## Chapter 1

SUBSETS CHARACTERIZING THE NUMERICAL RANGE

### 1.1 Introduction

This chapter is largely expository. In it we consider the numerical range of an operator on a Hilbert space as a convex subset of the complex plane. We also study the behaviour of certain sets of vectors associated with different points of the numerical range.

Convexity of the numerical range is well-known, however, because we shall later use the technique given in the proof by Raghavendran (1969) and also because of its simplicity we include that proof in section l.2.

In section 1.3 , following Embry (1970), we associate a set of vectors from the Hilbert space to each point of the numerical range and show that linearity of the set forces the point to be an extreme point of the numerical range. Stampfli (1966) proved the converse of this result. We also include the results of Embry (1970) for the case when the point is a nonextreme boundary point or an interior point of the numerical range which show that although the corresponding set is no longer linear, we can always associate a subspace with it.

In the last section we state the Cauchy-Schwartz type inequalities proved by Embry (1975) for the vectors from these
particular sets and provide different or modified proofs for them. Similar proofs will be later applied when we extend these results to cover the case of unattained boundary points of the numerical range.

### 1.2 The Numerical Range

The numerical range $W(T)$ for an operator (that is, a bounded linear transformation) $T$ over a finite dimensional inner product space was first defined by Toeplitz in 1918. If $H$ is a Hilbert space and $T \in B(H)$, we have the following definition.

Definition l.I For a Hilbert space $H$ and an operator $T$ on $H$, the rumericat range $O$ is the set

$$
W(T)=\{\langle T x, x\rangle:\|x\|=1, \quad x \in H\},
$$

that is, $W(T)$ is the image of the unit sphere of $H$ under the quadratic form associated with $T$.

It is well-known that the numerical range is convex. There are many proofs of this theorem. We give below a modification of Raghavendran's (1969) proof which is simple and interesting. We shall later make use of the technique given in his proof.

Theorem l.2 (Toeplitz-Hausdorff) The numerical range $W(T)$ of an operator $T$ is a conven suisset of the complex plane.

## Proof Let

$$
\xi=\langle T f, f\rangle, \quad \eta=\langle T g, g\rangle
$$

with

$$
\|f\|=\|g\|=1, \quad f, g \in H .
$$

Let

$$
A=\alpha T+\beta I
$$

where

$$
\begin{aligned}
& \alpha=\frac{1}{\xi-\eta}, \\
& \hat{B}=\frac{-r}{\xi-n} .
\end{aligned}
$$

Hence

$$
\langle A f, f\rangle=\alpha\langle T f, f\rangle+E\langle f, f\rangle=\alpha \xi+\beta=1
$$

and

$$
\langle A g, g\rangle=\alpha\langle T g, g\rangle+\beta\langle g, g\rangle=\alpha \eta+\beta=0 .
$$

We will first show that

$$
t \xi+(1-t) n \in W(T)
$$

if and only if

$$
t \in W(A)
$$

Let

$$
t \xi+(1-t) \eta \in W(T) .
$$

So there exists $h \in H,\|h\|=1$ such that

$$
\langle T h, h\rangle=t \xi+(1-t) \eta,
$$

or,

$$
\langle A h, h\rangle=\frac{1}{\xi-\eta}[t \xi+(1-t) \eta-\eta]=t
$$

So $t \in W(A)$.

$$
\text { Conversely if } t \in W(A) \text { so that }\langle A r, h\rangle=t,\|h\|=1 \text {, }
$$

then

$$
t=\langle A h, h\rangle=\frac{1}{\xi-\eta}\langle T h, h\rangle-\frac{\eta}{\xi-\eta} .
$$

So

$$
\langle\mathrm{Th}, \mathrm{~h}\rangle=t \xi+(l-t) \eta \in W(T) .
$$

The proof is completed by showing $[0,1] \subset W(A)$. In fact we show that for any $t \in(0, l)$, it is always possible to get a complex scalar $z=x+i y$ such that

$$
\frac{\langle A(f+z g), f+z g\rangle}{\langle f+z g, f+z g\rangle}=t
$$

This is equivalent to

$$
\frac{\langle A f, f\rangle+|z|^{2}\langle A g, g\rangle+z\langle A g, f\rangle+\bar{z}\langle A f, g\rangle}{\langle f, f\rangle+|z|^{2}\langle g, g\rangle+z\langle g, f\rangle+\bar{z}\langle f, g\rangle}=t
$$

or

$$
\frac{1+z\langle A g, f\rangle+\bar{z}\langle A f, g\rangle}{1+|z|^{2}+z\langle g, f\rangle+\bar{z}\langle f, g\rangle}=t
$$

or

$$
|z|^{2} t+t+2 t \operatorname{Re}(\bar{z}\langle f, g\rangle)=1+z\langle A g, f\rangle+\bar{z}\langle A f, g\rangle .
$$

Separating the real and imaginary parts we get an expression of the form

$$
\begin{equation*}
x^{2}+y^{2}+a x+b y+\frac{t-1}{t}=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c x+d y=0 \tag{1.2}
\end{equation*}
$$

where $a, b, c$ and $d$ are some real numbers independent of $x, y$.

