
(M)	 (M) >	

11M
<Tx (m)	 (m)Hence	 , x	 and	 , x	 > both exist for

nn	

all natural numbers m and n. 	 Also the convergence of

( <Tx (M)	 (M) >)	 as, X	 m	 oo is uniform.

Thus considering a complex sequence as a sequence in

R 2 , we can apply theorem 2.2 to the double sequence

<Tx (m) , x (m) > and so conclude that both iterated limits are

equal, that is,

lim lim	 (m)	 On) >Ulm	
<Tx 

(m)
,	 (M) > =	 < Tx

(m)
	 xn m n 

liml
But the left hand side limit is nothing but 	 <Tx(

c
"), x ) >

	

n	 nn
urn <Tx 

(m)	 (m)
and since for each m, 	 , x	 > = 0, the right hand

n	 n	 n

side limit is zero.

lim o	 (°)
So,	 <Tx'

n
" x r > = 0. Hence N(T) is closed.

n

If L r. W(T) 	 is not a single point, then by a suitable trans-

lation and rotation, without loss of generality we may take

L n W(T) 	 = [0,1]

and

Ira W(T) %. 0

In this case if x
(m) c N(T), we have for all m

<Tx ( M )	 (m) > — z (m) x (m) 2 +0 where	 z (In) E [0 , 1] .
n

, X 
n	 n



We have to show

	

<Tx
(o)

, x
()
	-	 IX 

(o) 
11 

2 ---, 0	 for some	 [0,1].n	 n	 '	 n "

As before, the convergences

<Tx (M)	 (M), x	 >	 <Tx( c), x( )> as m	 00
n 	 n

and

(m)	 as m

are uniform.

If z (m) does not converge, there exists a subse-
(rnk )

quence z	 such that

33.

z
(rnk )	 (rn

k
)

-± z E [ 0 ,1] , as [0,1]	 .

(m
k )	 (ink )	 (m

k
)	 (m

k
),	 2Thus <Tx	 , x	 > - z	 H x n

n	 n

<Tx (0 ) , x (o ) > — Z HX (T,)11 2H	 as m ->..
n	 n

converges uniformly to

Also,

lim(m)	 (m)	 (m)
I<Tx	 , x	 > - z	 'x	

2] = 0
nn	 n n



34.

(mk )	 (m )	 (mk )
Hence <Tx	 , x	 > - z

n
2 must tend to zero as

n 	 0D.

Now application of theorem 2.2 gives the two iterated

limits are equal, that is,

lim 0 )	 (0 )[<Tx	 , x	 - z1nn	
x o )n 2	 = 0 .

0

We shall need the following lemma to show that

N (T) is a closed subspace.
L

Lemma 2.4
	 For a pos-i,-,;-.7.)e crogratoy,	and (a

n
) in

r

<Sx.	 x>	 0 if and on 7,7,/	 sx
n

-± 0 .
n n 

Proof	 If Sx
n
	0, obviously <Sx

n
, x

n
= , 0. For the

converse, let	 be the positive square root of S.	 Then

<Sx, x n
	 0 implies
n 

3a x 0

and hence

Sxn =
1/S xn

0
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Lemma 2.5
	

Let L be a Zinc ' support of W(T) and

N
L
(T) = {(x ) E (H) : 

in
f 1<

2EL 
'-n

, -	 11- 11 2 1	 0}
II	 I

Let 6 = 0
	

is parallel to the imaginary axis, other-

wise Zet e be the acute angle between L and the real

axis. Then for an? z E L we have

7."1
i) NL (T) = (x,) E	 (H) :e (T - Z) :Z7	 2,)x	 01 , and

ii) N (T) is a closed subs pace	 (H).

Proof	 By carrying out the standard reduction

T	 ei
e (T - zI), we may, without loss of generality, assume

that

L is the Imaginary axis

and

Re W(T)	 0 .

Then

NL (T) = I (H)	 Re <Tx
n
 x n

>

=	 (x
n

)	 (H) <Re Tx, x 
n
	 0

n	
}

= i(xn ) C I (H) : Re Tx n	
01

by lemma 2.4 as Re W(T) �. 0 implies Re T is positive.



Also,

e ie e —ie (T* - z)xn	 0}(xn )	 (H)	 (T - z ) xn

= -1(x ) E k (H)	 (T - ib)xn + (T* + ib)x n	0n
[by the choice of 0 and z]

= f(x ) E 9 ix, (11) : Re Txnn

This proves part (i) of the lemma. Part (ii) follows

immediately.

2.3	 Linearity on the Boundary of the Numerical Range

Das and Craven first generalized theorem 1.11 (i)

for extreme points of W(T). 	 We shall here give their proof

(modified) of this generalized theorem and then use a technique

given by Berberian to give an alternative proof which is more

conceptual and less computational in the next section.

Theorem 2.6	 For anu 	 a in W(T) - , Let

( )xn) E	 (H) : <Tx n'n> -

Then	 (T) is a subspace of kco (H) if and only	 z is
2

an extreme point of WM-.

Proof	 Without loss of generality we may assume that

z = 0 and Re W(T)	 0

36.



Suppose z is an extreme point of W(T) 	 Homogeneity

being obvious we only have to prove linearity of N z (T).

Let	 (x), (yn )	 N, (T). Since <Re Tx n , xn >	 0n	 ,

lemma 2.4 gives Re Txn	. Thus

<T (xn+yn
) , x n+yn > - [ <Tx ,x > + <Ty n

,y
n > 2iIm<Txn' yn >] 0 .n n

Since <Tx, x n 
> and < Ty n , yn > both tend to zero, we only
n 

have to show Im <Tx , v >	 O.	 If Im <Tx , v > does notn n	 n n

tend to zero, we will get a contradiction as shown below.

Case 1	 and	 11x - v	 are bounded away
" n	 -n-	 n

from zero for all n.

Passing on to subsequences if necessary, we may, with-

out loss of generality, assume

Im <Tx , v >
n -n

+	 H2
n vn "

37.

-÷ a

and

xn 2

b   

xn	Yn 
2

where a, b are nonzero real numbers.



<T (x + y
n
), x

n
 + y

n
>

n 

x
n 

+ y
n 

2

<T(x - y 
n 
), x

n
 - y

n
>

n 

1 11	 - y
	 12

38.

Thus

and

2ia

-21b

Since Zia and -2ib belong to W(T) 	 and b> 0, this

contradicts that 0 is an extreme point of W(T).

Case 2
	

Lxn 
	

Yn
	 is not bounded away

from zero.

Consider the disjoint partition of the sequence (n)

of all natural numbers such that 

( n ) = (n`) IT   

and

mini, + y
nn   

T  
x
n , Yn 2M

where M is an upper bound for



Since

<Tx
n	yn

,> 1<Txn ,, x	 >1 + 1<Tx
n'	

x
nn''

39.

we have

<Tx
n'

, y
n'

>	 1<Tx
'

,
n

Thus, since <Tx '
, x

n'
> -4- 0, <Txn	yn

,>1 can be made less
n 

than	 by choosing n' sufficiently large. For the sequence

(n"), we can apply case I. Hence N z
(T)	 is linear.

For the converse, if z is not an extreme point of

W(T), then either z is an interior point of W(T) and

theorem 1.11 (i) shows that M z
(T) and hence N

z
( 7 ) is not

linear; or z is a nonextreme boundary point of W(T) , that

is, there exist two sequences of unit vectors (x n
), (v ) such

n

that

<Tx, x 
n 

> -4- ia	 and	 <Tyn, yn > -i- -ia (say).
n 

Let	 = x + iy.	 Then

<T(x + Ay
n
), x

n
+ Ay

n-
> - ia (1 - 1;11 2 ) -2ilm(7.<Tx

n
, 

n
>) -4- 0.

n 



Passing on to a subsequence if necessary, we may assume

Im (T<Tx n , yn >)	 b + is .

Thus

<T (xn + Xyn) , xn + Xyn> ia ( 1 - 	 2 )	 2i (cx - by) .

Hence

(x
n 

+ Ay
n
) E N0 (T)

for at least two distinct values of A satisfying the equation

of the circle

2(by -	 cx) x 2 + y 2 	 1 = 0a

This shows Nz
(T) is not linear.

The following interesting example given by Das and

Craven shows that though N z (T) is linear whenever z is an

extreme point of W(T) , the set

N (T) =	 (x)	 : <Tx
n' 

x
n	 n
>/HxH2z	 n 

40.

which is quite similar to N z (T) is not necessarily linear.



Thus n = HY-n

e + e'
1 and Vx = 

n	 n O.n 11 + n2

<Txn , x
n >	 <Tyn , y >and	 tend

Ilxn 	Yn 
2

and we note that though both

41.

Suppose (e n ) and (e') are two disjoint sets of

orthonormal elements of H. 	 Define a linear operator V

such that

Ven = e

and

Ve' = 1 e' .
n n n

It is easy to verify that V is selfadjoint.

Let

e
n
 + ne'	 e n - ne'

xn = 	 	 and Yn = 	1'1 + n 2	/1 + n2

Similarly Vyn 	 0.

If we define T = V 2 , then 0 is an extreme point of W(T)

to zero,

<T(xn + y n ), 
xn 

+ v >
-n

1 for all n.  
x n + yn 

2

This shows that N (T) is not linear.
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In the next few sections we construct an alternative

approach to establish the result given in theorem 2.6. We employ

a technique of S.K. Berberian (1962) and S.K. Berberian and

G.H. Orland (1967). This approach appears to be more conceptual

in that it enables us to deduce theorem 2.6 from theorem 1.11 (i).

It also allows us to deduce sufficiency in the same theorem as a

corollary from a Cauchy-Schwartz type inequality.

Using the same technique other results may also be

generalized to unattained boundary points of the numerical

range. This is illustrated in section 2.8 where we extend results

of Embry (1975).

The results in sections 2.4-2.7 (except theorem 2.8,

corollaries 2.11 and 2.12 and lemma 2.13) have been included in

a joint paper by S. Majumdar and Brailey Sims.

2.4 A Technical Lemma

Let k	 k
+
, c and c o be the sets of real bounded,cc	 cc

bounded nonnegative, convergent and null sequences respectively.

Let x = (xx	 x1 1 2 / ••• I	 I-- • ) ca:	 and	 k*	 be the dual ofn  

We prove a simple lemma which will be used in the

following sections to achieve our main results.



Lemma 2.7 For anv v c 0\c o, there existe f E
c0 00

43.

such that

i) f(y)	 0,

ii) f is positive, that is, -4.('''/ > 0 'or alli t-, .	 x E k+,

iii) f(e) = 1 Where e = (1,1,—) and so-,,,	 IfH = 1,

iv) :l	 and. = 0 , arc 

A, ,v) for all x -	 lir? in: -	 '(x) .� lim sup xn; incc	 n
particuLar, for :3,- E c, 	 = lim	 .

	

In other Words,	 ma2, be strictly senaruted from c o by a

'normal zed z)ositive "Lnear functional '.

Proof	 Let A =
cc : 

lim sup xn	 0}.	 We shall

show that A = c o - k

Let x= s- t where s E Co	 and suppose
cc.

lim sup x	 0.

Take 0 < e < 2 lim sup x
n

then there exist but a finite number of terms of s greater

than e and hence only a finite number of terms of x greater

than e.	 This contradicts that the limit superior of x is

strictly positive. So x E A.

Conversely, let x E A. Write x = s
n
 + t	 where

n 

n

S
n =

Obviously,	 (s n ) t c O

if x	 0 ,n

otherwise.

and	 (t) E
n CO



So x E c, - k

To prove that A is closed, let x be a limit point of A,

that is,

11x - x (m)
sup, (m)	

-± 0 as m	 co, where x (m) a A.n n

Therefore, for given a > 0,

GTO

Xn - X n

for sufficiently large m and all n.

Assume a = lim sup x n > 0.

So (a - E., a + a) where a = -9-- must contain an infinite4

number of x n and consequently an infinite number of x
(m)

for sufficiently large m. 	 This contradicts that x (m) c A.

