Chapter 1

SUBSETS CHARACTERIZING THE NUMERICAL RANGE

1.1 Introduction

This chapter is largely expository. In it we consider
the numerical range of an operator on a Hilbert space as a
convex subset of the complex plane. We also study the behaviour
of certain sets of vectors associated with different points of

the numerical range.

Convexity of the numerical range 1is well-known, however,
because we shall later use the technique given in the proof by
Raghavendran (1969) and also because of its simplicity we include

that proof in section 1.2.

In section 1.3, following Embry (1970), we associate a
set of vectors from the Hilbert space to each point of the
numerical range and show that linearity of the set forces the
point to be an extreme point of the numerical range. Stampfli
(1966) proved the converse of this result. We also include the
results of Embry (1970) for the case when the point is a non-
extreme boundary point or an interior point of the numerical
range which show that although the corresponding set is no longer

linear, we can always associlate a subspace with it.

In the last section we state the Cauchy-Schwartz type

inequalities proved by Embry (1975) for the vectors from these



particular sets and provide different or modified proofs for
them. Similar proofs will be later applied when we extend these
results to cover the case of unattained boundary points of the

numerical range.

1.2 The Numerical Range

The numerical range W(T) for an operator (that is, a
bounded linear transformation) T over a finite dimensional
inner product space was first defined by Toeplitz in 1918. If

H is a Hilbert space and T € B(H), we have the following

definition.
Definition 1.1 For a Hilbert space H and an operator
T on H, the numericcl range ¢ T 1s the set
W(T) = {<Tx,x> s xli= 1, x e H} ,
that 1is, W(T) 1is the image of the unit sphere of H under

the guadratic form associated with T.

It is well-known that the numerical range 1s convex.
There are many proofs of this theorem. We give below a modifi-
cation of Raghavendran's (1969) proof which 1s simple and
interesting. We shall later make use of the technigue given in

his proof.



Theorem 1.2 (Toeplitz-Hausdorff The numerical

range W(T) of an operator T e a convex subset of the

complex plane.

Proof Let

g = <Tf,f>, n = <Tg,g>
with

el =ligll=1, f,9 ¢ H .
Let

A = aoT + E£I
where

_ 1

A - é - n 7

~ - T

E = =

5 — 1N
Hence
<Af,f> = o<Tf,f> + E<f,f> = 0 + B =1

and

<Ag,g> = a<Tg,g> + p<g,g> = an + B = 0 .

We will first show that



if and only if

t € W(A)
Let
tE + (1L - t)n € W(T)
So there exists h € H, ||lh|| =1 such that
<Th,h> = t& + (1 - t)n ,
or,
. . 1
<Ah,h> = 7/ [te + (1 - t)n - n] =t
So t ¢ W(A).
Conversely if t ¢ W(A) so that <Ak,h> = t, ||h]l = 1,
then
1 n
t = <Ah,h> = — <Th,h> -
£ - £ -
So
<Th,h> = tf + (1 - t)n ¢ W(T)
The proof is completed by showing [0,1] < W(A). 1In

fact we show that for any t

get a complex scalar =z

e (0,1),

X + iy such that

it 1s always possible to



<A(f + zqg), £ + zg>
<f + zg, £ + zg>

This is equivalent to

<Af,£> + |z
|z

> <Ag,g> + z<Ag,f> + z <Af, g>
]
!

<f,f> + 2 <g,g> + z<g,f> + z<f,g>
orxr
1 + z<Aqg,f> + z<Af, g> -
1 + [z]2 + z<g,f> + z<f,g>
or
'z]2t + t + 2t Re(z<f,g>) = 1 + z<Ag,f> + z<Af,g>

Separating the real and imaginary parts we cet an expression of

the form

x2 + y? + ax + by + t-o 1. 0 .. (101)

and

cx +dy = 0 cea(1.2)

where a, b, ¢ and d are some real numbers independent of

X, Y-



Now

< 0, since 0 < t < 1

Hence equation (1.1) is a circle enclosing the origin and
cx + dv = 0 1is a line through the origin so that we shall
always get a real pair (x,y) satisfying eguations (1.1) and

(1.2).

This proves the existence of =z = x + iy. Hence

[0,1] ¢ W(A) and conseqguently the numerical range 1s convex.
O

We shall use the following terminology for the convex

set W(T).
Definition 1.3 An ¢cxcreme zoint ¢f W(T) 1is an element
of W(T) which is not contained in the interior of anv line

segment lying in W(T).

Definition 1.4 Two extreme points of W(T) are said
to be adlacent extreme peivte 1f the line segment joining them

lies in the boundary of W(T).

(%]

Definition 1.5 A line L 1is a line of support fcr

W(r) 1f  W(T) lies in one of the closed half planes determined

by L and L contains at least one element of the closure of

W(T) .



Definition 1.6 An extreme point Z of  W(T) is a
cecrner of K{(T) 1f there exist more than one line of support

for W(T), passing through =z.

1.3 Characterization of the Numerical Range

Embry (1970) associated certain subsets of the Hilbert
space H with different points of the convex set W(T). The

definitions of these subsets are given below.

Definition 1.7 The set M_(T) corresponding to each
&
point z in W(T) 1is given by
[ : TRTES.
M_(T) = x ¢ B : <Tx,x> - zjx ||’ = 0
L )
YMZ(T) is the linear span oI MZ(T).
The set M(T) corresponcing to a line of support L of

W(T) is defined by

M(T) = {x e H: <Tx,x> - z||x|I?=0, z ¢ L n W(T)} )
NOTE: Since MZ(T) is homogeneous,
YMZ(T) = MZ(T) + MZ(T)

:{x+y X, yeMZ(T)} .



Also

Both MZ(T) and M(T) are closed.

The guestion arises of when MZ(T) is linear and hence
a subspace. Another guestion 1s how we can relate a subspace
of H to MZ(T) when it fails to be linear. Lemma 2 of
tampfli (1966) and theorem 1 of Embry (1970) answer these
cuestions. Before giving theilr proofs we develop some necessary

lemmas.

The following standard lemma gives a special property
0of positive operators which we shall use frequently in this
chapter. 1Its extension to bounded secuences of vectors will

pe important in subsegquent chapters.

Recall an operator S is roeitive if for all x in

H, <Sx,x> 2 0.

Lemma 1.8 For a positive operator S ana x n H,

s

<Szx,x> =0 <1Ff and only 17 Sx = 0.
£ J 7 o

|
(@)

Proof If sx = 0, obviously <Sx,x> For the

converse, let VS be the positive sguare root of S. Then



and hence

Lemma 1.9 Let L Dpe a line o

support of W(T) and

=0, some ze Ln W(T)}

et 0 =0 1if I e parallel to the real axis, otherwise
let B be the acute angle between L and the real axic.

N

( i , : -
(T) = Y:E H:e (7T -z)x - ¢ T - z)x = 0}}

/

|
D
o
]
+
.
@

.
N
=

(¢1) M(T) is a closec subcpace ¢’ H, and

(221) M(T) = E <Ff ana only <1f W(T) < L.

Proof (1) Since W(aT + £I) aW(T) + R for any

complex scalars «,B, by carrying out the standard reduction

T ~ elC(T - zI) we can assume, without loss of generality, that

L is the imaginary axis, and
Re W(T) = 0 .

Then M(T) = {x e H : Re <Tx,x>

|
o

I
(&)
e

= {x € H : <Re Tx,x> (where Re T = L%(T+T*))

I
—A

ke

m

H : Re Tx = O}
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by lemma 1. as Re W(T) 2 0 implies Re T is positive.

This proves part (i) of the lemma. (11) and (iii) follow

immediately from (i).

The above proof 1s a modified versicn of that given by

tr

mbry. For the next lemma instead of giving Embry's proof, we

n

hall use an argument similar to that given in the proof of

theorem 1.2.

Lemma 1.10 et a,b & W(T) and =z be an interior

N

for two aistinct complex values of A. Conseguently,

¥ (T} c YE_(T)
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Proof As shown in the proof of theorem 1.2, without
loss of generality, we may assume a =1, b = 0. The same
proof shows that for 2z ¢ (0,1), we have a non-trivial circle
enclosing the origin and a line passing through the origin so
that we shall always have two distinct complex values of X,

say X*,, A, such that
X + kiy € MZ(T), i=1,2.

This, together with the homogeneity of MZ(T), gives
(A, = A))x e M (T) + MZ(T) '

that 1is,
X € MZ(T) + MZ(T) = YMZ(T) .

Hence

M_(T) € yM_(T) .
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Now we are ready to prove the main theorem.

Theorem 1.11 Every point =z in W(T) can be charac-

terized as follows:

7y
L

i) 3 <s an extreme point of W(T) <if and only iFf M_!
<

18 a subspace, where

M (T) = {SC € F @ <Tx,x> - ngHZ:O} .

b

If =z 18 a nonexireme boundary point of W(T), then

)
.
S

YV _(T), the linear span of M _(T) <i¢ a closed sub-
& &
gspace of H and
¥ (T) = MU(T)
z

where

]
8

T 77 ihn N P2 \ - -
.MT)=-&:€&:<Z“x/— ‘=0, z €L mw@uj}

I being a line of support of W(T) passing througr z.

In this case W(T) < L <f and only if yM_(T) = E.
<]

127) IFf W(T) <e not a line segment, then z 1e an interior

point of W(T) if and onity if YK _(T) = H.
r<)
Proof 1) Suppose 2z 1s an extreme point of W(T).
Without loss of generality we may take 2z = 0 and Re W(T) >
For x,y € MZ(T) and XA = t1, we have

<T(x + Jy), X + Ay>

<Tx,x> + |A|? <Ty,y> + X<Tx,y> + i<Ty,x>

= A<TX,y> + A<y,T*x>

= A<TX,y> - A<y,Tx> (since by lemma 1.8, Re W(T) > 0
implies Re Tx = 0)

2i) Im<Tx,y> .
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If Im <Tx,y> = 0, with X = 21, we have two nonzero
points of W(T) on the positive and negative imaginary axes contra-

dicting that 0 1is an extreme point of W(T).

Thus Im <Tx,y> = 0 and hence homogeneity being obvious,

MZ(T) is a subspace.

For the converse, if 2z 1s a nonextreme point of
W(T), =z 1s in the interior of a line segment with end points

a and b 1in W(T) and lemma 1.10 gives

But a # z. Hence

M_(T) n M_(T) = {0}

This shows

MZ(T) # YMZ(T) ;

that 1is, Mz(T) is not a subspace.
(ii) Let =z be a nonextreme boundary point of
W(T). Then lemma 1.10 implies

Ma(T) c YMZ(T) for all a € W(T).
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Consequently,

M(T) = U {Ma(T)} < YMZ(T)
aeL
But M(T) 1i1s a subspace by lemma 1.9 (ii). Hence

YMZ(T) c M(T)

as YMZ(T) is the smallest subspace containing MZ(T). Thus
;MZ(T) = M(T)

Hence, by lemma 1.9 (iii),

W(T) ¢ L 1if and only if YMZ(T) = H
(iii) If W(T) isnot a line segmentand =z 1s an
interior point of W(T), lemma 1.10 gives

Ma(T) < YMZ(T) for each a € W(T)

Thus
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Hence

On the other hand, if =z is a boundary point of W(T),

YMZ(T) = (AZ(T) when 2z 1s extreme,

\M (T) when 2z is nonextreme,

and thus lemma 1.9 (iii) gives

1.4 A Cauchy-Schwartz Inequality

Embry (1975) deduced a Cauchy-Schwartz inequality for

the elements of

M(T) = Qkx e H : <Tx,x> - zljx||? = 0, z el n W('I‘)}

where L is a line of support of W(T). We give the inequality

in the next theorem with a proof different from that given by

Embry.



l6.

Theorem 1.12 Let L be a line ¢f support for W(T)
and
H(T) = {x € H: <Izyx> - alle||*=0, 3 el n W(T}} .

L

Let b be an element c¢f L such that either b 1s an exireme

WiT). Then Jor all x and y in

O
AN

voint of W(T) or

K(T),

AT = blz,y>|? € (T - Dlx,x> <y, (T - Dly> .

Proof First note that by virtue of lemma 1.9 (i), the

right hand side of the inequality is real. Without loss of

generality we may take

Let us exclude the obvious case when x = 0 or y = 0.

+
Let t;, t, ¢ R ‘be such that

<Tx,x>

< 7 :>
= ts and Y.y = t,

=i Iyl



Consider points of W(T) of the form

where X 1s any complex scalar

We have assumed x + Ay # 0 Dbecause if

X + Ay =
the ineguality is trivially true.
Since x € M(T) and L 1s the real axis,
Im <Tx,x> = 0
Thus since Im W(T) > 0, lemma 1.8 gives Im Tx = 0 where

:
_ — *
o (T - T%)

So Tx = T*x and hence

a(n) = <Tx,x> + |Al° <Ty,y> + X <Tx,y> + A <Ty,x>
% + aylf?
. o Ixi[®+ £, X[ [lyl[®+ 2Re (X <Tx,y>)

17.

0,



18.

This shows g (X) is real and hence positive, since

g(x) ¢ L n W(T)

So we have

e llxll? + e, 112 [vll® + 28 (eme,ys) > 0.
. (1.3)
Choose Xx such that
Re (A<Tx,y>) = % [<Tx,y>|

Then the condition that |7| satisfies (1.3) gives

aj<Tx,y>1* - 4t |[yl® £ [ix]]? <0
Hence

<Tx,y>|% - <Tx,x> <Ty,y> < 0 ,
and so

|<Tx,y>|? - <Tx,x> <y,Ty> £ 0

0

As given in theorem 1.11 (i), Stampfli (1966) proved

that MZ(T) is a subspace if =z 1is an extreme point of W(T).
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This result can also be deduced from theorem 1.12.

Corollary 1.13 If b 1is an extreme point of W(T),

then Mb(T) = {x € B i <Tx,z> - bllz]]? = 0} 18 a subspace.

Proof Homogeneity being obvious we only have to prove

the linearity.

Let

Thus X, X € M(T) as Mb(T) < M(T).

But M(T) is a subspace by lemma 1.9 (ii).

So

Now since x_, x_ € M (T) and x_ + X, € M(T), theorem 1.12

gives

<(T-Db) (xl+x2), X, + x> =0 .

4

[

So, x. +x_ € M (T).