Now

$$
\frac{t-1}{t}<0, \text { since } 0<t<1 .
$$

Hence equation (1.1) is a circle enclosing the origin and $c x+d y=0$ is a line through the origin so that we shall always get a real pair (x,y) satisfying equations (l.l) and (1.2).

This proves the existence of $z=x+i y$. Hence $[0,1] \subset W(A)$ and consequently the numerical range is convex.

We shall use the following terminology for the convex set $W(T)$.

Definition 1.3 An extreme point cf $W$ (T) is an element of $W(T)$ which is not contained in the interior of any line segment lying in $W(T)$.

Definition 1.4 Two extreme points of $W(T)$ are said to be a $a_{e}^{i} a c e r t$ extreme poirts if the line segment joining them lies in the boundary of $W(T)$.

Definition I.5 A line $I$ is a inve of support for $W(T)$ if $W(T)$ lies in one of the closed half planes determined by $L$ and $L$ contains at least one element of the closure of W(T) .

Definition 1.6 An extreme point $z$ of $W(T)$ is a cormer of $\because(T)$ if there exist more than one line of support for $W(T), \quad$ passing through $z$.
1.3 Characterization of the Numerical Range

Embry (1970) associated certain subsets of the Hilbert space $H$ with different points of the convex set W(T). The definitions of these subsets are given below.

Definition 1.7 The set $M_{Z}(T)$ corresponding to each point $z$ in $W(T)$ is giver by

$$
M_{Z}(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0\right\}
$$

$Y M_{Z}(T)$ is the linear $\operatorname{span} o £ \quad M_{Z}(T)$.

The set $M(I)$ corresponaing to a line of support I of
$W(T)$ is defined by
$M(T)=\left\{X \in H:\langle T X, x\rangle-z\|x\|^{2}=0, z \in L \cap W(T)\right\} \quad$.

NOTE: Since $M_{z}(T)$ is hoinogeneous,

$$
\begin{aligned}
\gamma M_{Z}(T) & =M_{Z}(T)+M_{Z}(T) \\
& =\left\{x+y: x, y \in M_{Z}(T)\right\}
\end{aligned}
$$

Also

Both $M_{z}(T)$ and $M(T)$ are closed.

The question arises of when $M_{z}(T)$ is linear and hence a subspace. Another question is how we can relate a subspace of $H$ to $M_{z}(T)$ when it fails to be linear. Lemma 2 of Stampfii (1966) and theorem 1 of Embry (1970) answer these questions. Before giving their proofs we develop some necessary lemmas.

The following standard lemma gives a special property of positive operators which we shall use frequently ir this chapter. Its extension to boundeä sequences of vectors will be important in subsequent chapters.

Recall an operator $S$ is roeitive if for all $x$ in $H, \quad\langle S X, X\rangle \geqslant 0$.

Lemma $1.8 \quad$ For a posivive operator $S$ and $x$ in $H$, $\langle S x, x\rangle=0$ if and only $i_{j} \quad S x=0$.

Proof If $S X=0$, obviously $\langle S X, X\rangle=0$. For the converse, let $\sqrt{S}$ be the positive square root of $S$. Then

$$
\langle S X, X\rangle=0 \text { implies }\|, \bar{S} x\|=0
$$

and hence

$$
S x=\sqrt{S} \sqrt{S} x=0
$$

Lemma 1.9 Let is De a ine of support of $W(T)$ and

$$
M(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0, \text { some } z \in I \cap W(T)\right\}
$$

Let $\theta=0$ if $I$ is parailel to the real axis, othemise
Let $\theta$ be the acute angle between I and the real axis.
Ther

(ii) $M(I)$ is a closea subspace of $H$, anà
(ivii) $M(T)=H \quad i_{i}$ anj $\overline{\dot{L}}$ onlz if $W(T) \subset E$.

Proof (i) Since $W(\alpha T+\beta I)=\alpha W(T)+\beta$ for any
complex scalars $a, B$, by carrying out the standard reduction $T \rightarrow e^{i \hat{E}}(T-z I)$ we can assume, without loss of generality, that
$L$ is the imaginary axis, and
$\operatorname{Re} W(T) \geqslant 0$.