Convexity being obvious, we conclude that A is a

closed convex subset of S., 
CC

Obviously, y 4 A since y E LI\c„. Hence by the

separation theorem, there exists g E cc with

g(y) > 0 = sup g(A) .

44.

CO

< a

If x E c o , then x, -x E c, C A.



So g(-x)	 0,	 or,	 g(x)	 0;

that is, g is positive on

Further, Hyli e - y E Z+cc

So g(H y e - y)	 0 and we get g(e) > 0.

Write f = g/g(e).

So f(e) = 1 and f is positive.

Thus	 f(11 x e - x)	 0,

or	 f(x)
	

x 11 •

Thus	 H	 1,

but since f(e) = 1, this gives 	 11 fH = 1.

Again f((lim sup x r )e - x)	 0,

that is, lim sup xn	f(x).

Similarly, lim inf x	 f(x).

Hence f satisfies all the pro perties required in

lemma 2.7.

O

2.5	 A Modification of Berberian's Technique

S.K. Berberian (1962) used the existence of a Banach-

Mazur generalized limit, glim, for bounded sequences of real

numbers to introduce a pseudo-inner product on k oo (H) and there-

by obtained a Hilbert space extension K of H. 	 In fact glim

was only required to be an element of k + satisfying the

properties (ii) to (v) of section 2.4. Thus for every f of

the type described by lemma 2.7 we have the following construc-

tion.

45.



An extension K of H

Suppose s = (xn ) and t = (yn ) belong to kc„(H).

Since 1<x
n
, y

n
>1	 Lx

n.	Yn
	 it is permissible to define

(s,t) = f((Re <xv >)) + if ((Im <x	 v >)) .n' -n	 n -n

Evidently, (1)(s,t) is a pseudo-inner product on(H) anda

 satisfies the Cauchy-Schwartz inequality, hence

N= 1 s c	 (H)	 : d(.s;, ․ ) = 0

= ),s	 : c,(s,t) = C	 for all (H) I

is a closed (can be easil y verified from the properties of f)

subspace of C(H).

We write s' for the coset s + N and define the

quotient inner product space

K = k (H) /N

with inner product

46.

<s', t'= = 4(s,t).
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If x is in H, we write (x) for the sequence all of whose

terms are x and x' for the coset (x) + k .	 Hence

<x'	 = <x,y> and x	 x' is an isometric linear map of H

onto a closed subspace H' of K.

A representation of B(H)

Every operator T in H determines an operator T°

in K as follows.

Since	 r,''
	 11TH

if	 (x)	 Q 	 so is	 (Tx).
n
	

n

Define the linear map T, : 	 (H)	 t (H) by T o s = (Tx
n
).

by positivit y of o we have

c(T,s, T s)
	 s , ․ )	 .	 ...(2.1)

This shows that if s 	 that is 4)(s, ․ ) = 0, then

(T o s, T o s) = 0

To s 6 N .

Thus the linear map T° : K T K defined by T°s' = (Ts)' iso 

well defined and since from (2.1),

and hence

<T°s',	 HT
	

s > for all s' 6
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T° is continuous and	 +!T°1
	

IITII .

But T° x' = (Tx)' for all x E H and hence	 HT°I1	 HTH.

Thus we have HT°H = HT

It can be easily verified that the mapping T 	 T° is

a faithful *-representation of B(H) into B(K), that is

for S,T E B(H) ,

i) (S + T) °	 S° + T°

ii) (?,T) ° = 2,T°

iii) (ST)' = S°T°

iv) (T*)' = (T°)*

v) I° = I, ana

vi) T° 11 =

Also it is easily seen that T is positive if and

only if T° is positive.

Berberian and Orland (1967) have shown in the propo-

sition of section 3 of their paper that W(T°) = W(T). 	 This

fact is basic to our proofs. We give below a simple proof of

this result, which, unlike the proof given by Berberian and

Orland, needs no reference to Banach algebra; and instead

makes use of a normalized positive :Linear functional f with

the properties given in lemma 2.7. This proof was suggested

to the author by B. Sims.



Theorem 2.8	 For any operator T in H, W(T°)

is closed; indeed, W(T°)	 W(T)-.

Proof	 The inclusion W(T) C W(T°) can be shown as

follows.

Let X = lim<Tx
' xn	 n	 n

> where	 (x ) E k (H),	 =1.n 

Writing s = (x
n
) and s' = s + N as before, we have

s'	 = 1 and

<T°s',s'= = f((Re<Tx,x 
n	 n n
>)) + if((Im<Tx,x>))
n 

(where = is as described in lemma 2.7)

= lim<Tx , x> = X
n	 n

For the converse we show 	 4 W(T) 	 implies

X fi• W(T°).

If n	 W(T), there exists a half-plane u such

that A 4 U and W(T) C U.	 Thus by carrying out the standard

transformation T	 aT + 1-3 with suitably chosen complex a	 ,

without loss of generality we may assume A = 0 and Re W(T) < 0.

It will be sufficient to show that

49.

sup Re W(T°) .< sup Re W(T) .



Let u E W(T°).

Then

Re U = f((Re <Txn ,xn > ))	 for some (xn ) with f((Hx n H 2 )) =1,

= f((Re
n

 11xn112))

where n E W(T).

(If x
n 
= 0 for some n, we put li n equal to any point of

W(T) . )

Thus

Re	 f(Gx
n
 1 2 sup Re W(T)))

by positivity of f,

or,	 Re 1!	 sup Re W (T ) .
O

2.6	 Linearity of	 NZ(T)

We are now ready to give an alternative proof of

Theorem 2.6	 For any point z in W(T) 	 let

50.

N (T) = 1 (x )
z	 ) n

E	 (H) : <T-
, n > •- z1
n 77

12	 0}

Then(T) is a sunspace of	 (H) if and only if z is
z 

an extreme point of w(T).
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Proof	 By carrying out the standard reduction

ieT	 e (T - zI) where e is a suitably chosen real number,

we can assume without loss of generality that z = 0 and

Re W(T)	 0.

We first prove sufficiency. Homogeneity being clear,

we need prove only linearity of N z (T).

By the construction of section 2.5, for each f of

the type described in lemma 2.7 we have

w(T°) = W(T) 	 .

Indeed if <Tx n xn >	 0, then 0 = <T°s 7 , s'> where

s' = s + N,	 s = (xn ).

Now let (x), (yn	 n	 n
) be such that both <Tx, x>n 

and <Tyn , yr > tend to zero where 0 is an extreme point of

W(T) .

Then < T°s', s l > = <T°t', t'> = 0 is an extreme point of W(T°).

So by theorem 1.11 (i),

<T° (s' + t'), s' ± t I > = 0,

or

<T(x + yn )', (xn + yn
)'> = 0 .

n 



Thus by the form of the inner product in K, for every

possible choice of f we have

f((Re <T(x n + yn ), x n + yn >))	 0	 ..(2.2)

52.

and

f((Im <T(xn
 + y

n
), x + v >)) = 0 .

n	 'n ...(2.3)

Now a = (a ) = (Re <T(x + y ), x + y >) E
cc

	and so by (2.2) and lemma 2.7, a E c o , that is, a
n	

0.

To show	 (C )	 (Im <T(x + y ), x + v	 c con 	 n

	

n	 n	 n

requires a little more work.

First note that

lim inf "n	 f()	 lim sup

Also, by (2.3), fM = 0.

Assume a = limsup

	

	 > C), then there exists a
n

subsequence (nk
) such that

Im <T(xn	ynk ), xnk 
+ y >	 a

Ink



Passing on to a further subsequence we may assume

kx
n 

+ y
n

H 	L	 0 .
k	 k

(If L = 0, then 0 contradicting a > 0.)
n
k

Thus

T(x
nk
 + y)	 x	 + v

nk	 nk nk a

;Ix
nk	 -n

k 	
Hxn	 nk
	 L2

while

	

T(x
n, 	v
	 )	

xn,-n
k	

+
n

	

K	 k  > 0
v
n

y
n

So is/L 2 E W(T).

If also b = liurn inf	 0, we would similarly have

E W(T) 	 where ;, = 0 is the limit of the norm of a

suitable subsequence of (x
n
	).

Thus	 b/92 < 0 < a/L2-

contradicting that 0 is an extreme point of W(T).

Thus at least one of a and b is zero. Now

can be decomposed as

53.

Im<

Re<

= (i3o	 (Fs	 3o)



0 n 	 a,

	

if	 •a,
=

0 otherwise.

where

54.

So	 C c o	and ae	 ,CC)	
cc

	If a = 0,	 -	
CC

and similarly

	

if b = 0,	 r+

But then for all f satisfying the conditions of lemma 2.7

we have

0 = f() = f(E, -

and so	 - ° E co

Thus	 c c o and consecruently N o (T) is linear.

To prove the converse, if 0 is not an extreme

point of W(T), then either 0 is an interior point of

W(T) and theorem 1.1 (i) shows that M ° (T)and hence N ° (T)

is not linear; or 0 is a nonextreme boundary point of W(T)-

in which case we may assume that 0 lies on the join of is

and -ib where is and -ib belong to W(T), a, b > 0. We

will show that N o (T) is not linear.
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Let s = (x
n
) and t = (v 

n
) be two sequences of

unit vectors such that

<Tx, x 
n 

>	 ia	 and	 <Tyn, yn >	 -ib .
n 

Then since <(T + T*)x
n
, x

n
> - 0, an extreme point of

W(T + T*) 	 and so an approximate eigenvalue of the Hermitian

operator T + T*, we have Tx
n
 + T*x

n
	0.

Further by passing on to subsequences if necessary,

we may assume that for any	Lal(;,<Tx , v >) is convergent

and hence it follows that (<T(x
n +
	 ), x + A >) is

-n	 n

convergent.

Now, given any f satisfying the conditions of

lemma 2.7, we have

<T°s', s'> = ia and <T°t', t'> = -ib

and so by lemma 1.10, we have

<T°(x
n
 + Xy

n
) 1 , (x

n
 + ).\,7 ) 1 > = 0

-n

for two distinct values of
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By (v) in lemma 2.7 and the construction of K, T°,

we therefore have for both these values of A that

lim <T(xn +
	 ), xn

 + Ay
n

>
-n

= f((Re	 (xn	 Av ), x + Xy >))n

+ if((Im <T (x + ),y), x + ; ,n7>))
n
	 n	 n 

= o ,

that is,	 (x n
 + Ayn ) c N

0 (T) for two distinct values of A.

Hence N e (T) is not linear.

O

2.7	 Generalization of a Cauchy-Schwartz Inequality

In theorem 1.12 we have seen a version of the Cauchy-

Schwartz inequality for the vectors associated with points of

L n W(T), where L is a line of support for W(T).	 We

translate this into a statement about sequences of vectors

associated with points of L n W(T). We then illustrate how

other results may be extended to unattained boundary points of

W(T) by deriving generalizations for some of the consequences

given in section 1.4 of Chapter 1. In particular, the results

of Das and Craven can be deduced as a corollary to a generali-

zation of a Cauchy-Schwartz inequality.
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Throughout let L be a line of support for W(T)

and let

(x
n
) E H inf

<Tx , x>	 z	 112	 -* 0
00	 zeL	 n	 n

Lemma 2.5 (ii) shows that NL (T) is a subspace of k (H).

Let f satisfy the conditions of lemma 2.7. For any

complex sequence	 Xn)
	

define f((?, n )) by

n )) = f((Re	 n )) 4- if((Im n )) .

We have the following lemma.

Lemma 2.9	 Let f be as above ana7 z be a point of

L suer tTiat eitneY, z is an extreme point of W(T) 	 or

z 4 W(T)	 TnThen for a17. (a/ ,	 E

14*(	 2,/ >)
I 	

1-	

n
2	 ,x >).)f((<7) , (T-z)2,/ >)) .n n	 -n	 -n

Proof	 By a suitable translation and rotation we may

assume that L is the imaginary axis, z = 0 and Re W(T) �. 0.