1 2 b(
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Corollary 1.14 If b is an extreme point of W(T),

ther _
<(T-blx,y> =0 and <{(T*-blx,y> =0

4zt

for ail =z € MZ(T) and y € M(T} where

Ab(TJ = {x € B : <Mm,z> - bllz]|? = 0}

and

I being a line of support For W(T) passing through b.
Proof Obvious from theorem 1.12 and lemma 1.9 (i).
Corollary 1.15 Witk thne same notaiione cs v corollary
1,14, 2F xe N (T) ana ITx < iHD;, then
jo)
Te = px and Tz = bx
Proof Since by lemma 1.9 (ii), M(T) is a subspace,

Tx € M(T), x € Mb(T) ¢ M(T) together imply

But by corollary 1.14,

<Tx - bx, y» = 0 whenever y € M(T) .



Taking y = Tx - bx, we have ||Tx - bx]||?= 0.

Tx = bx (1), T*x = bx.

and so by lemma 1.9

All the above corollaries are due tco Embry.

below another inequality given by her

Zrom which orthogonality of

21.

Consequently

We give

(with modified proof),

subspaces associated with adjacent

extreme points of W(T) can be deduced.
Theorem 1.16 et b and ¢ be adiacent extreme
pointe of W(T) and iet
d=z3+ 1[I - 3ZJc, A S ]
If ze M (T) ana v < K (T, Zhen
o &
lew u>! < V2 el iull
[<x,y> € violx] Y
In particuiar, <z,y> = (0 whenever x e ¥ (T) and
b
vy €M (T)
Proof Without loss of generality, we may take
b =0,
c =1,
Im W(T) > 0 (or < 0)
. +
and L 0 W(T) < R .
For any complex scalar A, 1if x + iy = 0, we have
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<x,y>] - e lx]] Iyl = o.

So let us assume that x + Ay # 0.

Consider elements of W(T) of the form

g(}\) -
lix+y] ®
_<TX,X> + (AP <Tyv,y> + ) <Tx,y> + A <Tvy,x>
Hx + ayll?
et (- e) Ly le
X+ vt
since lemma 1.8, with our assumptions, gives Tx = T*x and

by corollary 1.14, <Tx,y> = C.

Thus g(A) 1is real and hence must belong to [0,1].

So we have

or

Ix]2 (1 - t) |

vil? o< |Ix]]2+ (A2 Jlyl|?+ 2Re (X <x,y>).
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Choose any A so that

Re (r <x,y>) =+ |x] i<x,y>| .

Hence
2 llvll2 20a] looyel o+ lixll? s 0
... (1.4)

Then the condition that || satisfies (1.4) gives

sl<xoys]t - a4t llvll® el <o,
that is,

e | | [
<x,y>|o<ove (D [y

The following theorem of Embry (1975) considers two
lines of support of W(T) and relates the subsets associated

with them to each other.

Theorem 1.17 Let L1 and L. Dbe two non-parallel lines
s i

of support intersecting at the point c¢. Let

N
D
“
1A
m
b~

1 [l . -
M.AT) = {x e F: <Tx,z> - z |lz|l?= ;}, Jg =1,2.

c.

Then

AT - )z ,x,> =0 whenever . € M.(T), j = 1,2



24.

Proof Let ej be the acute angle between Lj and

the real axis. Let

Then by lemma 1.9 (i),

eiej(T - Cc)x., — € lGj(T* - c)x. =0, 3 =1,2
Thus
e2i61 <(T - ¢c)x,, X,>
= < (7% - E)xl, X, >
= <x,, (T - ¢c)x,>
= <X, e—zi82 (T - E)x4>
= 2i62 < (T CIX,, X,>
Since L, and L, are non-parallel, e2i81 # e2162
and hence <(T - ¢)x,, x,> = 0.
]

In this chapter we have dealt with the numerical range
as a convex set and defined subsets MZ(T), M(T) associated

with its different points and lines of support.
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In section 1.3, conditions for linearity of these sub-
sets have been examined. We also saw how the argument given in
the proof of convexity of the numerical range from section 1.2
can be conveniently applied to the proof of the main lemma
required for characterization of the numerical range by these

subsets.

In section 1.4, we gave two inequalities for the vectors

from these subsets and saw how a result from the previous

section, namely, linearity of MZ(T) when =2z 1s an extreme
point of W(T), can be deduced as a corollary of one of these
inequalities.

Note that all these theorems are inapplicable to the
unattained boundary points of the numerical range. So a need
for extension of these results to all points in the closure
of the numerical range is realized. In our next chapter we

attempt to supply such an extension.
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Chapter 2

SUBSETS CHARACTERIZING THE CLOSURE
OF THE NUMERICAL RANGE

2.1 Introduction

In this chapter we attempt to generalize all the results
of Embry given in the previous chapter. We define certain sub-
sets associated with each point of the closure of the numerical
range. As we see in section 2.2, these sets are very similar in
properties to those defined in Chapter 1. But they consist of

bounded sequences of vectors from the Hilbert space.

Let W{(T) denote the closure of W(T). Since W(T)
is convex, so is W(T) . But an extreme point of W(T) need
not be an extreme point of W(T)  and vice versa. Also a non-
extreme boundary point of W(T)  can be an extreme point of

W(T) or may not belong to W(T) at all.

In sections 2.3, 2.6 and 2.9 we show that the subset associ-
ated with an extreme point of the closure of the numerical ranage
is in fact a subspace and if the subset associated with a
point of W(T)_ is linear, then the point has to be extreme.

We then consider the case when the point is a nonextreme
boundary point or an interior point of W(T)  and achieve
results of the same type, but not exactly similar to those given

by Embry for corresponding points of the numerical range.
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To prove some of these results a modification of a
technique given by Berberian (1962) and Berberian and Orland
(1967) proves very useful, though the results can be obtained
without the use of this technique as well. For example, Das
and Craven proved the linearity of the subset associated with
an extreme point of W(T) by a direct method. This has been
illustrated in section 2.3. However, since our technigue has
many applications we shall use it frequently throughout our

dissertation.

By using this technique we extend the Hilbert space to
another Hilbert space and consider a faithfuvl *-representation
of our operator on this new space. The numerical ranges of
these two operators are related; 1in fact the numerical range
of the new operator is the closure of the numerical range of the
original one. This was first shown by Berberian and Orland
(1967). However, we shall prove this result without a Banach
algebra approach. This enables us to use known results
on numerical ranges for this new space ard operator. Often
this involves some calculations. Thus we obtain results for
the closure of the numerical range. Sections 2.4 and 2.5 of

this chapter explain this technique in detail.

In section 2.4 we develop a technical lemma to show
the existence of a normalized positive linear functional which

strictly separates any non-null sequence of positive numbers

from the set of real null seguences. This functional has all
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the properties of a Banach-Mazur generalized limit except
translation invariance. We modify Berberian's technigue in
that we use this new functional instead of the Banach-Mazur
generalized limit to define a pseudo-inner product on the space
of bounded sequences of vectors from our Hilbert space.

Positivity of this functional is essential to our proofs.

In sections 2.8 and 2.9 we generalize the Cauchy-
Schwartz type inequalities given in the first chapter to
seguences of vectors. To do this we first use Berberian's
technique and then use a direct method by which stronger ine-
gualities can be obtained. From one of these inegualities we
see that the results of Das and Craven can be deduced zs a

cecrollary.

2.2 Certain Subsets and Their Properties

Let £ (H) Dbe the set of all bounded seguences of

vectors from H. We associate certain subsets of QW(H) with

different points of the convex set W(T) . The definitions

of these subsets are given below.

Definition 2.1 The set NZ(T) corresponding to each

point =z in W(T) is given by
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yNZ(T) is the linear span of NZ(T). The sets N (T) and

NL(T) corresponding to a line of support L of W(T) are.

defined by
_ ] : TN : i
NAT) = ) € L () <D, x > zlix II* =0, z ¢ L n wW(T) }
and
N, (T) = {(xn) e L_(H) : infl<Txn,xn> - z||Xn|§2§ - O} .
zeL
NOTE: i) NZ(T) is closed and homogeneous.
ii) Since NZ(T) is homogeneous,
/N =
YN, (T) N_(T) + N_(T)
)
= + 7 p
{(xn Vo) o Gx). (y) e N (T
iii) N(T) = U sz(T)}
z€L {
iv) If we look upon H as embedded in £_ (H)
with the correspondence x -+ (%X,xX,...), then

MZ(T) (defined in the last chapter) is embedded
as subset of NZ(T) whenever 2z ¢ W(T). For
unattained boundary points of W(T), MZ(T)

will consist of the zero vector only, while

NZ(T) will be a nontrivial set of seguences.

Similar relations hold for M(T) and N(T).
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V) If L 1is a line of support of W(T) and

z ¢ L n W(T) , then

NZ(T) < N(T) < NL(T) .
A guestion likely to be asked is whether N(T) and
NL(T) are closed subspaces. The author is unable to prove the
linearity of N(T), though lemma 2.3 will show that N(T) is

closed.

The following standard theorem from Real Analysis is

needed in the proof of lemma 2.3.

Theorem 2.2 (Iterated Limit Theorem) Let (am/> be
a double sequernce <in R, Suppose that the single Limite
b= 1lim(a_ ), ¢ = limla_J} exist for «ll natural numbers
m v o mn A m.omm

m and n, and that the convergence of one of these collections

ie wuniform. Thern both intercied iimits b = lim(kr) and
N
¢ = Zim(cr) exi8t and are eoual.
n z
Lemma 2.3 Let L be a Line of support of W(T) cnd

- - Il
NMT) = {(x ) e & (5):<Tx ,x >-z|ix
oo 142 » ' [
Then I(T) i closed in the rorm tepology of L (E).

Proof If L n W(T) consists of only one point z,

then N(T) = NZ(T) and without loss of generality we may take

z = 0.



Let x(m) - x(o) in £ (H) as m - « where
(m) {m) (m) (m)
X = (x 1 o 7 ;r X n ’ )
and
() _ (°) (°) (°)
X = (x 177 X oty e, X n o’ )
Thus
L, (m) ()
Hx - x =0
. i (m) e ()
anc¢ hence (x ) converges uniformly to x .
+ (IT) I3 I m £ \ § 1
Let X < N_(T) for each m, that is, for
<Tx(m), x(m)> -+ 0 as n - ®
n n
We have to show <Tx(;), x(;)> - 0 . Obviously as
. (m) () sup (m) (°)
=0 == = TR ik - x T 0,

we have for each n,

X - X as m >

Thus for each n,

31.

each

m,
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a ' m m lim .
Hence llm<TX( ), x( )> and <Tx(m), x(m)> both exist for
n n n m n n
all natural numbers m and n. Also the convergence of
(<Tx(2), x(§)>) as m —- ® 1is uniform.
Thus considering a complex seguence as a sequence in
R2, we can apply theorem 2.2 to the double seguence
(m) _(m) . . N
<Tx n X n > and so conclude that both iterated limits are

equal, that is,

im lim m m 1im lim m
1i cpy (@ M)y im oy (M) (m)
n m n n m n n n
. . o s lim () ()
But the left hand side limit is nothing but . <Tx n ot X >
. . _ lim m . .
and since for each m, Lnl <Tx(n), x($)> = 0, the right hand

side limit is zero.

So, lim <Tx( ), x( )> = 0. Hence N(T) is closed.
n n n
If L r W(T) is not a single point, then by a suitable trans-

lation and rotation, without loss of generality we may take

L n wW(T) = [0,1]

14

n n n

and
Im W(T) > O
In this case if x(m) ¢ N(T), we have for all m,
epx () (@ z(m)llx(m)ll2 > 0 where z™ [0,1].
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We have to show

(o) (o) (o) 12
<tx 0. x> z|ix n | ~ 0 for some =z ¢ [0,1].
As before, the convergences
<Tx(m), x(m)> - <Tx( ), x( )> as m -» o«
n n n
ana
“x(m) - Ux(c) as m -
o ! n
are uniform.
If z(m) does not converge, there exists a subse-
(m, )
guence 2z such that
(m, ) (m, )
z % sz < (0,1}, as z * ¢ [0,1]
e ) ) ) . .
Thus <Tx n ' ¥*q > -z TR I converges uniformly to
<y ¢ ’, x(0)s ZI]X(O)H2 as m >
n n n
Also,
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must tend to zero as

Now application of theorem 2.2 gives the two iterated

limits are equal, that is,

llm o ) o 1 o
[<TX( )’ X( )> _ ZiIX( )1’2] -0 .
n n n n
0O
We shall need the following lemma to show that

N (T) is a closed subspace.
L

Lemma 2.4 For o posivive cpercicr £ and xy) in

[y

A bES S

<Sx , x>+ 0 if and oniy 1f Sx_ > U

2 m v
Proof If sx_ - 0, obviously <8x_ , x_> = 0. For the
n n n
converse, let S Dbe the positive square root of &. Then
<sx_, X_> =~ 0 implies |[|vS x_||~ 0
n n n
anc hence
Sx_ = VS v/é x =0
n
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Let L be a iine of support of W(T) and
e §_(H) znf‘1<,x N | L
o g€l n ntt !

L <is parallel to the imaginary axis, other-

the acute angle betweenn L and the real

L we have

Proof By carrving out the standard reduction
T - ele(T - zI), we may, without loss of generality, assume
that
I. 1is the maginary axis
and
Re W(T) = 0 .
Then
(T) (( ) L (H) Re <T > 0}
J = ! e y -
I\L i xn € x x j
= b <Rre > =
{(Xn) e L (H) Re Tx _, X O}
(
= {(x) € 4,(8) : Re Tx - o}
by lemma 2.4 as Re W(T) 2 0 implies Re T 1is positive.
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Also,
i¢ -i6 -
{(xn) € Qm(H) : e (T - z)xn - e (T* - z)xn - O}
= {(xn) € Lw(H) : (T - lb)Xn + (T* + ib)xn - 0
[by the choice of 6 and z]
f |
= l(xn) e 2 (1) Re Tx_ 0)

This proves part (i) of the lemma. Part (ii) follows

immediately.

2.3 Linearity on the Boundary of the Numerical Range

Das and Craven first generalized theorem 1.11 (1)
for extreme points of W(T) . We shall here give their proof
(modified) of this generalized theorem and then use a technique
given by Berberian to give an alternative proof which is more

conceptual and less computational in the next section.

Theorem 2.6 For any point &z in W(I)

N, (7) = {{xn) € R (H) : <Tz , = > - z ||z

Then N (T) 18 a subspace of L (H) <1f and onlv i¥ =z “is
z o J <z v

an excreme point of W(T) .