For the given f, let K and T° be as in section

2.5 and let s = (xn ), t = (yn), then

Re <T°s', s'> = f((Re <Tx, x 	 n>)) = 0 as Re Tx	 0n 



Similarly Re <T°t', t'> = 0.

Theorem 1.12 therefore applies to give

1<T°s', t'>1 2	<T°s', s'> <t', T°t'>

or, using the definition of inner product in	 K, that

f((<Tx
n
,y

n
>))
	

f((<Tx
n ,x

n >)) f((<y n
,Ty

n
>))

as required.
LI

Corollary 2.10 an extreme point of W(T)-

and L is a line of support or W(T) passing through z,

then

Zim <(T	 z)x,	 > = 0
n n

and	
iim <(T'' -	 ,	 = 0

n

f02, all (x ) E Nz (T) andn IV "T

Proof	 Without loss of generality assume z = 0, L is

the imaginary axis and Re W(T) 	 0.

Assume <Txn , yn > does not converge to 0, then

there exist subsequences (x n
), (Y ) such that either the

k

58.
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real or imaginary parts of (<Tx, <Tx , y	 form a subsequencenk n
k

\ c	 (orcc	 0 \co).

By lemma 2.7, there is an f with the stated proper-

ties such that f((<Tx, y
n
 >))	 0.

nk 

To derive a contradiction we note that (x
n

) E N
z
(T).

k

So <Tx , x> -÷ 0
n,	

nk

and
(Y ri ) E NL (T) .

k

Thus by lemma 2.9,

f((<Tx	 v	 ))) = 0.
kx

So we have

lim <(T - z)x n , yn > = 0

whenever z is an extreme point of W(T) 	 and by lemma 2.5 (i)

we also have

lim <(T* - Z)xn , yn> = 0.

Corollary 2.11
	

Let z and L be as in. eoroLlar-,,,,, 2.10.

Tf (x )IV (17) and (Ix	 g ( m)
' 

then
n	 z

lim (I - z)x = lix (T" - z)x = 0.
7i	 n
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Proof	 Again assume z = 0, L is the imaginary axis

and Re W(T)	 0.

Since (xn ) 
E Nz (T), by definition <Tx n , xn > -+ 0

and so by lemma 2.9,

f((‹Txn , yn >)) = 0	 for all	 (yn ) E NL (T) .

In particular, taking yn = Tx n we have

	

f((	 x H 2 )) = 0 .
n

Now	 (11Txn H 2 )	 is in	 c+, , so by lemma 2.7 we conclude that
cc

Tx
n
	and since Re Tx 0, that T*x

Corollary 2.12 (Des and Craven)	 2 is an

extreme point
	

W( 7) 	trien N ;7) is a suNspace o 	 r

Proof	 Homogeneity being obvious we only have to prove

linearity.

Let	 (x 
(n) 

) , (x
(2) 

) E Nz (T) .

)1	 (2)(
Thus (x	 ), (x n ) E N (T) where L is a line of supportn	 L

for W(T) passing through z.
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But N
L
(T) is a subspace by lemma 2.5 (ii). So

(x (1)	 (2)
+ X	 ) E N (T) .

Now since	 (x (i) ) E N (T), i = 1,2 and

(1)	 (2)
(x	 + x	 ) E NL ( ), by corollary 2.10,

n

lim <(T - z)x (
n

) , x (
n

) 	x () > = 0 for i = 1,2.

Hence

lim < (T - z) (x 
(1)	 (

x	
) )
	 x 

( )
+ X (2 ) > = O.

(1)	 x (2) )So	 (x	 (T) .

Let f be any linear functional satisfying the

conditions of lemma 2.7. As before, for any complex sequence

n
),	 define f((X

n
))	 by

f((X
n
)) = f((Re X

n
)) + i f((Im X

n
)) .

We have the following lemma.
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Lemma 2.13
	

Let I and c° be adjacent extreme points

and "let a = I + (1 - t)c, 0 � t < 1.	 If

(x ) E Nb (T) and	 v

type describe above,

(m,A a then for all f of the

((<xn'Yn >)) /2

	

f((	 , 1 2 ) 1 fr(112-■-n 2))

In particular,	 E 7 ( 7 ) and (z,/ ) E (T), then
-n

irr <x	 > = 0
-n

Proof	 For the given 4 let K and T° be as in

section 2.5 and let s = (x
n
), t = (y n), then an easy appli-

cation of theorem 1.16 gives

, t
	

t‘

or, in terms of f,

i 2	 t f(( 1 X n11 2 )) f	 yn	 2 ) 
)•

	In particular, if 
(Yn)	

N
c
(T), then t = 0 and

hence f((<x
n
, y

n
>)) = 0.

If <x
n
, Yn> does not converge to zero, then there

exist subsequences (x ), (y ) such that either the real orn

	

k	 "IC
imaginary parts of 

(‹xnk' 
y
n 

>) form a subsequence in
k

CE \ C 0	 (or	 1 \co).



By lemma 2.7, there is an f with the stated

properties such that

f(( < x	 y nk >))nk 

But	 (xnk) E Nb (T)	 (V	 ) E N c (T).
'	 -nk

Hence

f(( <x, y n_
K
>)) = 0

nk 

and we get a contradiction.

Therefore <x-, v > - 0.
n -n

In lemmas 2.9 and 2.13 we have obtained inequalities

in terms of f.	 As we shall see in Chapter 4, these inequali-

ties are sufficient to enable us to deduce as a corollary,

results of Garske (1979) and Das and Craven on weak convergence

on the boundary of the numerical range. However, in the next

section we use a direct method to get inequalities for the

elements of N(T) in terms of limit supremum. Property (v)

Of lemma 2.7 shows that these inequalities are sharper than

those obtained in this section. The contents of the next

section cover part of a joint paper by Das, Majumdar and Sims (1).

63.
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2.8	 Inequalities for N(T) in Terms of Limit Supremum

In theorem 1.12 we have seen a sharper version of

the Cauchy-Schwartz inequality for the vectors associated with

the points of L n W(T).	 In the last section, using a modifi-

cation of Berberian's technique which involves a change of

Hilbert space and operator via a construction based on

normalized positive linear functionals in 9* 	 we have

extended theorems 1.12 and 1.16 to the case of vectors associ-

ated with the points of L n W(T).	 Here we shall not use

this technique; instead we exploit the notions of limit supremum

and limit infimum to obtain somewhat sharper inequalities.

We prove the following theorem.

Theorem 2.14	 Let	 be a "line of sup port for TVT)

and

N(T) = (
n

) E C (H):<rx
ni
x
n
>_z	 H2

cr	 7-17. H 	 0 3	 .2 E	 n

Let z be an element of L ouch that either z is an

extreme point of W(T) or	 W(T)-.	 Then for all

(x ),	 E N(T),n	 _n

64.

Z/L7ri sups <
	 _ .24,	 2

7-2
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Proof	 Let either z be an extreme point of W(T) 	 or

z	 W(T).

Without loss of generality we can take z = 0,

W(T) - n L on the positive real axis and Im W(T) �. 0 (or � 0). We

	

may assume	 ,1 n H and	 ilynll are nonzero for all n, because

i f zero, they will not alter the inequality.

Let t1,	 be two positive real numbers such that

<Tx
n
, x 

n
> - t ;fix

n
2	 0

and

<TV ,	 >
n	 n

V	
2

-n 0.

Consider points of W(T) of the form

	

<T(x
n
 + ;‘,

n
y
n
), x

n
+	 v >

n-n

n	 n Yn 11 2

where's are complex scalars such that
n n

= n for all

n.

We have assumed + ,
n	 n-n 0 for all n, because

if xn +
	 v = 0 for some n, it will not change the inequality.

n-n

Since Im W(T) �. 0 we have Tx - T
*
x

n	 n
So

g
n

(X
n
) - h

n
(X
n

)	 0



4-	 1; 	 2

	

'	 ±t In 2 !!Vx	 i•
1 11	 2	 '	 11 -L nn 

2
-F- 2Re (;'..<Tx

n
, y

n
> )

n 

h
nn

) =

nn

y
n 

2

where

66.

Hence

im
	 o

and

Re) - h	 H- 0
n n	 " n

Thus for anv c >

+ Re gn h (	 )	 c + R e g
n
 (2,

n
)

n 

for sufficiently large n, or,

-c + lira inf Re g n 	)	 inf h
n
 ( 'A

n
)	 + lim inf. Re g

n (fi n )

If lim inf Re a (2, ) = a < 0, then there exists
-n n

(n
k
) such that

Re cr	 () .÷ a

n
k nk
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-,- 0

and hence

gn
	, n. 

) -- a	 as	 I m g	 (	 )
k x	 -k nk

So a E W(T) 	 and thus a	 0 since L n W(T) C R	 So,

-c + a	 lim inf h n n )	 c + a

where a	 0.

This shows lim inf h	 )	 C.n

Moreover, since (x +) c	 (H), we must havei, 

lim inf [t 1)<:	 V 1 ,1 2	 2Re (7 n <Tx	 v >)]n •	
0

n -n

Choose	 such that
n

Re(T n <Tx , v	 =
n	 n xn , yn> 1

Given E > 0, we have for sufficiently large

t Lx ii 2 + t	 2 1 1 V11 2 ± 2r < Tx
n

 , y
n 
>

n	 n

So, by the condition for the above inequality to have solutions,

41<Tx ,v	 4t 21n -n Yn
2 (t1 Lxn l 2 ±	 O.



Hence

lim sup[1<Txn,yn HTx,x
n >11<TY11,Yn>1]	

0
n 
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A somewhat similar argument [see K.C. Das S. Majumdar

and Brailey Sims (1)] yields the corresponding result for

NL (T), from which the result of Das and Craven for an extreme

point of W(T) 	 can be deduced as a corollary.

Corollary 2.15
	 Tf S E L is an extreme point of

4' (7 , then

<( rn - n

one
<(T �' -

where (x ) E P (L) and (72 ) c 0(0).n -n

Proof	 By theorem 2.14, obviously <(T - z)x ,v >
n Y.

and since (y n ) E N(T) c N
L
(T), lemma. 2.5 (i) gives

<(T* - z)x
n
,y

n
>	 O.

Theorem 2.16	 Let b arc c be a2jacent extreme

points of W(T) - ano7 i,e;, a = tb + (1 - t) c,	 0	 t	 2.

If (xn) E Nb (T ) and (v )	 N (_7), then
`n

"Lim sue
	 -	 11 X
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Proof	 Without loss of generality we may take b = 0,

c = 1 and W(T) n L on positive real axis.

Let X 's be complex scalars such that

for all n.

If x
n
 + X

n
y
n 
= 0 for some n, we have

1<x
n
,y

n
>1 - /Ellx n 	 Hy H = 0

So let us assume that x n
 + X

n
y
n 

7.= 0 for any n. Consider

<T(x
n
 + X

n
y
n
), x

n
+ A v >

n-n
v H2

n" n

Since <Txn , yn >	 0 by corollary 2.15, we have

a ("'/, ) - h
n

(X
n

)
-n n

where

gn(Xn)

h
n

(X
n

)
2 (1 - t) yrH 2 

x + yn	 n n
2

Hence, by our assumption, lim sup hn (A n )	 1.



Thus for any E > 0 and lar ge n

T1 2 (1-t) HYn 11 2 	 (1+E) [ 2	 11 2	 7
Xn 	 + n 2 

IH.7	 + zRe A n <xn ,yn >)	 ." n

X	 can be so chosen thatn

Re(X	 <x v >) = ± 1-1 <xn' y > I .n 

Hence

70.

4_	 2 1!
11V 11 2 ± 2	 <xn r,Y-n

-E 
n n1 n -Ms

where ,/R is an upper bound for	 + nHy
n
	 So

<Xn ,Yn> 2	 HXn H 2 1 yn 2	 MEt 1; yr 11 2	 Mmtc

where m is an upper bound for Hence

lim sup [ <.X y > 12

n' n xn H H yn	 ]	 0 .
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It is worth noting that since for each z E L, a

line of support for W(T),

NL (T) =	 (x
n
) E 1 (H) : e

i E (T-z) x
n
 - e ie (T*-z)x

ncc

where e is the acute angle between L and the imaginary axis,

(Txn ) E NL (T) if and only if (T*x ) E N (T)	 for any operator

T.	 Furthermore, if (x
n
) is a non-null sequence of N

L
(T)

and Tx
n
 - zx

n
	, then necessarily z E L and T*x

n
 - zx

n
 0.

Thus if (x
n
) is a bounded sequence of approximate

eigenvectors associated with the boundar y of W(T) - and (v )-n

is a bounded se quence of approximate eigenvectors for some other

approximate eigenvalue, then <x,
Yn

>	 0. This may be compared
n 

with the similar results for eigenvalues (see, for example,

Embry (1975)).

For convexoid operators, that is, the operators for

which W(T)	 is the convex hull of the spectrum, any extreme

point of W(T) 	 is an approximate eigenvalue, and so this will

hold for all extreme points of W(T) - .	 Theorem 2.16 shows

that <x ,y >	 0 whenever (x
n
) c Nb (T),	 (y

n
)	 N

c
(T)n -n

where b and c are adjacent extreme points of W(T).

The following generalization of theorem 1.17 is true

for two non-parallel lines of su pport of W(T).
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Theorem 2.17	 het L 1 and L 2 be two non-parallel

lines of support	 iti'(T!, L n 2 =	 and

E	 ( E ) : < rn-
nn

>
cc,

H 2
E	 nW(T)

=

/1;	 (	 •
(Then <(T - c)x	 , "v.	 ' > -÷ 0 whenever (x (0) ) E N . (T).

Proof
	

Let e, be the acute angle between	 and the

imaginary axis.

)(x (j )Let	 j = 1,2.

Then since N. (T) = 1,2 and by lemma 2.5 (i),

-1■1	 (	 )	 =

L
xn )

CC

ie.	 -iE.
e	 (T-c)x	 e	 (T*-c)xn

= 1,2 ,

we have

ie.	 -i6.
e	 j (T-c)x (i) -e	 J(T*-c)x(i)	 0, j = 1,2 .

A simple manipulation shows that

(a)	
210 22ie	

(a)	 (2)
e	 <(T-c)x () 	 2)

	

,x ( > - e	 <(T-c)x n ,x	 > 0
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2ie
Since L , L	 are non-parallel, e
	 1	

e
	

and hence

( 1)	 ( 	 )<	 x	 , x	 >	 0 .

In this section we have seen how the orthogonal

tendency of vectors can be derived from Cauchy-Schwartz type

inequalities. We have also mentioned that the result of Das and

Craven can be deduced as a corollary to a similar inequality for

elementsofi\L(T).	 This result is based on the case when z

is an extreme point of W(T) - .	 The cases when z is a non-

extreme boundary point or an interior point of W(T) - will be

discussed in the next section. The contents of the next section

have been used in a joint paper by Das, Majumdar and Sims (2).

2.9	 Characterization of W(T)-

Theorem 1.11 of Chapter 1 characterizes every point

of W(T) as either an extreme point or a nonextreme boundary

point or an interior point in terms of the subset M
z
(T) and

its linear span iM z (T) where

Mz (T) : <Tx, x> - z x 2 =	 .

This theorem, though very interesting, cannot characterize the

unattained boundary points of the numerical range.
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In this section we attempt to fill this gap by

achieving a generalization of these results which can be applied

to every point of W(T).	 In section 2.3 we have seen that

the corresponding result to theorem 1.11 (i) holds for N z (T)

when z is an extreme point cf W(T). 	 In section 2.6 we

proved the same result from another approach involving Berberian's

technique. The cases when z is a nonextreme boundary or an

interior point of W(T) 	 are yet tc be considered. We begin

by -proving the following preliminary lemma.

Lemma 2.18
	 Let 2 be 'LK trace interior of a. line segment

enDo-,:nts a ana a	 n W(T) - .	 Men tne set

-T ( r7 ) c	 (T) where

=	 ) : < mx ,a > I	 I	 2	 .4. 

1,7 II

Proof	 Let (xn ) E	 (H) be such that

<Txn , xn > / n
 2	 a .

Without loss of generality we may take a = 1, b = 0 and

I
	 = 1.

Let
	

(Yn) 
E \ (T) ,	 1111 = 1.

By separately rotating each yn we may, without loss of

generality, assume

Re <Im Txn , yn > = 0 .



= r	 y , r
n
 c R. Then

n n

<Im Thn h
n
>	 r 2 < Im Txn

 , x
n
> + <Im Ty

n
 , y

n
 > + 2r

nRe<Im Tx , v > -÷0n n

with our assumptions.

So Im<Th
n
, h

n
> -,- 0.

For large n and any fixed z E (0,1) , consider the equation

<Re Th
n
, h

n
> - z lh

n
	 ...(2.4)

We want to show the existence of two distinct real values of r n

such that (2.4) holds.	 (2.4) is equivalent to

r 2 (< Re Tx, xn
> - z) 2r

n
 Re < ( Re T -z ) x

n
,y

n
>

n	 n 

(<Re Tyn ,yn > - z)	 .

Let E = <Re Tx
n

, x 
n 

- 1 and
n 

= <Re Ty
n , n --n Then

n	
E' both tend to zero as n	 co.	 Hence (2.4) is equiva-

lent to

r 2 (1-Z-FE
n
) + 2r

n
Re< (Re T-z )x , v > + (E l - z) =	 .n n

This is of the form

A r 2 + B
n 

r
n
 + C

n
 = 0.

n n

75.

Let



Now

B2 - 4A Cn	 n 
C
n

= 4 [Re	 < (Re T -z)x , v >] 2- 4 (1-z+c n ) ( z ' - z)
n n

= 4[Re < (Re T -z)x , v > r+ 4z (1-z) +	 )
n n

where C (E c 1 ) is the sum of terms containing c n
 and c'.

n n' n	 n

Thus since z is a fixed constant in 	 (0,1),	 C (E ,E')	 cann n 

be made sufficientl y small for large n so that B 2 - 4A
n
C
n
 > 0.

n

So there exist two distinct values of

(1
r	

)
,	 , (2)_	 such that

n	 n

say,

r	
n

	

(1)	 1132 - 4A C

	

- r 
( )
	

n

	

n	 n	
A

v13 2 - 4A Cn n 
But for sufficiently large n,	 is uniformly

A
bounded away from zero. So we have

(1)
(r

n 
x
n + Yn

) E N
z 
(T)

and
( 2(r	 X	 y ) E N z

 (T) ,
n n	 n

76.



that is,

(1)	 (2)
( (r	 - r	 )x ) E N(T) + N (T) = yN

z
(T)

n	 n	 7

12or,	 (X r ) E yN z (T)	 since r (n) - r (n) is uniformly bounded

away from zero.
0

Remark	 The above lemma shows an easy way to prove the

convexity of W(T)	 (theorem 1.2) as follows.

Let z lie in the interior of a line segment with

endoin s a, b E W(T).
	 Let <Tx, x> = a,	 <Ty, , y> = b,

v = 1.	 We want to show there exists an h E i- such

that	 <Th, h= /
	

1-111 2 = z.

Without loss of generality we may take a	 b = 0,

z C (0,1)	 and Re<Im Tx,y>	 O.

Since a = 1, b = 0, x and y are linearly inde-

pendent. Let h = x + ry, r E R.

Thus
	 I!	 0 and

<Im Th,h> = <Im Tx,x> + r 2 <Im Ty,y> + 2r Re<Im Tx,y>

= 0 with our assumptions.

Thus
	 <Th, h>
	 <Re Th,h>

Ihll 2
	

h 11 2
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Consider the equation

<Re T(x + ry), x + rv>  = z 	 where z c (0,1),
+ ryl;

...	 (2.5)

or

<Re Tx, x> + r 2 <Re Ty, y> + 2r Re<Re Tx, Y>
1 + r 2	 2r Re<x, y>

or

r 2 z + 2r Re< (zi - Re T)x, y> + z - 1 = 0 .

Now since

[Re < (zi - Re T)x, y>] 2 --z(z - 1) > 0

there exist two distinct values of which satisfy equation

(2.5) and thus prove the existence of h as required. Note that

in contrast with the proof of convexity given by Halmos (1967) ,

this method gives two values of r explicitly.

Now we are ready to prove the main theorem of this

78.
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section.
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Theorem 2.19	 Every element 2	 W(T) 	 can be

characterized as follows.

2 1.0 an extreme point of W(T) 	 if and only if

(T) is a subspace.

ii) if z is a nonextreme boundary point of W(T) - and

the Zine of support
	

W(T) 	 passing through 2,

then

a) V(T) -= 1v (T) + N (T).

b) N. (T) =	 if and only if W(T) - c L.

ii) 	 W(T) 	 -,c! nor- a stra-Lg, line seamen t, then z is

an int. erior :;tint of 	 and onu

N 7 (T) C ylV (T) where

{(
	 (H) : <ix gx. >N'T = (- ) En	 .	 7-

— a, a E W(T)	 .

Proof	 i) Already proved in section 2.6.

ii) (a) We first show that N a (T) c yN (T)

whenever a E W(T) n L.

Without loss of generality we may take L as the

real axis and Im W(T) �. 0.

Let	 (xn ) E Na
(T)	 andNb (T),	 11 Yr = 1.

(yn)

By multiplying (yn) with a , lal = 1, if necessary, wen 

may take Re<yn , xn = 0.



Thus corollary 2.10 gives

Re <Ty, x 	 -3- 0.n 

For each choice let table

//  a - z I xr
n 	 3 z - b k-n'

Since Im<Tv	 v >	 0 and Im W(T)	 0, we haven, n

Tv - T*v	 0 and thus-n

<Txn' Yn>	 <Tv n

Hence

<T (x +r	 ) , x + r 7,7 > -n n' n	 n	 n-

- 2Re<Ty, x 
n 

-± 0n 

,
I x + rn	 nyn

	

- [ <Tx n , x
n
> - z	 2 + r 2 <Tv ,v > - zr 2	 0n	 n • n

so that we have

<T (x +r y) , x +r v > -
n n	 n	 n-n	 z H x + r 

n-
V n H 2 -* 0

n

	with the chosen values of r	 This shows
n  

(	 zxn / z - b n 11 y n ) c N (T) ,

or, (x
n
) E iN z

 (T) 
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Thus N
a
(T) C iN

z
(T)	 for all acLnW(T), that is,

N(T) c yN z (T).	 So we have

N
z
(T) c N (T) c iN

z
 (T)

or,

which give

iN
z
 (T) = N

z 
(T) -4- N

z 
(T) c N (T) + N

z 
(T) c YN

z
 (T)	 N

z 
(T)

s

N (T) + N z (T)	 (T)

since

N z (T) c	 (T) .

(b) Without loss of generality we may take

L as the imaginary axis. So

NL (T)
I
 (x

n
)	 (H) : Re<Tx , x

 n
	 0	 .

n cc

Now if W(T) c L,

(x
n
) E
	

(H) implies Re<Tx
n
, x

n
>ax

n
H 2 = 0

for all nonzero x
n



_	 I	 2H) : <Tx ,x	 ,	 E IeC7 (T)
CC

Also if x
n
 = 0 for some n, <Txn

 x l = 0.n

Thus	 (x) E N (T),n

that is, NL (T) =

Again if W(T) 	 L, there exists	 (x
n

)	 (H),

such that Re<Tx , x > 4 0,
n n

or, equivalentl y ,	 (x) 4 N
L
(T).

n 

Hence NL (T) =	 H).

iii) If z is an interior point of W(T) , by

lemma 2.18,

N' (T) =	 x

C vN(T) ._ 

On the other hand, if z is a boundary point of

W(T), then iN(T) c N
L

(T)	 since N T (T)	 is a subspace.