Proof Without loss of generality we may assume that

0 and Re W({

+3

) >0

N
Ml



Suppose 2z 1is an extreme point of

being obvious we only have to prove

Let X v e N (T).
(x_), (v) e N_(T)
lemma 2.4 gives Re Txn -+ 0. Thus
<T(x_+Vy X +v > - [<Tx
( n yn)’ n" ¥n [ n’"n
Since <Tx_, x_> and <Ty_, y_>
n n n
have to show Im <Txn, yn> - 0. If
tend to zero,
Case 1 Hxn + yni and Hxn
from zero for all n.

Passing on to subseguences

out loss of generality, assume

wW(T) .

linearity of NZ

Since

;X >-+<Tyn,yn>

both tend to zero,

37.

Homogeneity

(T).

<Re Tx , x > =+ 0,
n n

+—2iIm<Txn,yn>]-+O.

we only

Im <Tx_, y_> does not
n n

if necessary, we may, with-

- a
lix, + v il
n n''
and
. 2
X + v
2y Eni] .
D
112
x -
x, = v |l
where a, b are nonzero real numbers.



38.

Thus
< + + >
T(Xn yn)’ *n Yy .
" -+~ 2ia
E + v |
llxn Bn“
and
< - , - >
(xl‘l yn) xn yn N —2lb
| o 2
hxn ENL
Since 2ia and -2ib belong to W(T) ané b > 0, this

3

contradicts that 0 1s an extreme point of W({

i v
Case 2 . + vy .0 X - Y

. is not bounded away
n n "'n n

from zerc.

Consider the disjoint partition of the sequence (n)

of all natural numbers such that

(n) = (n') v (n")
and
||
min 1y + vl B = vl } <~

where M is an upper bound for ;;anl'
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Since
i ! . | : ; ‘
I<TX_ yn,>! S OUSTx_4, x> F ST, ox 2y >
we have
!<mx Y >] S ;<TX v X |>§+'€’-
' n n ) n' p
Thus, since <Tx_,, ¥ ,> =~ 0, <Tx_,, y_,>| can be made less
n n n n
than ¢ by choosing n' sufficiently large. For the sequence
(n"), we can apply case 1. Hence NZ(T) is linear.
For the converse, 1f 2z 1s not an extreme point of
W(T) , <hen either =z 1is an interior point of W(T) and
theorem 1.11 (i) shows that MZ(T) and hence NZ(T) is not
lirear; or =z 1s a nonextreme boundary point of W(T) , that
is, there exist two sequences of unit vectors (xn), (yp) such
that
<TX x > = 1la and <Tvy ;> =+ —ia (say).
n’ “n Ynr ¥n (say)
Let > = x + 1y. Then
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Passing on to a subsequence 1if necessary, we may assume

Im (A<TX_, y_>) = b + ic .
n n

Thus

5 xr . _’.IZ , . _ ,
<T(xn-+kyn), xn-+Aln>-+1a(1 [21°) +21i(cx - by) .

Hence

for at least two distinct values of A satisfying the equation

of the circle

2(by - cx)

X2 + v2 +

This shows NZ(T) is not linear.

The following interesting example given by Das and

Craven shows that though NZ(T) is linear whenever =z 1is an

extreme point of W(T) , the set

1

—»z(&
J

N_(T) = {(xn) € 2, (F) & <Tx_, xn>/Hxn!}2

which is quite similar to NZ(T) 1s not necessarily linear.
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Suppose (en) and (eﬁ) are two disjoint sets of
orthonormal elements of H. Define a linear operator V
such that

Ve = e
n n
and
Ve :._]le'
n n

It is easy to verify that V 1is selfadjoint.

Let
e+ ne' e~ ne'
n n - n n
X< and 'y =
V1 + n?2 I'/l + n?2
e+ e
Thus prii = Hyn];=:1 and Vx_ = — 250
: : V1 + n?2
Similarly Vy @ 0.
If we define T = V2, +then 0 1is an extreme point of W(T)
<Txn, Xn> <Tyn, v
and we note that though both —-———— and 0 0 tend
N 1z | 2
= | Hy 1*
to zero,
<P (x + vy ), x_ + v >
n n “n
L = 1 for all n.
12
x_+ v _II°
n n

This shows that N;(T) is not linear.
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In the next few sections we construct an alternative
approach to establish the result given in theorem 2.6. We employ
a technigue of S.K. Berberian (1962) and S.K. Berberian and
G.H. Orland (1967). This approach appears to be more conceptual
in that it enables us to deduce theorem 2.6 from theorem 1.11 (1i).

It also allows us to deduce sufficiency in the same theorem as a

corollary from a Cauchy-Schwartz type inequality.

Using the same technigue other results may also be
generalized to unattained boundary points of the numerical
range. This is illustrated in section 2.8 where we extend results

of Embryv (1975).

The results in sections 2.4-2.7 (except theorem 2.8,
corollaries 2.11 and 2.12 and lemma 2.13) have been included 1in

a joint paper by S. Majumdar and Brailey Sims.

2.4 A Technical Lemma

+
Let Qm, Qm, c and ¢, be the sets of real bounded,

bounded nonnegative, convergent and null seguences respectively.

Let x = (xl,xz,...,x yeeo) € £ and &* Dbe the dual of & .

n o] 0 foe)

We prove a simple lemma which will be used in the

following sections to achieve our main results.
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Lemma 2.7 For any y e % \co, there existe £ « LX
such that
z) J (y) § a,
1) f e positive, that is, flz) 2 0 For all x ¢ 2;,
121) fle) = 1 where e = (1,1,...) and o ||f|l = 1,
w) Fl =0, and
o .co 3
v) for all z e &, limin = < flx) < lim sup = ; in
o0 n T
particular, for « e ¢, flx) = lim z
i
In other words, y may be strictly separaied from ¢, by z
'normalized positive Linear functicnal’.
( 3
Proof Let A = wx e L lim sup x_ < O}. We shall
. X Tt
show that A = c. - & _ .
Let X = s - t where s ¢ co,, t ¢ &£ and suppose
lim sup x. 2 0.
n =
m 1 ..
Take 0 < g < % llm sup x_ ,
2 * n
then there exist but & finite number of terms of s greater
than ¢ and hence only a finite number of terms of x greater
than «¢. This contradicts that the limit superior of x 1is
strictly positive. So x ¢ 2A.
Conversely, let x ¢ A. Write a - 5p + n where
x 1if x_ = 0 ,
n n
S =
n
0 otherwise.
Obviously, (sn) ¢ ¢, and (tn) € Lm .
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+
So X € ¢, — £ .

oo

To prove that A 1s closed, let x Dbe a limit point of A,

that is,
lx - x(m)H = SUP |y x(m)l + 0 as m - «, where x '™
\ n ‘‘n n
Therefore, for given ¢ > O,
| x x <
n n

for sufficiently large m and all n.

Assume & = lim sup X > 0.

So f(a - ¢, a + €) where ¢ = % must contain an infinite
numpber of X and consequently an infinite number of x(m)
for sufficiently large m. This contradicts that x(m) € A.

Convexity being obvious, we conclude that A 1s a

closed convex subset of & .
Obviously, vy ¢ A since y ¢ £i\c,. Hence by the

*

separation theorem, there exists g € £ with

If x € c,, then X, -X ¢ Cc, ¢ A.
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So ¢(-x) £ 0, or, gf{x) = 0;

that is, g 1is positive on &7

Further, |lyle - yve £F .

So g(|lylle - yv) >0 and we get gl(e) ; 0.
Write £ = g/gl(e).

Sso f(e) =1 and £ is positive.

Thus = (]| x|le - x) = ¢,

or f(x) g || x|

Thus || £]} < 1,

but since f(e) = 1, this gives |l £]|| = 1.
Again f£((lim sup xr)e - x) z 0,

that-is, 1lim sup - fx).

Hence £ satisfies all the properties reguired in

lemma 2.7.

2.5 A Modification of Berberian's Techniqgue

S.K. Berberian (1962) used the existence of a Banach-
Mazur generalized limit, glim, for bounded sequences of real
numbers to introduce a pseudo-inner product on f_(H) and there-
by obtained a Hilbert space extension K of H. In fact glim
was only reguired to be an element of L: satisfying the
properties (ii) to (v) of section 2.4. Thus for every f of
the type described by lemma 2.7 we have the following construc-

tion.
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An extension K of H

Suppose s = (xn) and t = (v) belong to &_(H).
Since i<xn, yn>l < HxnééilyniE, it is permissible to define
¢(s,t) = £((Re <x_, v_>)) + if ((Im <%,y 2)) .

Evidently, ¢(s,t) 1s a pseuco-inner product on £Q(H) and

so satisfies the Cauchy-Schwartz ineqguality, hence

N =<s ¢ £ (H) : ¢(s,s) = O(

{s € L (H) : c(s,t) = 0 for all + ¢ { (H):

is a closed (can be easily verified Zrom the properties of ¢

subspace of £ (H).

o

We write s' for the coset s + N and define the

guotient inner product space

with inner product
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If x 1is in H, we write (x) for the sequence all of whose

terms are x anéd x' for the coset (x) + N, Hence
<x',y'> = <xX,y> and X - X' 1s an 1isometric linear map of H
onto a closed subspace H' of K.

A representation of B(H)

Every operator T in H determines an operator T°

in K as follows.

Since |iTx_| < [Tl lix_|
I on
iz (xn) e 2 _(H), so is (Txr).
Define the linear map T, : & _(H) - £ _(H) Dby T.s = (Txn).

Hence, DY positivity of ¢ we have

¢(T.s, T s) € T/ ¢(s,s) L. (201

C [

This shows that if s ¢ N, +that is ¢(s,s) = 0, then
¢(T,s, T,s) = O

anc hence

T.s ¢ N .
Thus the linear map T° : K - K defined by T°s' = (T s)' 1is

e}

well defined and since from (2.1),

<res', T°s'> < llT||“<s', s'> for all s' e K ,
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T° is continuous and [|T°]|] < ||T]].
But T°x' = (Tx)' for all x € H and hence [||T°] = ||T]].
Thus we have ||T°|| = |IT]].

o]

It can be easily verified that the mapping T =+ T
a faithful *-representation of B(H) into B(K), that is

for S,T ¢ B(H),

i) (5+T° =8°+7T°

1l
>
H

o

ii) (AT)°

iii) (sT)° = 8°T°

iv) (T*)° = (T°)*
v) I° = I, anc
vi) |rel] = |lT].

Also it is easily seen that T 1is positive if and

only if T° 1is positive.

Berberian and Orland (1967) have shown in the propo-
sition of section 3 of their paper that W(T°) = W(T) . This
fact is basic to our proofs. We give below a simple proof of
this result, which, unlike the proof given by Berberian and
Orland, needs no reference to Banach algebra; and instead
makes use of a normalized positive linear functional £ with

the properties given in lemma 2.7. This proof was suggested

to the author by B. Sims.
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Theorem 2.8 For any operator T in H, W(T°)

e closed; <indeed, W(T°) = W(T)".

Proof The inclusion W(T) < W(T°) can be shown as
follows.
Let X = lim<Txn, x > where (xn) € L_(H), ]jan =1.
Writing s = (Xn) and s' = s + N as before, we have
lls'il =1 and
<T°s',s'> = f((Re<Txn,xn>)) + if((Im<Txn,xn>))
(where £ is as describea in lemma 2.7)

= lim<Tx , x> = A
n n

For the converse we show X} ¢ W(T) implies

If i é W(T) , there exists a half-plane U such
that A ¢ U and W(T) < U. Thus by carrying out the standard
transformation T =+ aT + £ with suitably chosen complex o, B,

without loss of generality we may assume A = 0 and Re W(T) <O0.

It will be sufficient to show that

sup Re W(T°) < sup Re W(T) .



50.

Let u € W(T°).

Then

Re 1 = £((Re<Tx ,x >)) for some (x ) with £(([x_[[?)) =1,

£((Re 1 llxn]!"—))

where Mo € W(T) .

(If X, = 0 for some n, we put Mo egual to any point of
W(T).)
Thus

Re 1 < f((gixn[!Z sup Re W(T)))

by positivity of £,

AN\

or, Re u sup Re W(T).

2.6 Linearity of NZ(T)

We are now ready to give an alternative proof of

bl

Theorem 2.6 For any point =z in W(T) , let

~

N (T) = {(x ) € L (H) : <Tz , =z >~ z|lx
<7 7/1 (9] 7

Then N _(T) is a swsespace of L _(H) <f and only if =z is
&

an extreme point of W(T) .
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Proof By carrving out the standard reduction
T - elU(T - z7I) where 8 is a suitably chosen real number,
we can assume without loss of generality that 2z = 0 and

Re W(T) = 0.

We first prove sufficiency. Homogeneity being clear,

we need prove only linearity of NZ(T).

By the construction of section 2.5, for each f of

the type described in lemma 2.7 we have

W(T°) = W(T)
Indeed if <Txn, Xn> - 0, then 0 = <T°gs', s'> where
s' = s + N, s = (Xn).
Now let (x_), (y_) be such that both <«<Tx , x >
n n n n

and <Tyn, y_ > tend to zero where 0 1s an extreme point of

Then <T°s', s'> = <T°t', t'> = 0 1s an extreme point of W(T°®).

So by theorem 1.11 (i),

<T°(s' + t'), s'" + t'> = 0,

or
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Thus by the form of the inner product in K, for everv

possible choice of £ we have

< + v + v > =
f((Re <T(x + vy ), X+ ¥ >)) 0 ... (2.2)
and
£((Im <T(xn + yn), Xt yn>)) =0 .. (2.3)
Now o = (&n) = (Re <T(x) + yn), Xn + yn>) € g;
and so by (2.2) and lemma 2.7, & ¢ C,, that is, o 0.
h o= (£ ) = , 3 C ) e
To show ( n) (Im <T(xn + }n), %0 + Yn ) Co

requires a little more work.

First note that

lim inf £ < £(f) < 1lim s B,
o (&) L sup £

Also, by (2.3), f£(F) = 0.

Assume a = 1lim sup = 0, then there exists a

subsequence (n, ) such that

kK

Im <T(xn + v ), x + vy > > a .
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Passing on to a further subsequence we may assume

| x +vyv || »L=0.
Oy Py
(If L. = 0, then Sn - 0 contradicting a > 0.)
k
Thus
: + v X +
T(knk ynk) " ynk a
Im<— , > T3
R
k k k k
while
fag] e B : 7
‘(xnk }nk) >nk + }nk
Re< , —— > 5 0
S ISR
Sk k Tk k
So ia/L? ¢ W(T) .
If also b = lim inf Sn < 0, we would similarly have
ib/f2 ¢ W(T)  where & = 0 1s the limit of the norm of a

suitable subsegquence of (xn + yp).