But N' (T)	 is not a subset of N., (T)	 as W(T) -	 .Ld L.	 Thus
I.,

N' (T)	 is not contained in yN_(T).
4

0

In this chapter we defined the subsets N
z
(T) and

yN
z
(T);NL (for a line of

support L of W(T)) associated with points of W(T) .	 We

saw that though NT (T) and yN z (T) are subspaces, N z (T) is

so if and only if z is an extreme point of W(T) .	 Linearity

of N(T) we were unable to prove.
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Then we gave a characterization of W(T) 	 in terms

of these subsets	 and developed a modification of a useful

technique given by Berberian, which enabled us not only to prove

the linearity of N z (T) when 2 is an extreme point of

W(T), but also to achieve generalizations of Cauchy-Schwartz

type inequalities given by Embr y (1975). The use of lim i t

supremum and limit infimum hel ped us to sharpen these inequali-

ties for the elements of N(T). Many corollaries follow from

these two versions of these inequalities, for example, the

existence of limits of certain sequences of vectors and the

orthogonal tendency of vectors from N z (T) and NI(T).

Our next chapter will be on the numerical range of

different operators. We first discuss various results that

hold for points of the numerical ranc-e and then extend these

results to points of W(T) - .	 These extensions cover a part of

the paper by Das, Majumdar and Sims (1).



Chapter 3

RESULTS ON NUMERICAL RANGE

OF SPECIAL OPERATORS

3.1	 Introduction

In this chapter we obtain various results for normal,

seminormal, convexoid and other particular types of operators

in terms of their numerical range.

Embry (1971) has shown that it is possible to classify

some of these special operators by means of subsets associated

with their numerical ran ge. We have seen the definitions of

these subsets in Chapter 1. In section 3.2 we give these

theorems of Embry and then extend the results to points of the

closure of the numerical range. For this we use subsets associ-

ated with the closure of the numerical range as defined in

Chanter 2.

In section 3.3, as given by Stampfli (1966) and de

Barra (1981), we see that if the sets associated with the

numerical range are subspaces then possibly subject to some

additional conditions, they are reducing for the operator. For

example, in one of the theorems we need the operator to be semi-

normal. We also prove a theorem generalizing Lin (1975) to

obtain some necessary and sufficient conditions for an extreme

point of the closure of the numerical range of a convexoid

operator to be an eigenvalue.

84.
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All the results in section 3.3 are then extended in

section 3.4 to cover the case of unattained boundary points of

W(T).	 Berberian's technique of Chapter 2 is again used to

give a simple proof for one of these results. The same tech-

nique is used again to provide an alternative proof of the known

result that a seminormal operator is convexoid.

3.2	 Classification of Operators by M z (T)	 and tz(T)

In Chapter 1 we have defined various subsets

associated with different points of the numerical range. In

Chapter 2, following a similar line we have defined subsets

associated with different points of the closure of the numerical

range and noticed that pro perties of these two types of subsets

are very similar. It seems natural to ask whether these subsets

behave in a particular fashion if the operator T has special

characteristics or vice-versa. In this section, as shown by

Embry (1971), we prove that in many cases the type of operator

and behaviour of M z
(T) are related. We then extend these

results for elements of N (T),

We begin with the following definitions.

Definition 3.1	 The operator T is norr:aZ if TT* = T*T

and kyz, onormal if T*T - TT* is positive. T is semino2-maZ

if either T or T* is hyponormal. Also following Embry, T

is called an -i_somc,L ry if T*T = I and unitar;;,' if T*T = TT* = I.
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Let ker T denote the kernel or null space of T.

The results and proofs of this section are essentially due to

Embry (1971).

Lemma 3.2	 If f, g, h and k are bilinear functionals

on H, then the condition

f(x,x) g(x,x) = h(x,x) k(x,x) for all x E H	 ... (3.1)

is equivalent to

f y	 ,y )  = h(x, y ) x,y for al .Z. x and y	 E. ...(3.2)

Proof (outline)	 Let x, E H and X be an arbitrary

complex scalar. Substitute x + Xy for x in equation (3.1)

and equate coefficients of 7 2 to obtain equation (3.2). The

converse is obvious.

0

Theorem 3.3	 T is a scalar multip le of an isometry if

and onZu if for each complex s,

{Tx : x E M (T) c M(T) .
z 

Proof	 Equivalently we need prove that for all x E H

< T2x, Tx> 11X II 2 = < Tx, x>I1Tx112	 ...(3.3)

whenever T is a scalar multiple of an isometry and vice-versa.



Suppose equation (3.3) is true for all x E H.

Thus by lemma 3.2,

<T 2 x,Ty><x,y> = <Tx,y><Tx,Ty> for all x,y E H.

...(3.4)

Thus

,
{x} 1 	 iTx3

1 u ii*Tx11

and interchanging x and y in (3.4), we have

fx1 1 c {T*x) 1 U IT*Tx1 1 .

,
Since {y1 1 is a subspace, we get

{x} c {T*Tx} 1	or	 c {Tx} 1 n {T*x} 1 .

Both cases show the existence of a scalar r x such that

T*Tx = rx .
x

It now follows by standard arguments that T is a scalar

multiple of an isometry (see, for example, the proof of lemma

3.6 where a similar argument is detailed). The converse is

obviously true.

87.



Theorem 3.4	 T* is a scalar multiple of an isometry

if and only if for each complex z,

{T*x : x E M (T) c M (T) .z	 z

Proof	 Follows from applying theorem 3.3 to T* and

noting that M z (T*) = M i (T) for each complex z.
0

Theorem 3.5	 T is a nonzero scalar multiple of a unitary

operator if and only if for each complex

Tx : x E M(T)} = (T) .z 

Proof	 Combine theorems 3.3 and 3.4 to give T is a

scalar multiple of a unitar y operator if and only if for each

complex z both

{Tx : x E M
z
(T)} c M

z
(T)

and

{T*x : x C M z
(T)
	 c M

z 
(T) .

Thus if T is nonzero, this is equivalent to

{Tx : x E M(T) c M z (T)	 {Tx	 x c M, (T)z 

proving the result.

88.
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For the next theorem, the following lemma is required.

Lemma 3.6	 If T and A are operators on H such

that

ker T c ker A

and for each x E H either

11 Tx ll = Axis 3 or

ii) there exists a real number r
x
 such that

T*Tx = r A*4-

then T*T is a scalar multiple of A' tA .

Proof	 For x,y E H, let z = tx + (1 - t)y where

0 < t < 1.

Suppose A*Ax and A*Ay are linearly independent

and condition (ii) holds, that is, there exist real numbers r

and r such that
y

T*Tx = rx A*Ax, T*Ty	 ry A*Ay .

Hence either there exists a real number r z such that

T*Tz = r A*Az or	 = 11A2:11 .
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But if T*Tz = rz
 A*Az ,

since 0 < t < 1, linear independence of A*Ax and A*Ay

gives

r = r	 r
X	 y	 z

Now suppose r x r, then we must haveY
tx + (1 -t)y, 0 < t < 1.

Tz	 = IIAz I where

Letting t approach 1 and 0, we have

11	 and	 liTY11	 I 
Ayll	 •

Since A*Ax and A*Ay are nonzero, this gives

r = r = 1 .x 

Thus in all cases if A*Ax and A*Ay are linearly independent,

we have

rx = r	 r (say).

Now suppose A*Az and A*Ay are linearly dependent

and T*Tx = r A*Ax and T*Ty = r y A*Ay. In this case, since

ker T c ker A, we can choose r x = r = r.

So for all x E H, we have

either

HTxH = HAxH	 or	 T*Tx = r A*Ax .



This gives

liAxH	 for all x E H, or, 11Tx11	 HAXH

for all x E H

In either case the set

{X E H : HTX11 =

is linear by theorem 1.11 (i) and so

H =	x E H: T*Tx = r A*Ax a x E H: Tx I

	

11 

which shows either T*T = r A*A or T*T = A*A.

Theorem 3.7	 T is normal if and only -if for each

complex z,

: Tx E M (T)
z

x : T"x E gk (T,)} .
z 

91.
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Proof	 Suppose the above two sets are equal, then

	

<T 2 x, Tx> IIT*x 2 = <TT*x, T*x>	 112 .	 ... (3.5)

Also we note that the following are equivalent:

i) Tx = 0,

ii) Tx E M
z
(T) for all complex z,

iii) T*x E M
z
(T) for all complex z,

iv) T*x = 0,

and hence
	 ker T = ker T* .	 ...(3.6)

Using the same techniques as in theorem 3.3, we can

show that if x E H ,

either there exists b E R such that TT*x = bT*Tx,

or there exist	 c, d E R such that

TT*2x = cTT*x and T*T 2 x 	 dT*Tx .

These last two equations together with (3.5) and (3.6) give

either

Tx = T*x = 0	 ...(3.7)

or



itTx

They also imply that

T* 2x = cT*x and T e x = dTx .

Now (3.6) gives

TT*x = cTx and T*Tx 	 dT*x .

Thus if (3.7) does not hold we have

HT*XH 2 = c<Tx,x> = a<x,T*x> = IITX11 2 .

Hence we see that both T and T* satisfy the conditions of

lemma 3.6 and thus there exists a real number r such that

TT* = r T*T .

Thus r = ±1.

But if r = -1, choosing an x E ker T we arrive at the

contradiction

2 = HT * X11 2 = 0 .

93.

Hence r = 1 and so T is normal.

0



Corollary 3.8	 Let T be an invertible operator on

H.	 Then the following are equivalent:

i) T is normal;

ii) T
_ 
1x: x E M

z
(T) = T' - x : x E. k

rz
(T)}

{	
for each

complex 2;

{
iii) T-2x :x E AT (TT-1 ) = T''-ix : x E M (T''T-2 )} for2	 2

each complex z.

Proof	 If T is invertible, theorem 3.7 shows the

equivalence of (i) and (ii). Again, application of theorem 3.5

to the operator T*T -1 gives the equivalence of (i) and (iii).

0

If we look upon H as embedded in 2 c (H) with the

correspondence	 (x,x,...), then it is obvious that

(Txn
) : (xn ) E N z (T)1 C N z (T)

implies

{Tx : x E M z
(T)} C M

z
(T)

for all complex numbers of z.

94.

This enables us to generalize all the above results as

follows.



9 5 .

Theorem 3.9	 T is a scalar multiple of an isometry

if and only if for each complex z

{
(Tx) : (x) E N(T)} c N(T) .

n	 n	 z	 z 

Theorem 3.10	 T* is a scalar multiple of an isometry

if and only	 for each complex

(T'Ix) : (x ) E N (T) c N (T) .
n	 n z	 z

Theorem 3.11
	 T is a nonzero scalar multiple of a

unitary operator if and only if for each complex

{
(Tx) : (x ) E	 (T) = N (T) .

n	 n	 z 

Theorem 3.12
	

T is normal if and only if for each

complex z,

(x ) E k 0-17 ) : (Tx ) e N(T)
n	 n	 z

}

=
 {
(x) E k(N) : (T''x) c N (T) .

n	 n	 z 

Corollary 3.13	 Let T be an invertible operator.

Then the following are equivalent:

i) T is normal;

ii) {(T_ ix
n
) : (x

n
) 6 N

z
(T)} = {(T'_ lx

n
) : (xn) E N

z
(T)}

for each complex z;

{
iii)	 (T-lxn) : (xn) E N (L"T-1 ) = (T''-lxn) : (xn) C N

z
(T*T-1)

for each complex z.
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The proof for each of the above 'if and only if'

theorems consists of easy verification for one side and use of

the corresponding theorem of Embry for the converse.

3.3 Results on Attained Points of aW(T) for
Special Operators

In this section we deal with results on the attained

boundary points of the numerical range for convexoid and semi-

normal operators. As proved by Lin (1975), we obtain some

necessary and sufficient conditions for an extreme point of the

numerical range of a convexoid operator to belong to the point

spectrum. In the next section this result will be extended to

unattained boundary points of W(T).