Thus b/ &2 0 a/Lz2

<
=
Z

HA

contradicting that 0 1s an extreme point of W(T) .

[os]

Thus at least one of a and b is zero. Now

can be decomposed as
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where

B - a if 56 =z oaj;
o ~ r ~ - ’
R :{n n
Vn .
0 otherwise.
So £° € c, and ae - (6 - E£°) ¢ L]
If a =0, £ - £° € £
and similarly
Il f+
if b =0, £ - £° ¢ ¢ .

But then for all f satisfyving the conditions of lemma 2.7

we have
0 = £(E) = £(&8 - £°)
and so B - E° € Cy -
Thus £ ¢ ¢, and consequently N, (T) is linear.

To prove the converse, 1f 0 1s not an extreme
point of W(T) , then either 0 is an interior point of
W(T) and theorem 1.1 (i) shows that M,(T) and hence N, (T)
is not linear; or 0 is a nonextreme boundary point of W(T)
in which case we may assume that 0 1lies on the join of ia

and -ib where 1a and -ib belong to W(T) , a, b > 0. We

will show that N (T) is not linear.
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Let s = (Xn) and t = (yn) be two sequences of

unit vectors such that

i

<Tx_, X_>» = 1ia and <Ty_, yv_> = —-ib .
n n n n

Then since < (T + T*)x_, x_> - 0, an extreme point of

n n
W(T + T*) and so an approximate eigenvalue of the Hermitian
operator T + T*, we have Txn + T*xn - 0.

Further by passing c¢cn to subseguences if necessary,

3

we may assume that for any =, Im(“<TXp, v_>») 1s convergent
and hence it follows that (<T(Xr + kyr), X + hyr>) is
convergent.

Now, given anv £ satisfying the conditions of
lemma 2.7, we have
<T°s', s'> = ia and <T°t', t'> = -ib
and so by lemma 1.10, we have
<TOo(x_ + sy )', (x_ 4+ 2y )'> =0

for two distinct values of .
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By (v) in lemma 2.7 and the construction of KX, T°,

we therefore have for both these values of X that

lim <T(x_ + Ay X o+ oAy >
( n *n)’ n Yp

Il

AV ’ + Ay >
£ ((Re <T(xn + }n) X MY ))

+ 1f((Im <T(xn + kyn), X+ v >))

that is, (x_ + 2y_) € N, (T) for two distinct values of ).

Hence N_(T) is not linear.

2.7 Generalization of a Cauchy-Schwartz Inequality

In theorem 1.12 we have seen a version of the Cauchy-
Schwartz inequality for the vectors associated with points of
L n W(T), where L is a line of support for W(T). We
translate this into a statement about seguences of vectors
associated with points of L n W(T) . We then illustrate how
other results may be extended to unattained boundary points of
W(T) by deriving generalizations for some of the consequences
given in section 1.4 of Chapter 1. 1In particular, the results

of Das and Craven can pbe deduced as a corollary to a generali-

zation of a Cauchy-Schwartz inequality.
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Throuchout let L be a line of support for W(T)

and let

. |
@ = {0« s B s = il 1) - o)

Lemma 2.5 (ii) shows that N_(T) is a subspace of {_(H).

L
Let £ satisfy the conditions of lemma 2.7. For any
complex sequence (An), define f((kn)) by
£ N — 3 - 1 f h
£ )) £((Re 2 )) + 1f((Im 2 _))

We have the following lemma.

Lemma 2.9 Let f be asc above and =z be a point of
L such that either =z <& an extreme point of W(T,  or
z & W(T) Ther. for all (x ., (v ) e N_(T)

|Fri<r-zjz v >))|? < F((<(T-z)z 22 ) )f((<y ,(T-z)y >))
n 7 n
Proof By a suitable translation and rotation we may
assume that L 1is the imaginary axis, 2z = 0 and Re W(T) > 0.
For the given £, let K and T° be as in section
2.5 and let s = (Xn)’ t = (yn), then

Re <T°s', s'> = f((Re <Tx_, x_>)) = 0 as Re Tx_ ~ O
n n n
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Similarly Re <T°t', t'> = 0.

Theorem 1.12 therefore applies to give

]<TOS|’ £ > 2 < <TOS', s'> <t', Tot >

14

£((<Tx_,y >)) 1%« f((<Txn,xn>)) f((<yn,Tyn>))

as reguired.

g
Corollary 2.10 I &z <e an extreme point of W(T)
and L ie¢ a line of support for W(IT) paseing through =3,
then
iim <(T - z)x_, v.> =0
n v
.
and . .- .
Lim <(T* - z)z_, v> =10
n’ n
for all (x ) € NAT) ard (y ) e N_(T).
13 2 [ L
Proof Without loss of generality assume 2z = 0, L

the imaginary axis and Re W(T) = O.

Assume <Txn, yn> does not converge to 0, then

there exist subsequences (xn ), (Yn )  such that either the
X k
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real or imaginary parts of (<Txn P Y, ») form a subseguence
k k

3  + -
in Qm \C, (or £  \co).

(o]

By lemma 2.7, there is an £ with the stated proper-

ties such that £((<Tx_ , y_ >}) = 0.
P TPk

To derive a contradiction we note that (xv1 y € N _(T).
: z

Tk
So <Txp RN > - 0
S k
and
(v ) e N_(T)
. L
Px
Thus by lemma 2.9,
E((<Tx_ , v_>)) =0
ny Ny
So we have
lim <(T - 2)x_, y.> = 0
n n
whenever z 1is an extreme point of W(T)  and by lemma 2.5 (i)
we also have
. * - - - —
lim <(T z)xn, yn> 0.
0
Corollary 2.11 Let & and L be as in corollary £.10.

If (x )¢ N (7)) and (Tx ) e K. (T), then
i 7 z 7

lim (O - z)xr = ilim (T* - z)x_ = 0.
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Proof Again assume =z = 0, L 1s the imaginary axis
and Re W(T) = 0.
Since (x_)} € N_(T), by definition <«<Tx_, x > =+ 0
n z n n
and so by lemma 2.9,
: ; = for 1 ; € N
f((<Tx_, yn>) ) 0 or al (}n) I\L(T)
In particular, taking Y, = Tx we have
+ I > 2 =
L((HTxnl )) 0

Now (HTanS) is in 4%, so by lemma 2.7 we conclude that
Tx -+ 0 and since Re Tx_ - 0, that T*x_ =~ 0.
n n n
O
Corollary 2.12 (Das and Craven) If =z 1&g an
extreme point of W(T) , then I_{7) <s ¢ subspace ¢f L _(E)
< X
Proof Homogeneity being obvious we only have to prove
linearity.
() (2)
Let bd X € N _(T).
e ( n ), | 0 ) 2( )
1 2 . . .
Thus (x(n)), (x(r)) € NL(T) where L 1s & line of support
for W(T) passing through =z.
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But NL(T) is a subspace by lemma 2.5 (ii). So
(2) (2) -
(x 1 + X I )E»NL(“).
Now since (x(;)) € NZ(T), i=1,2 and
(=) (2) ; .
(x . X ) € NL(T), by corollary 2.10,
lim <(T - z)x(l), x(l) + x(2)> = 0 for 1 = 1,2
n n n
Hence
) z 1 2
lim <(1-—z)(x(1’-Lx( )), (1) () g 0.
n n n n
) o)y Lo
So (:>.n -rxn) "\z(*)'
0
Let £ Dbe any linear functional satisfying the
conditions of lemma 2.7 As before, for any complex seguence
(~_), define £((,_)) Dby
n n
f A = I \ )+ . \
£0)) ((Re 2_)) iE(Im )

We have the following lemma.
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Lemma 2.13 Let b and ¢ pe adjacent extreme points
of W(T)" and let a=ztb + (1-tle, 05t =1 If

x ) e N (7) and (y /) € N {T), then for all F of the

r b " a

type described above,

~ 2 1 12 yaat 2

Fll<x Ly >))\ Pt A e 1R Py 1P

. 7 n "

Ir. particular, <Ff (x ) € N.(T) and (y ) € & (T), then
- v n 14 v &

79 el = [

Lim <z, y > = (.

Proof For the given £, let K and T° be as in
section 2.5 and let s = (xn), t = (yn), then an easy appli-
cation of theorem 1.16 gives

cst,oeeh e R sl el

or, in terms of £,
%f((<xn,yn>))'
In particular
£ < 7> =
hence (( X0 Yo ))
If <X _, v_>
n n
exist subseqguences (x
imaginary parts of (<x
+ -
£., \Co (or L \Co) -

1
|

then t

Hh
Il

|.J.

’

0.

aoes not converge to zero, then there

)

(yn such that either the real or

form a subsequence in
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By lemma 2.7, there is an £f with the stated

properties such that

f(( <x_ , v_ >)) =0
nk nk
But (x_ ) € N (T), (y_ ) € N (T)
nk b nk c
Hence
(0 <x_, v >)) =0
Ny “k

and we get a contradiction.

Therefore <xn, yn> - 0.

In lemmas 2.9 and 2.13 we have obtained inequalities
in terms of f£. As we shall see in Chapter 4, these inequali-
ties are sufficient to enable us to deduce as a corollary,
results of Garske (1979) and Das and Craven on weak convergence
on the boundary of the numerical range. However, in the next
section we use a direct method to get inequalities for the
elements of N(T) in terms oI limit supremum. Property (v)
of lemma 2.7 shows that these inequalities are sharper than
those obtained in this section. The ccntents of the next

section cover part of a joint paper by Das, Majumdar and Sims (1).
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2.8 Inequalities for N(T) in Terms of Limit Supremum

In theorem 1.12 we have seen a sharper version of
the Cauchy-Schwartz inequalitv for the vectors associated with
the points of L n W(T). In the last section, using a modifi-
cation of Berberian's technigque which involves a change of
Hilbert space and operator via a construction based on
normalized positive linear functionals in £* , we have
extended theorems 1.12 and 1.16 to the case of vectors associ-
ated with the points of L n W(T) . Here we shall not use
this technique; instead we exploit the notions of limit supremum

ané limit infimum to obtain somewhat sharper inequalities.

We prove the following theorem.

Theorem 2.14 Let I be a line of support for W/T)

and

W(T)=<(x ) ek (F):<lz ,x >-zixz ||*+ 0, =z e L n W)
7 o o 7t 2 ‘

Let £ ke an element of L cuch that either z ig an
extreme point of W(I') or = & W(T) . Then for all
(x )_, (y ) € ]NIT/\_,
n 7
- e | - j 2 ! P ~ PO P , !
Lim supl(|<(T-3z)x _,uv_> —q<ﬁ—gm,w/||d7mwag}4]sG

I



Proof Let either 2z DPe an extreme point of
z & W(T)
Without loss of generality we can take =z
W(T) n L on the positive real axis and Im W(T) =
may assume “an and Hyni! are nonzero for all
if zero, they will not alter the ineguality.
Let t,, t, be two positive real numbers
<Tx_, x> - t_ lix_||? »~ 0
1 I 1 n
ana
< , +— ! b2 A
STy , y.2 = T, Ly | - 0.
“n’ “n 2 ohdn
Consider points of WI(T) of the form
<T(x 4+ A YV ), X+ ) v >
. _ n n'n n n-*
g (» ) =
n n % + 3 | |2

where kp's are complex scalars such that ikn] =
n.
We have assumed x_+ A v =2 0 for all
n n‘n
if x + 3 vy =0 for some n,
n n n
. ) *
Since Im W(T) = 0, we have Txn - T X

gn(kn) - hn(hn) - 0

n,

65.

W(T) or
:0,

0 (or <0). We
n, because

such that

for all

because

it will not change the inequality.

So
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where
t lx |12+t n2lly || +2Re(h_<Tx_,y_>)
h (x ) = 107 n 2 4 n n'“n
n n i N |1 2
X+ A e
HR n¥n !
Hence
Im gn(}n) = 0
and

Re ¢ (- ) - h () =0

Thus for anv € > 0,

for sufficiently large n, oOr,

—c+liminfReg (7 ) ¢ liminfh (A ) e+ liminf Reg_(A_) .
n n n n n

I

If 1lim inf Re gn(kn) = a < 0, then there exists

) such that



and hence

So a € W(T)w and thus a > 0

where & z 0.
This shows 1lim inf h_(»_) = C.
L2 Iy
Moreover, since (x_ + 3 v ) ¢
n L-n
liminflt. [jx_ %+t r2.v
LS L !

Choose X such that

Given ¢ > 0,

Im g |
n

k
since

h (% <
n( n)
ia(H),

+ 211 <Tx

™

i

we have for suZficiently large

n'Y

n

n,

67.

So,
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Hence

lim sup[!<Txn,yn>{2 - }<Txn,xn>{i<Tyn,yn>|] < 0 .

O

A somewhat similar argument [see K.C. Das S. Majumdar
and Brailey Sims (1)] yvields the corresponding result for
NL(T), from which the result of Das and Craven for ar extreme
point of W(T)  can be deduced as a corollary.

Corollary 2.15 I ze L 18 an extreme point of
Wi{T) , then
Tom <(T sl v > =0
R
ong
Lim <(T% - Bz, v,> =0
) ) (7).

where (xn) e N () and (yy/ € I

Proof By theorem 2.14, obviously < (T - z)x“,yn> = 0

and since (yn) e N(T) < N_(T), lemma 2.5 (i) gives

,*_— -
<(T z)xn,yn> 0.

Theorem 2.16 Let b anc ¢ be adjacent extreme
points of W(T) and let a=:ibo + (1 - tle, 0 <t <]
If (x ) € N (T) and (y ) ¢ N () then

- 7 b “n a ?

74 " ; /=] 7
tim sw i<z 21 - Ells [l lly, 1] < 6.



Proof Without loss of generality we may take b = 0,
c =1 ané W(T) n L on positive real axis.
Let )j's be complex scalars such that !)nﬁ = n
for all n.
If x_ + 2y =0 for some n, we have
n n’n
|<x_,y. > = vEilx Il v Il = o
So let us assume that X + s vy _ = 0 for any n. Consider

<T + 7 X _ + Ay >
() = (Xn g yn)’ n n?
o [ENE |
n n*n
Since <Txn, Y, > > 0 by corollary 2.15, we have
Jn(AA) - hn(An) - 0
where
2 _ 12
hoOy = 3= o)l
n n
I + 3 v 1?2
I\Xn /n&n“

Hence, by our assumption, 1lim sup hn(xn) < 1.



Thus for any

e > 0 and large

n® (-t fly [17 < (1+e) [ffx |

A
n

Hence

tn? iy

where M

where m

can be so chosen

13

it ey e
n -on

is an upper bound

n,

that

—EHX A < i
n n-n
+ ng\ 7 i‘
nil Y
j4r!]‘ < Mmte
2. Hence
I 1D 1 2
“Xl’l“ l|yn7: ]

S0

70.
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It is worth noting that since for each z ¢ L, a
line of support for W(T),

N_(T) = {(xn) € LW(H): eie(T-z)xn—-e—le(T*—E)xn > O}

where & 1is the acute angle between L and the imaginary axis,

m ¢ ;£ 3 r1F * < ( -
(-xn) NL(T) if and only i (T xn) € NL\T) for any operator

T. Furthermore, 1if (xn) is a non-null sequence of NL(T)

and Txn -ozx 7 0, then necessarilv =z ¢« L and T*xn-zxn->0.

Thus 1f (Xn> 1s a bounded seguence of approximate

eigenvectors associated with the boundarv of W(T) and (yn)
is a bounded seguence of approximate eigenvectors for some other
approximate eigenvalue, then <xn,yn> - 0. This mav be compared
with the similar results for eigenvalues (see, for example,

Embry (1875)).

For convexoild operators, that is, the operators for
which W(T) is the convex hull of the spectrum, any extreme
point of W(T)  is an approximate eigenvalue, and so this will
hold for all extreme points of W(T) . Theorem 2.16 shows
that <xn,y > = 0 whenever (x_) € N_(T), (yv_) e N _(T)

n n b n c

where b and ¢ are adjacent extreme points of W(T) .

The following generalization of theorem 1.17 is true

for two non-parallel lines of support of W(T).



Theorem 2.17 Let L —and L, bpe two non-parallel
lines of support of W(T:, L 6L, ={c} and

C 2
AZ(T)={(m JeL (B):<Tx jz>-zllx 1?0, zeL.nW(T)
J T ot 7 "n 2 i 2 BTy () ,>

3

72.

Ther. <(T - c)x{v PRI whenever (x(i)) e N.(T).
Proof Let ej be the acute angle between L. and the
imaginary axis.
(3) : (m Lo
Let (x o ) € hj(;), 3 =1,2
Then since Nj(T) < NL {(Ty, 3 =1,2 and by lemma 2.5 (i),
/ i%j —i%j _
N (T) = ) ed (H) se (T-c)x_ -e (T*-c)x_ ~ O? ,
j s
1=1,2,
we have
ie (4) -16 (
e J(T-c)x 21 -e J(T*-c)x J) =0, 3= 1,2
A simple manipulation shows that
218 2186
1 _ () (z)_ _ 2 (1) (2)
e <(T-c)x n ¥ > -e (T-c)x NS >+ 0
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Since L, L are non-parallel, e + and hence

[a%]

(1) ()

<{T-c)x AR > = 0 .

In this section we have seen how the orthogonal
tendency oI vectors can be derived from Cauchy-Schwartz type
inegualities. We have also mentioned that the result of Das and
Craven can be deduced as a corollary to & similar inequality for
elements of NL(T). This result is based on the case when =z

1s an extreme point of W(T) . The cases when 2z is a non-
extreme boundaryv polnt or an interior point of W(T) will be
discussecd in the next section. The contents of the next section

have been used in a joint paper by Das, Majumdar and Sims (2).

2.9 Characterization of W(T)

Thecorem 1.11 of Chapter 1 characterizes every point
of W(T) as either an extreme point or a nonextreme boundary
point or an interior point in terms of the subset MZ(T) and

its linear span yMZ(T) where

{ \
M_(T) = %X ¢ H : <Tx, x> - z||x]|]? = O} .

This theorem, though very interesting, cannot characterize the

unattained boundary points of the numerical range.
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In this section we attempt to £i1ll this gap by

achieving a generalization of these results which can be applied

to every point of W(T) . In section 2.3 we have seen that

the corresponding result to theorem 1.11 (i) holds for NZ(T)

when 2z 1s an eXtreme point cf W(T) . In section 2.6 we

proved the same result from another approach involving Berberian's

technigue. The cases when 2z 1s & nonextreme boundary or an

interior point of W(T) are yvet tc be considered. We begin

by oroving the following preliminary lemma.

Lemma 2.18 Let 5 be in the interior of a line segment
with endooints ¢ ana b n W(I) .  Ther thne set
STl e yE (D) where
~
7~,/ ‘:/ \ ¢ /z = N 12 \‘
N A{T)=<(x ) e &k (& <Te yw >/ e || a
a | Tw ® o n )
Proof Let (Xr) ¢ L_(H) Dbe such that
. ,
<Tx_, x> / ||x_||* » a .
n n n'
Without loss of generality we may take a =1, b =0 and
{xleg = l'
| |
Let (y ) e No(m), [ly Il = 1.

By separately rotating each Yy, We may, without loss of

generality, assume
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, Y_ € R. Then

<Im Th n_>= r2<Im7 X >4 <ImTy >+ 2r Rex< 7> >
n’ 'n n “n’n Ypr¥p n ImTXn’}n 0

with our assumptions.
So Im<Th_, h_> =+ 0.
n n
For large n and any fixed z ¢ (0,1), consider the eguation

<Re Th_, h.> - z |h_|I? =0
n’ 'n n'

. ... (2.04)
We want to show the existence cf two distinct real values of

such that (2.4) holds. {2.4) is equivalent to

r2(<ReTx_, X >-2z) +2r Re<(ReT-z)x_,y_ >
n n n n n’“n

+ (<Re Ty_,v_>-12) = 0
n‘"n
Let €& = <Re Tx_, %> - 1 and €' = <Re Ty_, y_>. Then
n n n n n n
En’ 65 both tend to zerc as n - «, Hence (2.4) 1is equiva-
lent to
ré(l~z+e ) +2r Re<{Re T-z)x ,§Gf>+(g' -z) =0 .
This is of the form
A r2 +B r + C_ = 0.
n n n n n
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Now

where & (e ,e') 1s the sum of terms containing ¢ and ¢!'.
n n’n n n
Thus since 2z 1s a fixed constant in (0,1), 6r(€n,€;) can
be made sufficientlyv small for large n soO thazt B; - 4Ancr >
F i
So there exist two distinct values oI ¥, say,
r(‘), r(‘) such that
n n
. ‘B2 - 42 C
(1) (z) '“n nn
Y - Y =
n n
yi\
n
JB; - 4A _C_
But for sufficiently large n, - 1s uniformly
J2N

bounded away from zero. So we have

(1)
¢+ €
(r o Xn }n) NZ(T)
and
(=) :
(r n Xn t+ )n) € I\z (T) ’
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or, (Xr) € yNZ(T) since r n T F is uniformly bounded

3

away from zero.
O

Remark The above lemma shows an easy way to prove the

convexity of W(T) (theorem 1.2) as follows.

Let 2z lie in the interior of a line segment with

endpoints a, b e W(T). Let <«<Tx, x> = a, <Ty, v> = b,
hx|o= by =1, We want to show there exists an h ¢ H such
that <Th, h> / |[ih]l* = z.

Without loss of generality we may take a =1, b =
z € (0,1} and Re<Im Tx,y> = 0.

Since a =1, b =0, x and vy are linearly inde-
pendent. Let h = x + ry, ¥ e R.
Thus | hl, = 0 and
<Im Th,h> = <Im Tx,x> + r2?<Im Ty,v> + 2r Re<Im TX,y>

= 0 with our assumptions.

Thus ﬁw - fBe_T_M_’ .

Inl I
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Consider the equation

<Re T(x + rvy), x + rv>

= 2z where z € (0,1),
e + ryll?

or
<Re Tx, x> + r2<Re Ty, v>» + 2r Re<Re Tx, v> _ .
1 4+ r2 + 2r Re<x, y> !
or,
r2z + 2r Re<{(zI - Re T)x, y> + 2z - 1 =20
Now since
[Re <(zI - Re T)x, vy>]?=-2z(z - 1) > 0 ,

there exist two distinct values of > which satisfy equation
(2.5) and thus prove the existence of h as required. Note that
in contrast with the proof of convexity given by Halmos (1967},

this method cives two values of r explicitly.

Now we are ready to prove the main theorem of this

section.
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Theorem 2.19 Every elemert = of W(T) can be

characterized as followe.

2) s ie an exiveme point of W(T) 1f and only if
Nz(T) 18 ¢ subspace.

i7) If =z 18 a nonextreme boundary point of W(T)  and L
the line of cuppori for W(T)” paseing through =z,
then

IeT) le motr a straioht line segment, Tthew. =z ig

av. interior voint of W(I if and only 1f
premy o< vk (7)) whnere
z
w /T (’ H n P m N H . \—\
A (I)-‘i(x”/ € L (F):<lx ,zx /Jllxwll - a, a€ W) r .
Proof i) Already proved in section 2.6.

ii) (a) We first show that Na(T) < YNZ(T)

whenever a € W(T) n L.

Without loss of generality we may take L as the

real axis and Im W(T) = 0.

=1

Let (x_) € Na(T) and (yn) ¢ Nb(T), iiyn

By multiplying (y.) with o« , |la_| =1, 1if necessary, we

may take Re<y_ , X_ -~ = 0.
n n



Thus corollary 2

.10 gives

Re <Ty_, x_> = 0.
n n
For each choice let table
a — 2Z } P!
r = *x/="—-= lx |
n Vv z = b I''nll
Since Im<Tyn, NI 0 and Im W(T) > 0, we have
Ty_ - T*y_ =+ 0 and thus
n n
<Tx > 4+ <Tvy X _> = 2Re<Ty > =
n’ Yn “n’ “n Ypr ¥y 0 .
Hence
<T(X +r y), <4 "'I’\’>'—ZHX : Y e
n n°n n n-n 'n n‘n*"
- [<Tx X > = zlix % 4+r2<Ty v > - gzr2
[<1 n’ “n Sy it *n] w0
so that we have
<T(x +r X +r v.>» - zix +r v {172 50
( n niki)’ n n-n i ninl v
with the chosen values of rn. This shows

-

‘a - zZ
(Xﬂi>/2"b

oL, (%) € yN_(T)

80.
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Thus N_(T) < yN_(T) for all & ¢ L n W(T) , that is,

N(T) < yNZ(T)“ So we have

\'NZ(T) =NZ(T) +NZ(T) < N(T) +NZ(T) C yN_(T) + N_(T)

which gives

(b) Without loss of generality we may take

L as the imaginary axis. So

14
|
Ty = {(x ) £ ¢ (H) : >
N_ (T) L(k ) (H) Re<Tx_,%_ 0

for all nonzero Xn
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Alsc 1f x_ = 0 for some n, <Tx , X > = 0.

that 1is, NL(T) = L (H).

B
4
ot
-y
M
I
®
(]
»
}_J.
0]
ot
n
e
m
>
e
i
i
b

Again 1f W(T)

V
S

O
~

suchk that Re<Txn, X

1ii) If 2z is an interior point of W(T) , by

lemma 2.18,

On the other hand, if =z is a boundary point of

W(T) , then vNZ(T) = NL(T) since X, (T) 1s a subspace.
But N'(T) 4is not & subset of NL(T) as W(T) ¢ 1. Thus
N'(T) is not contained in yN_(T).
<
O

In this chapter we defined the subsets NZ(T} and

YNZ(T); and the subsets N(T) and NL(T) (for a line of
support L of W(T)) associated with points of W(T) . We
saw that though NL(T) and wNZ(T) are subspaces, NZ(T) is
so if and only if =z is an extreme point of W(T) . Linearity

of N(T) we were unable to prove.
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Then we gave a characterization of W(T)  in terms
of these subsets and developed a modification cof a useful
technigque given by Berberian, which enabled us not only to prove
the linearity of NZ(T) when =z 1s an extreme point of
W(T)h, but also to achieve generalizations of Cauchy-Schwart
tvpe inequalities given by Embry (1575). The use of limit
supremum and limit infimum heloed us to sharpen these inequali-
ties for the elements of N(T). Many corollaries follow from
these two versions of these inegualities, for example, the
existence of limits of certain seguences of vectors and the

orthogonal tendency of vectors Irom NZ(T) and NL(T).

Our next chapter will be on the numerical range of

+

different operators. We first discuss various results that

1t

hold for points of the numerical rance and then extend these

results to points of W(T) . These extensions cover a part of

the paper by Das, Majumcar and Sims (1).



Chaptexr 3

RESULTS ON NUMERICAL RANGE
OF SPECIAL OPERATORS

3.1 Introduction

In this chapter we obtain various results for normal,
seminormal, convexoid and other particular types of operators

in terms of their numerical range.

Embry (1971) has shown that it is possible to classifv
some oI these special operatcors by means of subsets associated
with fheir numerical range. We have seen the definitions of
these subsets in Chapter 1. In section 3.2 we give these
theorems of Embry and then extend the results to points of the
closure of the numerical range. For this we use subsets associ-

ated with the closure of the numerical range as definecd in

Chapter 2.

In section 3.3, as given by Stampfli (1966) andéd de
Barra (1981), we see that if the sets associated with the
numerical range are subspaces then possibly subject to some
adéitional conditions, they are reducing for the operator. For
example, in one of the theorems we need the operator to be semi-
normal. We also prove a theorem generalizing Lin (1975) to
obtain some necessary and sufficient conditions for an extreme
point of the closure of the numerical range of a convexoid

operator to be an eigenvalue.



85.

211 the results in section 3.3 are then extended in
section 3.4 to cover the case of unattained boundary points of
W(T). Berberian's technique of Chapter 2 is again used to
give a simple proof for one of these results. The same tech-
nigue is used again to provide an alternative proof of the known

result that a seminormal operator is convexoid.

3.2 Classification of Operators by MZ(T) and KZ(T)

In Chapter 1 we have defined various subsets
associated with different points of the numerical range. In
Chapzer 2, following a similar line we have defined subsets
associated with different onoints of the closure of the numerical
range and noticed that properties of these two types of subsets
are very similar. It seems natural to ask whether these subsets
behave in a particular Zfashion if the operator T has special
characteristics or vice-versa. In this section, as shown by
Embry (1971), we prove that in many cases the tvpe of operator

and behaviour of MZ(T) are related. We then extend these

results for elements of NZ(T),

We begin with the following definitions.