Stampfli (1966) has shown that if T is hyponormal

and z is an extreme point of W(T), then Mz (T) is a

reducing subspace of T. de Barra (1981) has shown that for

such T, M(T) is a reducing subspace and T1M(T) is normal.

We first give these theorems for seminormal operators borrowing

proofs from Stampfli and using a modification of the proof

given by de Barra. We then show in the next section that

similar properties hold for N z (T) (with z an extreme point.

of W(T)) and NL(T).

First we recall some definitions.
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Definition 3.14	 If z E les7(T)	 and z o is the centre

of a closed disc D such that z E aD and aW(T) n D = {z},

then z

	

	 is said to be an outer centre point with respect to0

z.	 (In general take Z o 	W(T)).

Definition 3.15	 If z c DW(T) and there exists a

closed disc D such that z E aD and W(T) - c D, then z

is said to be a bare point of W().

Definition 3.16 If z is a bare point of W(T) and

z o is the centre of a closed disc D such that z E "(MD and

W(T) c D, then z 0 is said to be an inner centre point with

respect to

Definition 3.17	 The numerical radius of the operator

T is defined by

1.47 (T) = sup
!XI€W (T)

and the spectral radius by

= supr (T)
XEG(T)

where u(T) is the spectrum of T.

Let d(zo,W(T)) denote the distance of zo from

w(T); E(T) and B(T) respectively the sets of extreme and

bare points of W(T) - and a (T) and a
ap

(T) respectively the

point and approximate point spectra of T.
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Theorem 3.18	 Let T be a convexoid operator and z

an extreme point of W(T) 	 such that z = <Tx,x>, 11 x 11 = 1.

Let z o be an outer centre point with respect to z. Then

the following are equivalent:

i) Tx = zx;

ii) 11Tx - zox11 2 = r((T - z0)-1);

HTx	 z ox 11
-1 =	 - z o ) -1 II.

Proof	 Since T is convexoid, E(T) c °AT). Thus

z E c(T) n MANT).

Also since

—1
—z o )	 H	 [d(z0,W(T))]

-1
 = [d(z0,0(T))]

1-	 -1= r((T-z,)	 )	 H (T-z0)	 ,

we have

r((T-z 0 )
-1
 ) = 11(T-z 0 )

-1 
H = [d(zo,W(T))]-1

Thus

(i) implies (ii) since

H(T-zo)xl
1-	 -1	 -1-1 = lz-z o l	 = [d(zo,W(T))]	 = rUT-7 0 )	 ),

(ii) implies (iii) since

r((T-z0) -1 ) = H ( T-z 0) 	 11
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and (iii) implies (i) for

=d(zo,W(T)) = lz-z o l = 1<(T-zo)x,x>I

and hence by the condition for equality in Cauchy Schwartz,

(T-z o )x = Xx for some complex X. Since <Tx,x> = z, this

gives Tx = zx.	 o

If z = <Tx,x> E	 X	 = 1, by lemma 1.9 (i),

Tx = zx if and only if T*x = zx. The following corollary

given by Lin can be easily verified from this fact and the

proof of the above theorem.

Corollary 3.19	 For any operator T,

1) If <Tx,x> = z E aW(T), HxH = 1 and 2, is an outer

centre point with respect to z, then the following are

equivalent:

i) 11Tx-z oxH = d(z„W(T));

ii) Tx = zx;

iii) Tx =

and

2) If <Tx,x> = z E B(T), = 1 and 2, is an inner

centre point with respect to z, then the following are

equivalent:

i) = 72(T-zo);

ii) Tx zx;

iii) = zx.
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The next theorem gives conditions for M(T) to be

a reducing subspace for T and for the restriction of T to

M(T) to be normal.

Theorem 3.20	 Let T be a seminormaZ operator and

M(T) = {x E H: <Tx,x> - zIlx11 2 = 0,	 zcLnW(T)).

where L is a line of support for W(T).	 Then M(T) is a

reducing subspace for T and TI M(T) is normal.

Proof	 By lemma 1.9 (ii), M(T) is a subspace. For

any z E L, by carrying out the standard reduction

T	 ei e (T-zI), without loss of generality we may assume that

L is the imaginary axis and Re W(T)	 0.

Thus as in lemma 1.9 (i),

M(T) = fx E H: Tx + T*x = 0}

Hence

<T*Tx - TT*x, x> = 0 .

Thus by lemma 1.8,

T*Tx = TT*x	 as	 T*T - TT*	 0	 or	 �. 0

Now

(T+T*)Tx = T 2x + T*Tx = T 2 x + TT*x = T(Tx+T*x) = 0 .
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Similarly

(T + T*)T*x = 0 .

Hence M(T) is reducing and since T*Tx = TT*x for all

x in M(T), we have T M(T) is normal.

The following theorem proves the reducing property

of M (T) with z an extreme point of W(T) and T semi-

normal.

Theorem 3.21	 Let T be seminormal and z be an

extreme point of W(T).

Let	 M(T) = {x E	 : <Tx,x> - zlix112

Then M, (T) is a reducing subspace of

Proof	 Without loss of generality we may assume z = 0

and Re W(T)	 0.

M e (T) is a subspace by theorem 1.11 (i) and

M o (T) c M(T).	 But T is normal on M(T) and therefore since

Re W(T) �. 0, the condition

<Tx,x> = 0 implies that Tx = 0 .

Hence obviously M, (T) is reducing for T.

0
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In the next section we shall use Berberian's technique

to achieve a generalization of theorem 3.21. We shall also

generalize by direct calculations the other two theorems in this

section. Note that since a seminormal operator is convexoid,

theorem 3.18 is valid for seminormal operators. Using Berberian's

technique an alternative proof of this known result, that a

seminormal operator is convexoid, will also be given.

3.4 Generalized Results on	 W(T)	 for Special Operators

The following theorems deal with sequences of vectors

from H rather than H itself and thus the results are in

terms of limits.

Theorem 3.22	 Let T be a convexoid operator and z

an extreme point cf W(T). Let (xn) be a sequence of unit
vectors such that <Tx

n
,x

n
>	Let z o be an outer centre

point with respect to z. 	 Then the following are equivalent:

i) Zim 11Txn-zxn — 0;

ii) Lim H Tx
n

 - z oxn H-- = r((T-;;0)-2);

iii) n -z ox:0 -1	H(T-z0)-111.

Proof	 Similar to the proof of theorem 3.18. Only note

that in (i)	 (ii) we use the fact that if 11Tx n
-zx

n
 -÷ 0,

then	 11Txn -zo x	
-± z-zol.
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This is so because

HTxn - z o xn H 2	 II (T-z)xn 	 (z-z°)xnil 
2

lz-z 0 1 2	 since	 (T-z)xn	0

and hence

(H(T - zo)xn H 	 lz - zol) (11(T-zo)xn H - 1Z-Zol)	 0,

that is,

	

HTxn - z 0 xn H	 lz-zol

as !KT-z o )x n H + lz-z o l is bounded away from. zero.

Also in	 (iii)	 (i) ,

1

1
Tx

n
 - ZX

n 
11 2 =	 (T-z o )xn - (Z-Z )X 112n

H (T-Z 0 )Xn 11 2 ± lz-z.1 2 - 2 Re((z-z o )<(T-z o )xn ,xn >)	 0

as H(T-z o )xn ll	lz-zol.

Thus we get

HTxn - zxn H .± 0.

The following corollary is readily verified from the

proof above and lemma 2.5 (i).
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Corollary 3.23	 Let T be an arbitrary operator.

]) If (x) is a sequence of unit vectors such that
n

and	 is an outer centre point<Tx
n
,x

n
>	 z E 6w(T)

with respect to z, then the following are equivalent:

i) H(T-z.)511-+ d(zo,W(T));7 

ii) Tx - zx 
n	

0;
n 

iii) T-*x
n -
	 C

n

and

2) If (x) is a sequence of unit vectors such that
Y;, 

<Tx
n
,x

n
> 2 E E(T) and 2 0 is an inner centre point with

respect to z, then the following are equivalent:

i) VT-zo)xn1 -4- w(T-zo);

ii) Tx - zx 
n	

0;
n 

iii) T*x - zx
n	 0.

n 

The next theorem is a generalization of theorem 3.20

for elements of the subspace NL (T).	 We give below a proof

by direct method. The result can also be proved using

Berberian's technique.

Theorem 3.24	 Let T be a seminormal operator and

NL (T) = {(x
n
) e	 (H) :	 I <Txn , x> - z a-, 11 2 -± 0}zeL	 n n

where L is a Zine of support for W(T). Then for each

(xn )ENL (T),(Txn)EIL(T) and (T*x
n
) E NL (T). Also T

approximates normal behaviour on sequences in NE (T) in the

sense that if (xn ) e NL (T), then (T*T-TT*)xn	0.
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Proof	 By lemma 2.5 (ii), NL (T) is a subspace. With-

out loss of generality we may take L as the imaginary axis

and Re W(T)	 0 in which case as we have seen

NI, (T) = { (Xn) E 9,,,,, (H) : Txn + T*xn 4- 0 	 .

Let	 (x n ) e 
NL (T).

Hence Tx + T*xn 4 0,
Il

or,	 HTx n IP - Il vxn 11 2 - 0,

or,	 (T*T - TT*)xn 4 0

by lemma 2.4, since either T*T - TT* or TT* - T*T is

positive.

Also continuity of T gives T 2 x n + TT*xn 4 0,

or (T 2 x + T*Tx n	 n) - (T*Txn - TT*x ) 4 0.n 

Thus T 2x + T*Tx n 4. 0.n 

Hence (Txn ) E NL(T).

In a similar way it can be proved that

(T*xn ) E 
N (T) .
L

0

By T 4 T° we will denote the faithful *-represen-

tation constructed by Berberian as explained in section 2.5.

The following simple lemma is used in the proofs of later

theorems.
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Lemma 3.25	 T° is semiformal if and only if T is

seminormal.

Proof	 By the properties of T° as given in section 2.5,

(T°)*T° - T°(T°)* = (T*)°T° - T°(T*)° = (T*T-TT*)°.

Thus, since T° preserves positivity,

(T°)*T° - T'(T°)*	 0	 or	 .� 0

if and only if

T*T - TT*	 0 or	 0 respectively.

[:3

Theorem 3.26	 Let T be seminormal and z be an

extreme point of W(T).	 Let

N (T)	 (x 
n

) E kco (H) : <Txn , Xn> - 11Xn I 2 -÷0
2 

Then for each (xn) e Nz(T),

(Tx) E N (T) and (T *x) E N(T).n	 z	 n	 z

[NOTE:	 This theorem can be deduced as a corollary of theorem

3.24, if z is not an endpoint of a straight line segment on

Dw(T).]
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Proof	 Since by theorem 2.6, N z (T) is a subspace,

(Tx n ) C N z
(T) if and only if e ie (Tx

n
-zxn ) C N z (T).	 Thus

by the standard transformation T 	 ei e
(T-zI), without loss of

generality we may assume z = 0 and Re W(T)	 0.

Now as in the proof (using Berberian's technique) of

theorem 2.6, with the same notations,

(xn ) 
E N ° (T)implies s' = (xn )' E M° (T

where

M ° (T°) = fs' E K:
	

}
<T°s',s'> = 0	 .

Since by lemma 3.25, T° is seminormal, theorem

3.21 gives T°s' E M o (T°), in fact the proof of that theorem

shows T°s' = 0.

Thus	 f ( (11Txn II 2 ) ) = 0

for all f where f is any linear functional with the proper-

ties given in lemma 2.7.

Since (11Txn 11 2 ) E k+	 by lemma 2.7 we conclude

that Tx	 0.n 

Again since <Re Txn
,xn > -÷ 0, lemma 2.4 gives

Re Txn
	0 and hence we have T*x n	0.