Definition 3.1 The operator T is wnormel 1f TT* = T*T
and hyponormgl if T*T - TT* 1s positive. T 1is seminormal
if either T or T* 1is hyponormal. Also following Embry, T

is called an Zsemetry if T*T = I and unittary if T*T =TT* =1.
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Let ker T denote the kernel or null space of T.

The results and proofs of this section are essentially due to

Embry (1971).

Lemma 3.2 If f, g, h and k are bilinear functionals

on H, then the condition

flz,z) glz,zx hiz,x) klx,z) for all =z € H ... (3.1)

18 equivalent to

r

flz,y) glz,y) = hiz,y) kiz,y) foralili z and v in H ...(3.2)

Proof (outline) Let x, v ¢ H and A be an arbitrary
complex scalar. Substitute =x + ly for x in equation (3.1)
and equate coefficients of %2 to obtain equation (3.2). The

converse 1s obvious.

O
Theorem 3.3 T 1is a scalacr multipie of an isometry i}
and only ©f for each complex 3,
{;x P x e M (T)} c M (T)
P4 F4
Proof Equivalently we need prove that for all x < H,
<T?x, Tx>||x]|]? = <Tx, x>||Tx||? ... (3.3)

whenever T 1s a scalar multiple of an isometry and vice-versa.
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Suppose equation (3.3) 1is true for all x € H.

Thus by lemma 3.2,

<T2x,Ty><X,y> = <Tx,y><Tx,Ty> for all x,y € H.

e (3.4)

Thus

{(x}7 < {Tx)" u {T*Tx}*

and interchanging x and y in (3.4), we have

{x3t ¢ {T*x}t v {T*Tx}*
Since {yit is a subspace, we get
1 1 - L N4
{x}" < {T*Tx} or {x}t < {Tx}" n {T*x}t .

Both cases show the existence of a scalar rX such that

T*Tx = r X
X

It now follows by standard arguments that T is a scalar
multiple of an isometry (see, for example, the proof of lemma
3.€ where a similar argument is detailed). The converse 1is

obviously true.
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Theorem 3.4 T* is a scalar multiple of an isometry

if and only i1f for each complex =,

o

{T*x DX € MZ(T)} c I (T)

Proof Follows from applying theorem 3.3 to T* and
noting that MZ(T*) = ME(T) for each complex =z. O
Theorem 3.5 T s a nonsero scalar multiple of a unitary

operator 1if and only i1f for each complex =z,
{ x :x € Mﬂ(T)} =M (T)
< r<
Proof Combine theorems 3.3 and 3.4 to give T s a

scalar multiple of a unitary operator if and only if for each

complex =z Dboth
{Tx : X € MZ(T)} = MZ(T)

and

T*x : X € MZ(T)} < MZ(T)

—t

Thus 1if T is nonzero, this is equivalent to

/

{Tx : X € MZ(T)} c MZ(T) c {TX T X ¢ Mz(T)}

proving the result.
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For the next theorem, the following lemma is required.

Lemma 3.6 If T and £ cqare operators on H such

o

that
ker T c ker 4
and for each x € E  either

i) rz]l = |

oo 1]
Az|l , or
71) there exists a real number r. such that
T*Tx = r A*Ax

thenn T*T 1is a scalar muliipie of A%A

Proof For x,v € H, let =z = tx + (1 - t)y where

0 < t < 1.

Suppose A*Ax and A*Ay are linearly independent
and condition (ii) holds, that is, there exist real numbers r,

and ry such that

Hence either there exists a real number rz such that

T*Tz = IZ A*Az Or HTZH = HA::H
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But if T*Tz = rz A*Apz ,
since 0 < t < 1, 1linear independence of A*Ax and A*Ay

gives

Now suppose I ® I, then we must have ||Tzl|| = ||Az|| where

z.=tx + (l-t)y, 0 <t < 1.

Letting t approach 1 and 0, we have

lr=|] = [iax][ ana [|[7y[] = [[ayll .

Since A*Ax and A*Ay are nonzero, this gives

Thus in all cases if A*Ax and A*Ay are linearly independent,

we have

r,=r =1r (say).

Now suppose A*Az and A*Ay are linearly dependent

and T*Tx = r, A*Ax and T*Ty

I
at

A*Ay. In this case, since

7

Ker T ¢ ker A, we can choose r = 1xr = r.

So for all x € H, we have

either

or T*Tx = r A*Ax .
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This gives

llTx|| < ||ax]] for all x ¢ H, or, ||Tx|| > ||Ax]||

for all x € H

In either case the set
{xeme el = 1axll}
is linear by theorem 1.11 (i) and so

i o= {Xeﬁzrpwx - armx) o {x e H:|lTx||

¥

which shows either T*T = r A*A or T*T = A*A,

Theorem 3.7 T <s normal 1f and only if for each

complex 3z,

{x: Tx € M (T)} = {x: T x ¢ M (T)} .
z z



Proof Suppose the above two sets are equal,

<T?x, Tx>||T*x||? = <TT*x, T*x>||Tx||? .

Also we note that the following are equivalent:

i) Tx = 0,
ii) Tx € MZ(T) for all complex =z,
iii) T*x € MZ(T) for all complex z,
iv) T*x = 0,
and hence ker T = ker T* .

Using the same techniques as in theorem 3.
show that if x ¢ H ,
either there exists b € R such that TT*x = bT*Tx,

or there exist c, d € R such that

TT*2x = ¢cTT*x and T*T2x = AT*Tx

These last two equations together with (3.5) and (3.

either

or

92.

then

... (3.6)

3, we can

6) give

... (3.7)
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They also imply that

T*?2yx = cT*x and T?x = 4dTx .

Now (3.6) gives

TT*x = cTx and T*Tx = dT*x .

Thus if (3.7) does not hold we have

IIT*x||? = c<Tx,x> = d<x,T*x> =|/Tx]||? .

Hence we see that both T and T* satisfy the conditions of

lemma 3.6 and thus there exists a real number r such that

TT* = r T*T |

Thus r = 1.
X € ker T we arrive at the

But if r = -1, choosing an

contradiction

pTxil® o= JjTEx|]® = o0

Hence r =1 and so T is normal.
.
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Corollary 3.8 Let T be an invertible operator on
H. Then the following are equivalent:

1) T <& normal;

complex z;
111) {T—Zx xoe (T*T"J)} = {T*"jx Pxoe M (T*Zf_l)} for

each complex 3.

Proof If T 1is invertible, theorem 3.7 shows the
equivalence of (i) and (11). Again, application of theorem 3.5

to the operator T*’I‘_l gives the equivalence of (i) and (iii).
0

If we look upon H as embedded in Qw(H) with the

correspondence x - (xXx,%X,...), then it is obvious that

implies
: T
{Tx : X € MZ(T)} c Mz(*)
for all complex numbers of z.

This enables us to generalize all the above results as

follows.
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Theorem 3.9 T <e a scalar multiple of an isometry

i1f and only if for each complex =,

{(Tx ) (x ) €N (T)} c N (T)
a n z z
Theorem 3.10 T* 1s a scalar multiple of ar isometry

1f and only 1f for each complex =z,

{(T*x )i (x ) €N (T)} < N _(T)
n n 2 4

Theorem 3.11 T 18 a nonzero scalar multiple of a

unitary operator if and only +f for each complex =z,

{ Txr) : (xn) € NZ(T)} = NZ(T)

Theorem 3.12 T 1is normal 1f and only 1j

complex =z,

{(xn) € L (H) : (Tz ) e N (T)}

= {(x ) € & (H) : (T* ) e N (T)} .
n o0 n 3

Corollary 3.13 Let T be an invertible operator.
Ther the following are eguivalent:
i) T ig normal;

ii) {(T’Jx )i(x )€ N T)} = {(T"‘-J
n n 2

x ):{(x )€ N (T)}
7 7 z
for each complex z;
L11) (T—ZM ) (x ) €N (W*W_J) = {(T*—J J s (x ) e N (T* -1
111 x, ) o (x, (TP = { x ) (x 2 T )

for each complex =z.
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The proof for each of the above 'if and only if'
theorems consists of easy verification for one side and use of

the corresponding theorem of Embry for the converse.

3.3 PResults on Attained Points of 3W(T) for

Special Operators

In this section we deal with results on the attained

boundary points of the numerical range for convexoid and semi-
normal operators. As proved by Lin (1975), we obtain some
necessary and sufficient conditions for an extreme point of the
numerical range of a convexoid operator to belong to the point
spectrum. In the next section this result will be extended to

unattained boundary points of W(T).

Stampfli (1966) has shown that if T is hyponormal
and 2z 1s an extreme point of W(T), then MZ(T) is a
reducing subspace of T. de Barra (1981) has shown that for

such T, M(T) is a reducing subspace and T] is normal.

M(T)

We first give these theorems for seminormal operators borrowing
proofs from Stampfli and using a modification of the proof
given by de Barra. We then show in the next section that

similar properties hold for NZ(T) (with 2z an extreme point.

of W(T) ) and N (T) .

First we recall some definitions.
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Definition 3.14 If z ¢ 3W(T) and =z, 1s the centre
of a closed disc D such that 2z ¢ 3D and 3W(T) n D = {z},
then z_ = is sald to be an outer centre potnt with respect to

z. (In general take 2z W(T)).

Definition 3.15 If z € B8W(T) and there exists a

closed disc D such that =z ¢ 3D and W(T) < D, then z

is said to be a bare point of W(T) .

Definition 3.16 If z 1is a bare point of W(T) and
Zo 15 the centre of a closed disc D such that =z ¢ 9D and
W(T) < D, then 2z, 1s said to be an inner centre point with

respect to z.

Definition 3.17 The numerical radius of the operator
T 1is defined by

i _ sup
wiT) = 5 W RS

and the spectral radius by

_ sup
r(T) = )\EG(T) !>‘!

where o(T) 1is the spectrum of T.

Let d(z.,W(T)) denote the distance of 2z, from
wW(T); E(T) and B(T) respectively the sets of extreme and
bare points of W(T)  and op(T) and Oap(T) respectively the
point and approximate point spectra of T.



Theorem 3.18 Let T be a convexoid operctor and 2z

an extreme point of W(T)  such that

Let z, be an outer centre point with respect to z.

the following are equivalent:

-2 -1
i1)  ||Tx - zo¢] =r((T -2, 7);

-7 -
i) Iz - sexl]™T = (7 - a0l
Proof Since T 1is convexoid,

z € o(T) n BW(T).

Also since

(1=z) Y] € [d(z.,W(m) 1Y = [d(z,,0(T)))
= r((T-z )Y < (mez) 7Y,
we have
r((T-2.) 1) = || (T-zo) || = [d(2.,W(T))
Thus

(1)

(11)

implies (ii) since

Tz o) x|t = [z-2,| 7"
implies (iii) since
r((T-z,) ") = || (-

1

= [d(z,,W(T))] ~ =

z.) 1|

z = <Tx,x>, |lz||

I.

Then

-1

r((T-z,)
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and (iii) implies (i) for

HTX-ZOXH =d(Zo,W(T)) = iz_zoi = ]<(T—20)X,X>}-

and hence by the condition for equality in Cauchy Schwartz,

(T-z2,)xXx = Ax for some complex A. Since <Tx,x> = z, this
gives Tx = zX. O

If 2z = <Tx,x> € 3W(T), |lx|| =1, by lemma 1.9 (i),
T = zx 1if and only if T*x = zx. The following corollary

given by Lin can be easily verified from this fact and the

proof of the above theorem.

Corollary 3.19 For any operator T,

18 an outer

1) If <Tz,z> =z € oW(T), x|l =1 and 3z,
centre point with respect to z, then the following are
equivalent:

) ||Tx-z || = dlz0,W(T));
17) Tx = zx;
111) T*zx = zx
and

2) If <Tz,z> =2z € B(T), |lz|l| =1 and z, <s an inner

then the following are

centre point with respect to z,

equivalent:



100.

The next theorem gives conditions for M(T) to be
a reducing subspace for T and for the restriction of T to

M(T) to be normal.

Theorem 3.20 Let T be a seminormal operator and
M(T) = {x € H: <Tx,x> - zllz||? = 0, z €L n W(T)}

where L 1s& a line of support for W(T). Then M(T) <is a

reducing subspace for T and TIM(T) 18 normal.

Proof By lemma 1.9 (ii), M(T) is a subspace. For
any z € L, by carrying out the standard reduction
T - ele(T—zI), without loss of generality we may assume that

L is the imaginary axis and Re W(T) > 0.

Thus as in lemma 1.9 (i),

M(T) = {x € H: Tx + T*x = O} .

Hence
<T*Tx - TT*x, x> = 0 .
Thus by lemma 1.8,
T*Tx = TT*x as T*T - TT* < 0 or > 0 .
Now

(T+T*)Tx = T2x + T*Tx = T2x + TT*x = T(Tx+T*x) = 0 .
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Similarly

(T + T*)T*x = 0

Hence M(T) is reducing and since T*Tx = TT*x for all

X in M(T), we have TIM(T) is normal.

The following theorem proves the reducing property

of MZ(T) with =z an extreme point of W(T) and T semi-
normal.
Theorem 3.21 Let T be seminormal and =z be an

extreme point of W(T).
Let M (T) = {x € F: <Tx,x> - z|jz|l? = 0} .

Then M_(T) ie a reducing subspace of T.
K

Proof Without loss of generality we may assume z = 0

and Re W(T) = 0.

M, (T) 1is a subspace by theorem 1.11 (i) and
M, (T) « M(T). But T 1is normal on M{(T) and therefore since

Re W(T) > 0, the condition
<Tx,x> = 0 1mplies that Tx = 0 .

Hence obviously M, (T) is reducing for T.
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In the next section we shall use Berberian's technique
to achieve a generalization of theorem 3.21. We shall also
generalize by direct calculations the other two theorems in this
section. Note that since a seminormal operator is convexoid,
theorem 3.18 is valid for seminormal operators. Using Berberian's
technique an alternative proof of this known result, that a

seminormal operator is convexoid, will also be given.

3.4 Generalized Results on 23W(T) for Special Operators

The following theorems deal with sequences of vectors
from H rather than H itself and thus the results are in

terms of limits.