Thus	 (Txn ) E Nz (T) and (T*xn ) E Nz(T).

0
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Putnam (1965) and Stampfli (1965) have shown indepen-

dently that a seminormal operator is convexoid. We give below

an alternative proof using Berberian's technique. Let co

denote the convex hull. We need the following lemma given by

Berberian (1962).

Lemma 3.27	 For any operator T,

a
ap

(T°) = a
ap(T)

Proof	 A complex number 1J does not belong to a
ap

(T)

if and only if there exists E > 0 such that (T-pI)*(T-III)

which is equivalent to (T°- I)*(T°-11I)	 eI by the properties

of T° given in section 2.5.	
D

Theorem 3.28	 For a seminormal operator

W(T) = co a(T) .

Proof	 By lemma 3.25, T° is seminormal. An application

of theorem 3.21 to T° gives

E(T°) n W(T°) c 6p (T°) .

But since by theorem 2.8, W(T°) = W(T), we have

E(T) = E(T°)

and hence

E(T) C 6p (T°) C Gap (T°) = Gap (T)

by lemma 3.27.
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Thus co E (T) C co a (T) .

But W(T) - = co E(T)

and co a(T) C W(T) 	 .

So we must have W(T) = co u(T).
O

In this chapter we looked at different operators with

special characteristics in terms of M z (T) and the action of

the operator T on them. Then we extended the results to w (T)

and saw that the same type of set inclusions still holds for

elements of N z
(T).

In section 3.3 we provided two equivalent conditions in

terms of spectral radius and operator norm for an extreme point

of a convexoid operator to belong to the point spectrum. We

showed that for a seminormal operator T, M(T) is a reducing

subspace of T.	 Moreover T on M(T) behaves as a normal

operator. Also for seminormal T, if z is an extreme point

of W(T), Mz (T) has the same reducing property. This was

shown in theorem 3.21.

In the final section we obtained generalizations to

the results of section 3.3. In some cases it was convenient to

use Berberian's technique concerning change of operators and

Hilbert space. By the same technique we gave an alternative

proof of the essentially known result that a seminormal operator

is convexoid.
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In the following concluding chapter we will consider

weak convergent sequences of unit vectors which generate sequences

of points in the numerical range converging to the boundary of

the numerical range. We shall also discuss the question of

convexity for a newly defined restricted numerical range. The

convexity of W(T) and Stampfli's numerical range W 6 (T) will

follow as corollaries.



Chapter 4

CONVEXITY OF DIFFERENT NUMERICAL RANGES AND

WEAK CONVERGENCE ON 9W(T)

4.1	 Introduction

In this chapter we define a restricted numerical range

in terms of appropriate subsets of S of the unit sphere and

investigate conditions on S which will ensure the restricted

numerical range is convex. The convexity of Stampfli's

numerical range follows as a corollary. K y le (1977) used a

different technique to prove this result. We include his method

in section 4.3.

In section 4.2 we consider the weak convergence of a

sequence of unit vectors corresponding to a sequence of points in

the numerical range with its limit on the boundary of W(T).

de Barra et al. (1972), Sims (1974), Das (1973, 1974, 1977) and

Garske (1979) investigated which boundary points of W(T) are

attained. Das and Craven gave a bound for the norm of the weak

limit of vectors when the corresponding boundary point is not

attained, but lies on the straight line segment on the boundary.

We use the method of proof for these results given by Garske

and Das and Craven. We then demonstrate how all these results

can be obtained as a simple corollary to one of the inequalities

obtained in Chapter 2.
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4.2 Weak Convergence on WT)

In the previous chapters we obtained results for

those boundary points of the numerical range which are attained

by the operator T and then extended these results to

unattained boundary points of W(T). The question arises as

to which boundary points of W(T) are in fact attained.

Garske (1979) showed that if A is an extreme point

of W(T), then the following statement is true.

(A) Let (xn ) be a sequence of unit vectors in H

with weak limit x E H and <Txn ,xn >	 A E DW(T).

Then either

	

i)	 x = 0,

	

or ii)	 <Tx,x>/11x11 2 = A.

Weak compactness of the unit sphere in H ensures the exis-

tence of such a sequence.

The following example given by Garske (1979) shows

that (A) need not hold for all boundary points of W(T).

	

Example 4.1	 Let T:L 2 j-1,1]	 L2[-1,1] be the

self-adjoint multiplication operator defined by

(Tf) (t) = tf(t)

for f E L 2 [-1,1],	 t E [-1,1].

It follows that W(T) = (-1,1) and so 0 E MT) is not an

extreme point of w(T) .
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1	 if -1 s t < 0,
Let	 fn (t)=	

cos Trnt if 0	 t	 1.

1	 if -1	 t < 0,
and
	

f (t )	 /2-
0 if 0	 t < 1.

=

o

whereas

Thus <T

and f
n converges to f weakly.

r 11	 1	 1 27nt)dt
n<if,fn> =	 -2-- t dt + 1 t(– +	 cos2	 2i	 )-1 	 0

1 1 1 1 
(1

= j f t dt + ---z	 i	 ''-L cos 27nt dt ---).- 0

<Tf,f>

,f nn

=

<Tf,f

-1

(0 1f t dt =

1

>

0

4

H	 H 2

Then

But

1 fni1 = 1,

Das and Craven considered points on a line segment

on the boundary of the numerical range and gave a bound for

the norm of the weak limit for such points. We shall later

state the results of Garske and Das and Craven in a single

theorem and give their method of proof; but first we begin

with a shortened proof of the following lemma due to Das and

Craven.

Lemma 4.2	 Let X E L n W(T) where L -Ls a line of

support for W(T).	 Let xn
 x be a weakly convergent

sequence of vectors such that <Tx '
x

n
>--,	 Then en eit7-/er
n 

x	 0 or <Tx,x>/11x1) 2 E L.
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Proof	 By a suitable translation and rotation, we may,

without loss of generality, assume that L is the imaginary

axis and Re W(T)	 0.

Hence	 <Re Txn
,x n

>

and thus by lemma 2.4, 	 Re Txn
	0.

But Re Tx — Re Txn

and hence the uniqueness of the weak limit gives Re Tx = 0.

So Re<Tx,x> = 0 and hence

either x = 0 or <Tx,x>/
	 2 E L.

q

The following theorem is a combination of results of

Garske and Das and Craven. We first give their method of

proof.

Theorem 4.3 Let x	 - be a weakZy convergent
n

sequence of unit vectors suck that	 xn > -^
 

X c

Thus either

i) x	 0, or,

ii) <TX,XV 11X 2 = X, or

iii) X is not an extreme point of W(T) 	 and x t 0, in

which case X and <Tx,x>/113:11 2 lie in a line segment on

the boundary of W(T) and Hocil 2 P- where p and q

are respectively the distances from X and <TX,XVilxil 2

to the extreme point of W(T) collinear with X and
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<Tx,x>/11x112 and on t7-ze opposite side of X from

<Tx,x>/i1X112.

	

Proof	 First consider the case when X is an extreme

point of W(T).

	

Let <Txn
,x

n
>	 Af
	 X

n
H = 1.

This gives kx11	 1 and so 
if y

n = xn - x , thenyn 2 .

Thus passing on to a subsequence we may assume

	

HY 1 	 E En 

(We can exclude the trivial case when E= O.)

So we have

1 =	 = Hy, H 2 + 2 Re<xn ,x> + HxH 2 ,

or, since x	 x, this gives
n

2
11X11 2 = 1 -

Again

<Tx, nx	 = <Tyn ,yn > + <yn
,T*x> + <Tx,y > + <Tx,x>

	

n	
,

or,

R

<Ty,yn >	 X - <Tx,x>n 
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If we call p = <TX,X>i 0(11 2 (assuming x	 0), this gives

Ci,
- Hx' 2

where <Ty,y>
a = lim n n 

v	 2'n

Thus	 'X = s e a +i H 2 1-I -!

Since c 2 + Hx1 2 = 1, 7, lies on the line segment from

u to a and thus as 2 is an extreme point of W(T), either

A = u or A = a.

If X = a, we have

	

1-1 1;>: H 2 = (1 - E 2 a = CY.11X	 2

and hence again

	

Now consider the case when A	 11 and A is not

an extreme point of W(T).	 If HxH	 1, then x
n 	x

and thus A	 So if x	 0, we may assume 0 < 1lx112 < 1.

Consider

<T(x+tx), x + tx>n	 n

(t E R) 
Ilx + tx

n
112

which, under the .assumption	 x
n
	x, is equal to

( p -A) (2t+1) 11X 11 2

•

t 2 + (2t+1)11 x112
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Let	 (2t+1) 11)012
=

(2t+1) 11)(112

It can be easily verified that

	

u	 1

H	 2

By lemma 4.1,	 and X+ Hx11 2 - 1
	 are

collinear with X and clearly lie on the opposite sides of X.

Hence

2

or, p	 p   

+ a
O

The above theorem can be deduced as a simple corollary

of theorem 2.14 as given below.
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Corollary 4.4 Let x	 x be a weakly convergent
n 

sequence of unit vectors such that <Txn,xn> 	 E W(T).

Let L be a line of support of W(T) passing through A.

Then either

a) X is an extreme point of W(T) 	 in which case one of

the following holds:

i) x = 0;

ii) <Tx,x>/11x1 2 =XS or

b) A is a nonexzreme ocunaary point of w(T) - in which

case one of the following holds:

_ Os

<Ix, x>/ I 11 2= a where a L is an extreme

point of W(7)-.

In this case k-TH	
x - a

v a - b where b is the

other extreme point of W(T) n L

iii) kx11	 /
a

where 1_1	 <Tx,x> /11x11 2 and a E L
r	 1.1 - a

is an extreme point of W(T).

Proof	 By lemma 4.2, A, II, a, b E L.	 If we consider

the sequence	 (x,x,...),	 it is obvious that	 (x,x,...) E N(T)

where N(T) is as given in theorem 2.14. 	 Also (xn ) E N(T).

Thus an application of theorem 2.14 with A as an extreme point

gives

lim <(T-?,)xn , x>1 = 0
	 since	 <(T-2.,)xn, x n >	 0
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and hence

	<Tx,x>	 2. 11X 112 ,

that is, either x = 0 or <Tx,x>/
	

2 = x

If X is a nonextreme boundary point of W(T),

another application of theorem 2.14 with a	 as an extreme

point of W(T) 	 gives

limi<(T-a)xn ,x>1 2 	lim <(T-a)xn ,xn > liml<(T-a)x,x>1 .

Thus if x	 0,

	

1<(T-z)x,x>1 2	 -a

or

11 - a 2 	 11 2 <

that is,	 1.1 = a or	 Hx112
	

-aj = 	11-a
X-a

are collinear and a is an extreme point of W(T).

If II = a, application of the same theorem with b

as the other extreme point gives

X-a
11 X 2 < a-b

x 2

since X, u and a
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Note that the inequality given in theorem 4.3 (iii)

is equivalent to the combined two inequalities given in

corollary 4.4 (b).

We also note that the above result could also be

obtained as a corollary to lemma 2.9.

Throughout our dissertation we used the fact that

W(T) is a convex set. In our next section we define a new

restricted numerical range and investigate under what condition

convexity holds for this set. As a corollary we obtain a

result given by Kyle (1977). These results are contained in

a paper by Das, Majumdar and Sims (3).

4.3 Restricted Numerical Range and Convexity of W6(T)

Stampfli (1970) introduced the concept of W6(T),

a modification of W(T) and asked if W(T) is convex. He

defined

W(T) = closure l<Tf,f> : HfH = 1,11Tfl
	

6, f E 1-1} .

Kyle (1977) settled this question in the affirmative using ideas

which are improvements on basic ideas of Dekker (1969).

In the next section we define a restricted numerical

range by

Ws (T) = Hf,f> :	 = 1, f c 5 c H} .
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We obtain conditions on S which ensure that W (T) is convex.