Theorem 3.22 Let T be a convexoid operator and 3z
an extreme point of W(T) . Let (xn) be a sequence of unit
vectors such that <wa,x”> -~ 3z Let =z, be an outer centre
point with respect to z. Then the following are equivalent:
1) lim ||Tz -2z || = 0;
non ’
. . -2 -1
22) lim ||Tx_-zox ||77 = »((T-z,)"");
n n
L., , -1 -1
111)  lim Tz -zox |77 = || (T-2,07" ]
n n
Proof Similar to the proof of theorem 3.18. Only note
that in (i) = (ii) we use the fact that if [}Txn—zxni{ + 0,

then I[Txn-% §J| - |z-2z,].
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This is so because

HTxn - zoxn]}2 = H(T~z)xn + (z—zo)an2
+ lz-z,]|% since (T-z)x_ =+ 0
and hence
(ll(T_zo)an+ }Z—Zol) (H(T—zo)xnll - (Z'_zol) - Ol
that is,
HTX - ZerH - iz—zol
as }HT—zo)xn|i+ lz-z,! 1is bounded away from zero.
Also in (iii) = (1) ,
HTXI’l - zan2 = H(T—zo)xrl - (Z-—Zo)an2
= H(T—zo)xn[]2+ lz-z,|% - 2 Re ((2-2,) <(T-zo)x_,x_>) = O
as || (2zo)x, || = 2oz
Thus we get
lTx_ - zx_|| - 0.
n n

The following corollary is readily verified from the

proof above and lemma 2.5 (1).
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Corollary 3.23 Let T be an arbitrary operator.
1) If (z_ ) 1is a sequence of unit vectors such that
Tz x> > 7 € SW(T) and z. 1is an outer centre point
(3 L

with respect to =z, then the following are equivalent:

) H(T-zo)xnl{+ (5o, W(T));
17) Tx =~ zx ~+ 0;
n n
i17) Trx - zx > O
n n
and

2) If (xr) 18 a sequence of unit vectors such that

<Txr’xn> > 2 ¢ B(T) and =z, <18 an inner centre point with
. I

respect to 3z, then the following are equivalent:

<) |(T-zo)z ||+ w(T-z,);
n
i) Te - oax v 0
7 I
Wi) Tre - Exp v 0,
7 n

The next theorem is a generalization of theorem 3.20
for elements of the subspace N_(T). We give below a proof

L

by direct method. The result can also be proved using

Berberian's technique.

Theorem 3.24 Let T be a seminormal operator and

£
!

N.(T) = {(x ) e 8 (B) M
Vi o 2€L

Tz, - 5, ||~ 0}

where L <is a line of support for W(T). Then for each
(x ) e N.(T), (Tx ) e N (T) and (T*x ) e NV (7). Also T
n L n L 7 L

approximates normal behaviour on sequences in NL(T) in the

sense that 1f (x ) ¢ N_(T), then (T*T-TT*)x =~ 0.
n L "
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Proof By lemma 2.5 (ii), NL(T) is a subspace. With-
out loss of generality we may take L as the imaginary axis

and Re W(T) 2 0 in which case as we have seen

N. (T) = {(xn) € QN(H) :Txn + T*xn—*O}

Let (xn) e N_(T).
Hence Tx + T*x - 0,
1 n
2 2
or, lTx_||2 - llT*_|I? > 0,
or, (T*T - TT*)xn -~ 0
by lemma 2.4, since either T*T - TT* or TT* - T*T is

positive.

Also continuity of T gives szn + TT*x > 0,
or (T?*x_ + T*Tx_) - (T*Tx_ - TT*x_) ~- 0.
n n n n
Thus T2?x_ + T*Tx_ - 0.
n n
€ .
Hence (Txn) NL(T)

In a similar way it can be proved that

(T*xn) € NL(T)-

By T - T° we will denote the faithful *-represen-
tation constructed by Berberian as explained in section 2.5.
The following simple lemma is used in the proofs of later

theorems.
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Lemma 3.25 T° is seminormal if and only <f T <s

seminormal.

Proof By the properties of T° as given in section 2.5,
(T°)*T° - T°(T°)* = (T*)°T° - T°(T*)° = (T*T-TT*)°.

Thus, since T° preserves positivity,

(T°)y*T° - T°(T°)* > O or

N
(]

if and only if

T*T - TT* 2 0 or < 0 respectively.

a

Theorem 3.26 Let T be seminormal and =z be an
extreme point of W(T) . Let

/ = 2 N z ,x > -zl 2 .

R_(T) {(xn) € & (H): <Tz @ > \lxnl] 0} .
Then for each (xn) € NZ(T),

(Tx. ) € N_(T) and (T%: ) € N_(T).
n 2 n z
[NOTE: This theorem can be deduced as a corollary of theorem

3.24, if =z 1is not an endpoint of a straight line segment on

dW(T) . ]
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Proof Since by theorem 2.6, NZ(T) is a subspace,
. . i6
T N_(T £ d ly if Tx - T) .
( xn) € z( }) if and only 1 e ( X zxn) € Nz( ) Thus
i6

by the standard transformation T -+ e~ (T-zI), without loss of

generality we may assume =z = 0 and Re W(T) > 0.

Now as in the proof (using Berberian's technigque) of

theorem 2.6, with the same notations,

(xn) € N,(T) implies s' = (xn)‘ € M, (T)

where

M, (T°) = {s' € K: <T°s',s'> = O} .

Since by lemma 3.25, T° 1s seminormal, theorem
3.21 gives T°s' € M. (T°), in fact the proof of that theorem
shows T°s' = 0.

Il
o

| 2
Thus f((HTan ))

for all £ where £ 1s any linear functional with the proper-

ties given in lemma 2.7.

¢t

Since (\{Txnl]z) € L7, by lemma 2.7 we conclude

that Tx_ -~ O.
n

Again since <Re Txn,xn> -~ 0, lemma 2.4 gives

Re 'I‘xn -~ 0 and hence we have T*xn - 0.

Thus (Txn) € NZ(T) and (T*xn) e N (T}).



Putnam (1965) and Stampfli (1965) have sh

dently that a seminormal operator is convexoid. W

an alternative proof using Berberian's techniqu

denote the convex hull.

Berberian (1962).

Lemma 3.27 For any operator T,

Oap™" = %ap(r)

Proof A complex number p does notbelong
if and only if there exists ¢ > 0 such that (T-
which is equivalent to (T°- I)*(T°-uI) 2 €I Dby t
of T° given in section 2.5.
Theorem 3.28 For a seminormal operator T,
W(T)” = co o(T)
Proof By lemma 3.25, T° 1is seminormal.
of theorem 3.21 to T° gives
E(T°) n W(T®) < o _(T°)
But since by theorem 2.8, W(T°) = W(T)—, we have
E(T) = E(T®)
and hence
E(T) ¢ o_(T°) < T°) =
) € 0 (T°) € o (T°) = o (T)

by lemma 3.27.

108.

own indepen-
e give below
Let

e. co

We need the following lemma given by

to Oap(T)
I)*(T-uI) 2 €l
he properties

]

An application
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Thus co E(T) < co o(T).
But W(T) = co E(T)
and co o(T) < W(T)_ .

So we must have W(T)— = co o(T).

In this chapter we looked at different operators with
special characteristics in terms of MZ(T) and the action of
the operator T on them. Then we extended the results to W(T)
and saw that the same type of set inclusions still holds for

elements of NZ(T).

In section 3.3 we provided two equivalent conditions in
terms of spectral radius and operator norm for an extreme point
of a convexoid operator to belong to the point spectrum. We
showed that for a seminormal operator T, M(T) 1is a reducing
subspace of T. Moreover T on M(T) behaves as a normal
operator. Also for seminormal T, 1f 2z 1s an extreme point
of W(T), MZ(T) has the same reducing property. This was

shown in theorem 3.21.

In the final section we obtained generalizations to
the results of section 3.3. In some cases it was convenient to
use Berberian's technigue concerning change of operators and
Hilbert space. By the same technique we gave an alternative
proof of the essentially known result that a seminormal operator

is convexoid.
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In the following concluding chapter we will consider
weak convergent sequences of unit vectors which generate sequences
of points in the numerical range converging to the boundary of
the numerical range. We shall also discuss the question of
convexity for a newly defined restricted numerical range. The
convexity of W(T) and Stampfli's numerical range WG(T) will

follow as corollaries.
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Chapter 4

CONVEXITY OF DIFFERENT NUMERICAL RANGES AND
WEAK CONVERGENCE ON aw(T)

4.1 Introduction

In this chapter we define a restricted numerical range
in terms of appropriate subsets of S of the unit sphere and
investigate conditions on S which will ensure the restricted
numerical range is convex. The convexity of Stampfli's
numerical range follows as a corollary. Kvle (1977) used a
different technique to prove this result. We include his method

in section 4.3.

In section 4.2 we consider the weak convergence of a
sequence of unit vectors corresponding to a sequence of points in
the numerical range with its limit on the boundary of W(T).
de Barra et «l. (1972), Sims (1974), Dbas (1973, 1974, 1977) and
Garske (1979) investigated which boundary points of W(T) are
attained. Das and Craven gave a bound for the norm of the weak
limit of vectors when the corresponding boundary point is not
attained, but lies on the straight line segment on the boundary.
We use the method of proof for these results given by Garske
and Das and Craven. We then demonstrate how all these results
can be obtained as a simple corollary to one of the inequalities

obtained in Chapter 2.
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4.2 Weak Convergence on oW(T)

In the previous chapters we obtained results for
those boundary points of the numerical range which are attained
by the operator T and then extended these results to
unattained boundary points of W(T). The gquestion arises as

to which boundary points of W(T) are in fact attained.

Garske (1979) showed that if A 1is an extreme point

of W(T) , then the following statement is true.

(A) Let (xn) be a seguence of unit vectors in H
with weak limit x ¢ H and <Txn,xn> - A e IW(T).
Then either

i) x = 0,
or ii) <Tx,x>/|lx]|? = A.

Weak compactness of the unit sphere in H ensures the exis-

tence of such a sequence.

The following example given by Garske (1979) shows

that (A) need not hold for all boundary points of W(T)

Example 4.1 Let T :L%[-1,1] - L%[-1,1] be the

self-adjointmultiplication operator defined by

(Tf) (t) = tf(t)

for f ¢ L?*[-1,1], t ¢ [-1,1].

It follows that W(T) = (-1,1) and so 0 € 9W(T) 1is not an

extreme point of W(T)
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X if -l st <o,
Let f (t) = { V2
n cos tnt if 0 £ t < 1
;% if -1 <t <0,
and f(t) = { V2
0 1f 0 < t < 1
Then ||f_I] =1, ||l = L ana s converges to f weakly.
n! /3 n Y
But 0 ) 1
- _ 1 1,1
<1fn,f > = J 5 t dt + J t(:2 + 5 cos 2nwnt)dt
-1 0
! 1 (!
= J 5 t dt + 5 t cos 2mnt dt » 0
-1 0
0 ,
whereas <Tf,f> = J 5 t dt = i
-1
£,£
Thus <Tf ,fn> + <TL, 22
]2

Das and Craven considered points on a line segment
on the boundary of the numerical range and gave a bounc for
the norm of the weak limit for such points. We shall later
state the results of Garske and Das and Craven 1n a single
theorem and give their method of proof; but first we begin

with a shortened proof of the following lemma due to Das and

Craven.
Lemma 4.2 Let A€l n W(T) where L <is a line of
support for W(T). Let x, T be a weakly convergent
sequence of vectors such that <Txr,x”>->k. Then either
L [4

z =0 or <Tz,x>/||x||® ¢ L.
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Proof By a suitable translation and rotation, we may,
without loss of generality, assume that L 1is the imaginary

axis and Re W(T) = O.

Hence <Re Tx ,x > - 0
n‘"n

and thus by lemma 2.4, Re Tx_ -+ 0.

But Re Txn - Re Tx

and hence the uniqueness of the weak limit gives Re Tx = 0.
So Re<Tx,x> = 0 and hence
either x = 0 or <Tx,x>/||x||? ¢ L.
;]

The following theorem is a combination of results of

Garske and Das and Craven. We first give their method of

proof.

Theorem 4.3 Let =z x be a weakly convergent

sequence of unit vectors such that <Txn,xn> > X € 3W(T).

Thue either

i) x =0, or,

11)  <Tx,x>/||z||? = A, or

iii) A 1is not an extreme point of W(T)” and x = 0, 1in
which case A and <Tz,x>/||z||* 1ie in a line segment on
the boundary of W(T) and |lx|]? < g- where p and g
are respectively the distances from )\ and <Tz,z>/||x]||?

to the extreme point of W(T)” collinear with A and
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<Tz,x>/||x||? and on the opposite side of X from

<Tx,x>/HxH2.

Proof First consider the case when )} 1s an extreme

point of W(T) .

Let <Tx_,x_> + A, ||x_|] = 1.
n n !

nl

This gives |'x|| £ 1 and so if y = X, - X, then 18

Thus passing on to a subsequence we may assume
+
1
ly il = e« RrR .
(We can exclude the trivial case when € =0.)

So we have

1= |[x_|I° = lly

E 2 mewx o+ [x]12

or, since x — X, this gives

n

Again

<Tx ,X > = <T > + < T*x> + <Tx > + <TX,X> > A
T n'*n Yor¥n Y 1Yo T, ’

or,

<Tyn,yn> > A - <Tx,x> .
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If we call 1y = <Tx,x>/|/x!l|* (assuming x # 0), this gives
. 2
o = A - lixiitu
:“2
where Ty Ly >
: n'?n
a = lim -
vy 12
nl
Thus » = c?a + |/x]| v
Since ¢? + ||x||? = 1, X 1lies on the line segment from

¥ to o and thus as A 1s an extreme point of W(T) , either

A= ¥ O0or A = Q.
If X = a, we have

pli=fl? = (1 - €9)a = of[x]|?
and hence again J = y.

Now consider the case when X # p and A 1is not

an extreme point of W(T) . If ||x|| = 1, then X v X
and thus X = u. So 1f x # 0, we may assume 0 < [|x|]* < 1.
Consider

<T(x+txn), X + txn>
(t € R)

lx + tanz

which, under the assumption x =%, 1s equal to

(u=2) (2t+1) ||x]]?

t? 4+ (2t+1) |1x || ?
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Let (2t+1) ||x]}?

u =

£t 4+ (2t+1) |Ix|l?

t can be easily verified that

IR

N
e
IN
=

=% -1

ST

By lemma 4.1, ¢ and i + \ - are
Y !

collinear with 4 and clearly lie on the opposite sides of ).

Hence

or,

i

The above theorem can be deduced as a simple corollary

of theorem 2.14 as given below.



Corollary 4.4 Let x o= be a weakly convergent
sequence of unit vectors such that <Txn,xn> ~ A € 3W(T).
Let L be a line of support of W(T) passing through ).
Then either

a) L is an extreme point of W(T)  in which case one of

the following holas:

17) <T.r,x>/lia:{|2 = A; or

118.

b) ) 1e a nonexvreme boundary point of W(I) T  in which
case one of the following holds:
i) x = 0;
11) <Tzyx>/||z||® = a where a< I e an extreme
point of W(T)~
In thie case |lz|| < V//g:g:%’ where b 1is the
other extreme point of W(T) n L .
271) |z </ %~E—g- where U = <Tx,x>/||z|l* and a €1
is an extreme point of W(T) .
Proof By lemma 4.2, A, W, &, b e L. If we consider
the sequence (%x,%,...), 1t is obvious that (x,x,...) e N(T)
where N(T) 1is as given in theorem 2.14. Also (xn) € N(T).

Thus an application of theorem 2.14 with A as an extreme point

gives

lim|<(T-2)x_, x>| = 0 since AT-2)x_, x > > 0
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and hence
<Tx,x> = ) ||x]]? ,

that is, either x = 0 or <Tx,x>/||x|? = A.

If A 1is a nonextreme boundary point of W(T) ,
another application of theorem 2.14 with a as an extreme

point of W(T)  gives

limi<(T-—a)xn,x>}2 < lim[<(T—a)xn,xn> lim|<(T-a)x,x>|

Thus if x # 0,

| <(T-z)x,x>* < |i-allu-al||x]]? ,
ox
a2 lixl® < -allu-al
-al
that is, u =a or [[x]/? < heal “"2 since A, u and a
|

u-a

are collinear and a is an extreme point of W(T)

If v = a, application of the same theorem with b

as the other extreme point gives
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Note that the inequality given in theorem 4.3 (iii)
is equivalent to the combined two inequalities given in

corollary 4.4 (b).

We also note that the above result could also be

obtained as a corollary to lemma 2.9.

Throughout our dissertation we used the fact that
W (T) is a convex set. In our next section we define a new
restricted numerical range and investigate under what condition
convexity holds for this set. As a corollary we obtain a
result given by Kyle (1977). These results are contained in

a paper by Das, Majumdar and Sims (3).

4.3 Restricted Numerical Range and Convexity of W_(T)

5

Stampfli (1970) introduced the concept of Wﬁ(T),

a modification of W(T) and asked if Wé(T) is convex. He
defined
W, (T) = closure {<Tf,f> : £l = 1, llTEl] = &, £ e H}

Kyle (1977) settled this question in the affirmative using ideas

which are improvements on basic ideas of Dekker (1969).

In the next section we define a restricted numerical

range by
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We obtain conditions on S which ensure that WS(T) is convex.
Our results are more general than those of Kvle, convexity of

both W(T) and Wé(T) following as corollaries.

We begin with some generalizations and modifications

of results originally used bv Kyle to obtain the convexity of

Wé(T).
Lemma 4.5 Let £ and E be self-adioint operators
and
N o= { e E:|IF)l =1, <45, 268 and <BS,f> = 0}
Then M is path commected.
Proof Suppose £, g ¢ M. If £, g are linearly

dependent, they both lie on an arc of

—~
-
@D
th
(e»]
a\
<D
N
\S}
=]
e J

which lies in M whenever £ ¢ M.

If f, g are linearly independent, since f and
elef with suitably chosen real values of € are path connected
and g and (—l)ng, n = 1,2 are path connected, without loss

of generality we may assume

Re<Bf,g> = 0 and Re<(A-8)f,g> 2 0 .
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tf + (1-t)g

Let f(t) = Htf + (1_ gll )

Then
<Bf(t), f(t)>
_ t?<Bf,f> + (1-t)® <Bg,g> + 2t(l-t) Re<Bf,g>
itf + (1-t)g|?
= 0 with our assumptions.
Also,

<Af(t), f(tr)>

t2<Af,f> + (1-t)2<Ag,g> + 2t (1l-t) Re<Af,g>
t2 + (l-t)2 + 2t(i-t) Re<f,g>

t28 + (1-t)2¢ 4+ 2¢t(1l-t) Re<f,g> + 2t(l-t) Re<(A-¢)f,g>

t2 + (1-t)2 + 2t(l-t) Re<f,g>

(7 < f

_ ¢ . 2t(i-t) Re<(n=f) £,g>
|t + t)gl?

> ¢& since Re<{(a-8)f,g» > O

Thus + - £(t) 1is a path connecting £ to g 1in M as

required.
O
Lemma 4.6 Lev T,, T, and A be self-adjoint operators
and
= {“Tlf,;% L0020 o IFI =1, <af.fr 28, f e F} :

Ther V <s a convex subset of RZ.
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Proof Let L be any straight line in R2? given by
ax + by + ¢ = 0

It is sufficient to show V N 1L 1is connected.

Let B =aT, + bT, + ¢
Then the mapping % given by 7 (f) = (<T,£,£>, <T,£,£>) 1is

continuous and the set

Jf : Jf]l =1, <af,f> > & and T(f) ¢ L}

= M where M 1s as given in lemma 4.5.

Thus V n L = 1(M) is connected.
0
Theorem 4.7 Let I be any operator and let £ be a self-
adjoint operator. Ihewn the set
e
o Al ]
v={szne sl =1 e < s o)
18 convex.
Proof Suppose T = T, + 1T, where T ~and T, are

both self-adjoint. Then

W = {X + iy : (x,y) € V}
where V 1s as given in lemma 4.6.

Hence W 1is convex.
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Corollary 4.8 For any wwo operators T and A,

the set
{<Tf,f> clifl =1 and |l4fll 2 5}

18 convex.

Proof Obvious from theorem 4.7 by replacing A by

A*A and noting that

<A*Af,f> 3 &% if and only if ||Af]] 2 ¢ .
O
Corollary 4.5 IB(T) 18 convex.
Proof Take A = T 1in corollary 4.8. Thus the set
{<Tf,f> CJEl =1 ana  |TE) s a}

is convex.

Wé(T) is the closure of the above set and hence

Wé(T) is convex.

At the beginning of this section we have defined the
restricted numerical range WS(T). We now impose certain

properties on S so that WS(T) becomes convex.
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Let S © H satisfy the following two properties:

Property (i) f ¢ S implies of € S, jal = 1.
Property (ii) f,g ¢ § implies for all real positive r,
. £+ -
either ———29 ¢ s or f-rg € S
1 ! s
£+ rgj| £ - rg]]
We give below some examples of such S.
Example 4.10 H itself or any subspace of H, for

example, the range or null space of any operator A ‘trivially

satisfies properties (i) and (Zi).

Example 4.11 A useful example of such a set is

That S satisfies properties (i) and (ii) can be verified as

follows.

If r is real and £, g € S,

<A(f+rg), £ + rg>

£ + rgl|?

<Af,f> + r2<Ag,g> + 2r Re<Af,g>
1 + r2 + 2r Re<f,g>

2r Re<(A-¢)f,g>
£ + rg]?

I

A\

+
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f+rrg g

£ + xg]
depending on the sign

It 1s obvious therefore that either

or £ - rg e S for all positive ¢
£ - rgl]
of Re<(A-8)f,g> .

Example 4.12 Another example of such an § 1is

s={eecu: e =1, ||ag] » a}

\

where A 1is any operator.

This is obvious from example 4.11 by noting that
| = & is eguivalent to <A*Af,f> > &%,
Theorem 4.13 Let § be a set with properties (i) and

(11, mentioned above. Then W,

compilex plane.

Proof Let |Ifl] = |lg]l =1, £f,9 ¢ s.
For any complex scalar z = x + iy and 0 < t < 1, consider
the eguation
<T(f+Zg) 7 f + Zg> - t<Tf,f> + (l"’t) <|1\g,g> .
£ + zg||?
... (4.1)

Eguation (4.1) on simplification yields an expression cf the form

|z|2 + Cz + Dz - £~%~E =0

where C, D are complex numbers, in general dependent on t.
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Separating real and imaginary parts we get

X2+yz+2ax+2by-_l.~;_£_—.o c..(4.2)

and

cx + dy = 0 ... (4.3)

where a, b, ¢, d are some real numbers independent of x

and y.

Since i_%_E > 0, (4.2) gives an equation of a circle

containing the origin and (4.3) gives a straight line through

the origin. Hence there will be two values c¢cf 2z of the

i6 i<

form r.e”  and r._e satisiving eguations (4.2) and (4.3).

4 <

But by our assumption either

i i€
f +re g f -r,e g
5 € S or 0 € 5
HE + r,e gll LE o+ r.e gl
Thus there exists an element h € S, ||h]] = 1 such that

<Th,h> = £<Tx,x> + (1l-t)<Ty,y>

and the proof is complete.



By taking S H

W(T)

o
%]

Corollary 4.14

Indeed a similar technigue was used in thecrem 1.

to prove the convexity of W(T).

we have

convex.

2

Since the sets in examples 4.11 and 4.12 have the

properties required in theorem 4.13, we have

Corollary 4.15 The set

{@f}ﬁ 17l =1, <45 308, 4=A*}
le conwex for any operator I

f el . )
Proof  Take S = 4f ¢ B : [[f]] =1, <Af.f> 3 5, A= A*}
and apply theorem 4.13.
0

Corollary 4.16 (Kyle) The set

[t s Mol =1 ana llazll > o
18 convex for any two operctcers A and T.
Proof Take S = {f € B el =1, |laf]l = 6} and

apply theorem 4.13.
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Corollary 4.17 h%(T) ig convezx.

Proof Obvious from corollary 4.16 by taking A = T.

O

It is worth noting that using similar proofs it can

be shown that WS(T) is convex if S 1is equal to any of the

sets given below.

s, ={eem el =1, poel <o),
s = {f € H el =1, Jlze]l 2 a} ,
s,={ecm: en =1, |re| < a}

In this chapter we saw that any extreme point of
W(T)  which is approached by <TXn’Xn> with the unit vectors
X weakly converging to x, must be attained if the weak
limit is not zero. For other points on the boundary this result

need not in general hold. For such points we obtained an upper

bound for the weak limit.

To prove this result we used an inequality in terms
of limit supremum as given in theorem 2.14. Since the limits
in question do in fact exist, we could have used an inequality
(given in lemma 2.9) in terms of £, where £ has the proper-
ties detailed in lemma 2.7. This provides yet another example
of the usefulness of Berberian's technique as described in

Chapter 2.
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We also saw how an argument based on path-connectedness
proved the convexity of WG(T)' Then we defined a restricted
numerical range WS(T) and imposed certain conditions on the
set S to make WS(T) convex. This provided another method

of obtaining the convexity of W, (T).
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CONCLUSION

We have considered the numerical range W(T) of an
operator T on a Hilbert space H as a convex set in the
complex plane and associated subsets MZ(T) of vectors from

H with every point 2z of the numerical range. We saw that

MZ(T) is a subspace if and only if =z 1s an extreme point of
WI(T) . When this is not the case, we obtained results in terms
of the linear span of MZ(T). This led to the characterization

of W(T) in terms of the subsets MZ(T) as given by Embry.
Since this characterization excludes the case of unattained
boundary points of W(T), we generalized these results to
achieve a characterization of the closure of the numerical

range in terms of subsets NZ(T) consisting of bounded seguences
of vectors. We saw that the sets MZ(T) and NZ(T) have
similar properties and that the two characterizations are also

similar, though not exactly alike.

Two Cauchy-Schwartz type ineqgualities of Embry

associated with the union of MZ(T) over all points =z on a
line of support of W(T) were given and orthogonality of
vectors from these subsets was observed. These results were

again generalized in terms of sequences of vectors.

We proved these results, sometimes by direct methods,

but often using a modification of a technique given by Berberian
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which involved a change of Hilbert space and operator via a

construction based on normalized positive linear functionals.

In Chapter 3 we gave various known results concerning
attained boundary points of the numerical range of seminormal
and convexoid operators. These results were then extended to
unattained boundary points. Again Berberian's technique proved

useful in the proofs.

Embry showed that the subsets MZ(T) behave in a
particular fashion for several special types of operator. We
observed that the generalized subsets NZ(T) retain these

characteristics.

Finally, we considered convexity of different numerical
ranges. We defined a restricted numerical range WS{T) and

attached certain properties to the set S so that WS(T) is
convex. As a corollary we obtained the convexity of Stampfli's

numerical range WS(T)’ a result proved differently by Kyle.

In Chapter 2 several areas for further investigation

suggested themselves. For example, in section 2.2 we proved

that corresponding to a line of support L of W(T), the
sets NL(T) and N(T) are closed. Moreover, NL(T) is a
subspace. Is the same true for N(T)? Homogeneity being ob-

vious only linearity has to be verified. If we could prove

the linearity of N(T), in theorem 2.19 (ii) we would have
been able to show YNZ(T) = N(T) where 2z ¢ L 1s a nonextreme
boundary point of W(T) . This is similar to the corresponding

result for MZ(T) given in theorem 1.11 (ii).
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In lemma 2.18, we showed Né(T) c yNz(T) where =z
lies in the interior of a line segment with end points
a,b ¢ W(T) . We had to assume Hxn[§ is bounded away from

zero as a requirement for the proof. Is it possible to omit

~—

this condition and get a result of the form Na(T) = VNZ(T ?
If this were true this lemma could be used in the proofs of

both parts (ii) and (iii) of theorem 2.19.

Embry (1970) gave a theorem in terms of the intersection
of maximal subspaces of MZ(T). It is worth investigatincg
whether similar results hold for the intersection of maximal
subspaces of NZ(T). If this were possible we would have the

following result as a corollary:

If T is hyponormcl and s i€ ¢ boundary point of W(T)

we have

This, in turn, would lead to an alternative proof of the known
result:
For hyponormel T, <f = 1i& an cxtreme point of W(T) ,

then =z 1s an aprroximate eigenvalue of T.

Another guestion of interest is whether or not the

separating functional in lemma 2.7, in addition, can be assumed

[

Teative on X wWith respect to

to satisfy (vi). F 18 mulzip
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-
/

the pointwise alge

3

raic product. Were this the case, this could

o

T

lead to new results as well as provide shorter proofs for

several results given in the thesis.

These and similar gquestions seem worthy of further
investigation, an investigation which I hope to undertake in

the near future.
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