Our results are more general than those of Kvle, convexity of

both W(T) and W(T) following as corollaries.

We begin with some generalizations and modifications

of results originally used by Kyle to obtain the convexity of

w
6
(T).

Lemma 4.5	 Le r,	 and	 be self-adjfoint operators

{!1.i. ' = f E E : 11 .,-,r'
	

= 2 ,	 -F5
	

6 and <B f f> = 

Then M is pat .": connected.

Proof	 Suppose f, g E M. If f, g are linearly

dependent, they both lie on an arc of

18, e 
e	 : 0	 2TJ

which lies in M whenever f E M.

If f, g are linearly independent, since f and

e
ie f with suitably chosen real values of e are path connected

and g and (-1) ng, n = 1,2 are path connected, without loss

of generality we may assume

Re<Bf,g> = 0 and Re<(A-6)f,g> 	 0 .



  

tf + (1-t)g
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Let

Then

f(t) =
Htf + (1-t)gH 

<Bf(t), f(t)>

t 2 <Bf,f> + (1-t) 2 <Bg,g> + 2t(1-t) Re<Bf,g> 

ritf + (1-t)g112

0	 with our assumptions.

Also,

<Af(t), f(t)>

t 2 <Af,f> + ( 1-t) 2<Ag,g> + 2t(1-t) Re <Af,g> 
t 2 + (1-t) 2 + 2t(1-t) Re<f,g>

t 2 6 + (1-t) 2 6 + 2Et(1-t) Re<f,g> + 2t(1-t) Re<(A-:'.)f,g> 
t 2 + (1-t) 2 + 2t(1-t) Re<f,g>

C
	 2t(i -t) Re<(A-6) fyg>

ktf + (1-t)gl 2

since Re<(A-O)f,g> >, 0

Thus t	 f(t) is a path connecting f to g in M as

required.
O

Lemma 4.6	 Let T T 2 and A be self-adjoint operators

and

=
	

}<T1f.,f5, <T2f,j5) : MI = 1, <A.f,f5	 6 , f E H
Then V	 a convex subset of R2.
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Proof	 Let L be any straight line in R 2 given by

ax + by + c = 0 .

It is sufficient to show V n L is connected.

Let	 B = aT i + bT, + c .

Then the mapping 7 given by 7(f)	 (<T1f,f>, <T 2 f,f>) is

continuous and the set

= 1, <Af,f> �. 6 and 7(f) E L}

M where M is as given in lemma 4.5.

Thus V n L = 7(M) is connected.
0

Theorem 4.7	 Let	 any operator and Iet A be a self-

adjoins operator.	 „ 
Lice SET,

w	 • ri fH =	 and <Anf>	 6

is convex.

Proof	 Suppose T = T 1 + iT 2 where T	 and T	 are1	 2

both self-adjoint. Then

W = {x + iy : (x,y) E V}

where V is as given in lemma 4.6.

Hence W is convex.
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Corollary 4 . 8	 For any two operators T and A,

the set

{<Tf, f> • 	 = 1 and 11AfIl	 6}

-is convex.

Proof	 Obvious from theorem 4.7 by replacing A by

A*A and noting that

<A*Af,f>	 62 if and only if HAfH	 6 .

O

Corollary 4.9
	

7-{%'	 S convex.

Proof	 Take A = T in corollary 4.8. Thus the set

	

{<Tf,f> : HfH = 1	 and	 11 Tf 11

is convex.

W
6 (T) is the closure of the above set and hence

W o.(T)	 is convex.

At the beginning of this section we have defined the

restricted numerical range W s (T).	 We now impose certain

properties on S so that W (T) becomes convex.
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Let S c H satisfy the following two properties:

Property (i)	 f E S implies of E S, ial = 1.

Property (ii)	 f,g E S implies for all real positive r,

	

f + rg	 f  - rg either	 E S or	 E S .
Ilf + rg 1	 Ilf - r911

We give below some examples of such S.

Example 4.10	 H itself or any subspace of H, for

example, the range or null space of any operator A trivially

satisfies properties (i) and (=1.i).

Example 4.11	 A useful example of such a set is

= {f E H :

	

= 1,	 <Af,f> �. 6, A = A*	 .

That S satisfies properties (i) and (ii) can be verified as

follows.

If r is real and f , g E S,

<A(f+rg), f + rg> 

+ rgH2

<Af,f> + r 2 <Ag,g> + 2r Re<Af,g> 
1 + r 2 + 2r Re<f,g>

0
, + 2r Re<(A-6)f,g>  

+ rg112
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It is obvious therefore that either 	
f + rg	

E S
f + rglf - rg 

or	 E S for all positive r depending on the sign

ILE - rgll
of Re<(A-6)f,g> .

Example 4.12	 Another example of such an S is

S = {f E H :	 j f11=	 HAtH �. 6}

where A is any operator.

This is obvious from example 4.11 by noting that

hAf	 >. 6 is equivalent to <A*Af,f> 	 62.

Theorem 4.13	 Let S be a set with properties () and

(ii) mentioned above. Then W,T) is a convex set in the

comp -Lex 'pZane.

Proof	 Let	 Hfl = 1Ig11 = 1,	 f,g E S.

For any complex scalar z = x + iy and 0 < t < 1, consider

the equation

<T(f+zg), f + zg>  = t<Tf,f> + (1-t) <Tg,g> .
+ zg112

...(4.1)

Equation (4.1) on simplification yields an expression of the form

z1 2 + Cz + Dz 1 - t 
= 0t

where C, D are complex numbers, in general dependent on t.
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Separating real and imaginary parts we get

1 	 t 
x 2 + y 2 + 2ax + 2by	 = 0 ...(4.2)

and

cx + dy = 0	 ...(4.3)

where a, b, c, d are some real numbers independent of x

and

1 	 t 
Since	 , (4 .2) gives an equation of a circle

containing the origin and (4.3) gives a straight line through

the origin. Hence there will be two values of z of the

and r2e
ie

form	
eie satisfying equations (4.2) and (4.3).

But by our assumption either

f	 reie g 

Hf + r i e legH 6

f - r,e 1_6 g
S	

2
or

ei	
S .

+ r2egll

Thus there exists an element h E	 111-111 = 1 such that

<Th,h> = t<Tx,x> + (1-t)<Ty,y>

and the proof is complete.
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By taking S = H we have

Corollary 4.14	 W(T)	 convex.

Indeed a similar technique was used in theorem 1.2

to prove the convexit y of W(T).

Since the sets in examples 4.11 and 4.12 have the

properties required in theorem 4.13, we have

Corollary 4.15	 The set

IrTf,f> : , f>	 S, A = AY}

convex `or any oreratop

Proof	 Take S= 1 f E H : Ilf11 = 1, <Af,f> >. 6, A= A*J

and apply theorem 4.13.

0

Corollary 4.16 (Kyle)	 The set

{<T-r, f> 	 = and hAfH	 cS

is convex for any two operators A and T.

Proof	 Take S = {f E H : HfH = 1,	 HAfIl	 6} and

app ly theorem 4.13.

0
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Corollary 4.17 ,(T) -Ls convex.
0

Proof	 Obvious from corollary 4.16 by taking A = T.

0

It is worth noting that using similar proofs it can

be shown that W (T) is convex if S is equal to any of the

sets given below.

S	 = ff E H :	 = 1,	 I li TfH .< 6}

S	 = -{f EH: If	 =	 11Till	 Cs}
2

S 3 = {f E H : I	 = 1,	 HTf

In this chapter we saw that an y extreme point of

W(T)- which is approached by <Txn ,xn > with the unit vectors

xn
 weakly converging to x, must be attained if the weak

limit is not zero.	 For other points on the boundary this result

need not in general hold. For such points we obtained an upper

bound for the weak limit.

To prove this result we used an inequality in terms

of limit supremum as given in theorem 2.14. Since the limits

in question do in fact exist, we could have used an inequality

(given in lemma 2.9) in terms of -L
	 where f has the proper-

ties detailed in lemma 2.7. This provides yet another example

of the usefulness of Berberian's technique as described in

Chapter 2.
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We also saw how an argument based on path-connectedness

proved the convexity of W 6 (T).	 Then we defined a restricted

numerical range Ws (T) and imposed certain conditions on the

set S to make W (T) convex. This provided another method

of obtaining the convexity of W (T).
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CONCLUSION

We have considered the numerical range W(T) of an

operator T on a Hilbert space H as a convex set in the

complex plane and associated subsets M z (T) of vectors from

H with every point z of the numerical range. We saw that

Mz (T) is a subspace if and only if z is an extreme point of

W(T).	 When this is not the case, we obtained results in terms

of the linear span of Mz (T).	 This led to the characterization

of W(T) in terms of the subsets M
z
(T) as given by Embry.

Since this characterization excludes the case of unattained

boundary points of W(T), we generalized these results to

achieve a characterization of the closure of the numerical

range in terms of subsets N z (T) consisting of bounded sequences

of vectors. We saw that the sets Mz (T) and N z (T) have

similar properties and that the two characterizations are also

similar, though not exactly alike.

Two Cauchy-Schwartz type inequalities of Embry

associated with the union of M z
(T) over all points z on a

line of support of W(T) were given and orthogonality of

vectors from these subsets was observed. These results were

again generalized in terms of sequences of vectors.

We proved these results, sometimes by direct methods,

but often using a modification of a technique given by Berberian
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which involved a change of Hilbert space and operator via a

construction based on normalized positive linear functionals.

In Chapter 3 we gave various known results concerning

attained boundary points of the numerical range of seminormal

and convexoid operators. These results were then extended to

unattained boundary points. Again Berberian's technique proved

useful in the proofs.

Embry showed that the subsets M(T) behave in aG

particular fashion for several special types of operator. We

observed that the generalized subsets N z (T) retain these

characteristics.

Finally, we considered convexity of different numerical

ranges. We defined a restricted numerical range W q (T) and

attached certain properties to the set S so that Ws (T) is

convex. As a corollary we obtained the convexity of Stampfli's

numerical range W 6 (T), a result proved differently by Kyle.

In Chapter 2 several areas for further investigation

suggested themselves. For example, in section 2.2 we proved

that corresponding to a line of support L of W(T), the

sets NL
(T) and N(T) are closed. Moreover, N L (T) is a

subspace. Is the same true for N(T)? Homogeneity being ob-

vious only linearity has to be verified. If we could prove

the linearity of N(T), in theorem 2.19 (ii) we would have

been able to show yN z (T) = N(T) where z E L is a nonextreme

boundary point of W(T). 	 This is similar to the corresponding

result for Mz
(T) given in theorem 1.11 (ii).
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In lemma 2.18, we showed N' (T) c iN
z (T) where z

lies in the interior of a line segment with end points

a,b E W(T).	 We had to assume (;xn H is bounded away from

zero as a requirement for the proof. Is it possible to omit

this condition and get a result of the form N a
(T) c yN

z
(T)?

If this were true this lemma could be used in the proofs of

both parts (ii) and (iii) of theorem 2.19.

Embry (1970) gave a theorem in terms of the intersection

of maximal subspaces of Mz (T).	 It is worth investigating

whether similar results hold for the intersection of maximal

subspaces of N z (T).	 If this were possible we would have the

following result as a corollary:

	

T is hyponormal anc:
	 0o-unciar? roint

we have

maximal slZospaces of N (T)

n) c	 .	 -

	

'''? • /7-	 ->- 0 an2	 - ox
nco	 7?	

•

This, in turn, would lead to an alternative proof of the known

result:

Poi') kyponormal T, if ti is an extreme point of W(T),

then o is an approximate eigenva.lue of T.

Another question of interest is whether or not the

separating functional in lemma 2.7, in addition, can be assumed

to satisfy (vi).	 J is 777-ultip -:cative on k oo witk respect to



134.

the pointwise algebraic product. Were this the case, this could

lead to new results as well as provide shorter proofs for

several results given in the thesis.

These and similar questions seem worthy of further

investigation, an investigation which 1 hope to undertake in

the near future.
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