Then $M(T)=\{x \in H: \operatorname{Re}\langle T x, x\rangle=0\}$

$$
\begin{aligned}
& =\{x \in H:\langle\operatorname{Re} T x, x\rangle=0\} \text { (where } \operatorname{Re} T=\frac{1}{2}\left(T+T^{*}\right) \text { ) } \\
& =\{x \in H: \operatorname{Re} T x=0\}
\end{aligned}
$$

by lemma l. as $\operatorname{Re} W(T) \geqslant 0$ implies $R e T$ is positive.

```
This proves part (i) of the lemma. (ii) anc (iii) follow
immediately from (i).
```

The above proof is a modified version of that given by Embry. For the next lemma instead of giving Embry's proof, we shall use an argument similar to that given in the proof of theorem 1.2.

Lemma 1.10 Det $a, \bar{D} \in W(T)$ and $z$ be an interior point of the line secment with end points $a$ ara $b$. If $x \in M_{a}(T), \quad y \in M_{D}(T), \quad\|x\|=\|y\|=I$, then

$$
x+\lambda_{y} \in N_{z}(T)
$$

for two aistinct complex vaiues of $\lambda$. Consequently,

$$
M_{a}(T) \subset \gamma M_{z}(T)
$$

Proof As shown in the proof of theorem 1.2, without loss of generality, we may assume $a=1, b=0$. The same proof shows that for $z \in(0, l)$, we have a non-trivial circle enclosing the origin and a line passing through the origin so that we shall always have two distinct complex values of $\lambda$, say $\lambda_{1}, \lambda_{2}$ such that

$$
x+\lambda_{i} y \in M_{z}(T), \quad i=1,2
$$

This, together with the homogeneity of $M_{z}(T)$, gives

$$
\left(\lambda_{2}-\lambda_{1}\right) x \in M_{z}(T)+M_{z}(T)
$$

that is,

$$
x \in M_{z}(T)+M_{z}(T)=\gamma M_{z}(T)
$$

Hence

$$
M_{a}(T) \subset \gamma M_{z}(T)
$$

Now we are ready to prove the main theorem.

Theorem 1.11 Every point $z$ in $W(T)$ can be characterized as follows:
i) $z$ is an extreme point of $W(T)$ if and only if $N_{z}^{\prime}$ 'T' is a subspace, where

$$
M_{z}(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0\right\}
$$

$i i)$ If $z$ is a nonexireme bounaary point of $W(T)$, ther $\gamma M_{z}(T)$, the Iinear span of $M_{z}(T)$ is a cilosed suispace of $H$ anả

$$
\gamma N_{Z}(T)=M(T)
$$

where

$$
M(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0, z \in E \cap W(T)\right\},
$$

$I$ being a line of suppont of $\bar{i}(\mathrm{~m})$ passing througin $z$. In this case $W(T) \subset L \quad i_{i}$ ana onty $i_{f} \gamma M_{z}(T)=H$.
iii) If $W(T)$ is not a line segment, then $z$ is an interior point of $W(T)$ if and oniy if $\gamma_{z}(T)=H$.

Proof i) Suppose $z$ is an extreme point of $W(T)$. Without loss of generality we may take $z=0$ and $\operatorname{Re} W(T) \geqslant 0$.

For $x, y \in M_{z}(T)$ and $\lambda= \pm 1$, we have
$\langle T(x+\lambda y), x+\lambda y\rangle$
$=\langle T x, x\rangle+|\lambda|^{2}\langle T y, y\rangle+\lambda\langle T x, y\rangle+\lambda\langle T y, x\rangle$
$=\lambda\langle T x, Y\rangle+\lambda\left\langle y, T^{*} x\right\rangle$
$=\lambda\langle T x, y\rangle-\lambda\langle y, T x\rangle$ (since by lemma l. $8, \operatorname{Re} W(T) \geqslant 0$ implies $\operatorname{Re} T x=0)$
$=2 i \lambda \operatorname{Im}\langle T x, Y\rangle$.

If $\operatorname{Im}\langle\mathrm{Tx}, \mathrm{y}\rangle \neq 0$, with $\lambda= \pm 1$, we have two nonzero points of $W(T)$ on the positive and negative imaginary axes contradicting that 0 is an extreme point of $W(T)$.

Thus $\operatorname{Im}\langle T x, y\rangle=0$ and hence homogeneity being obvious, $M_{z}(T)$ is a subspace.

For the converse, if $z$ is a nonextreme point of $W(T), \quad z$ is in the interior of a line segment with end points $a$ and $b$ in $W(T)$ and lemmá $1 . l 0$ gives

$$
M_{a}(T) \subset \gamma M_{z}(T)
$$

But a $\neq \mathrm{z}$. Hence

$$
M_{a}(T) \cap M_{z}(T)=\{0\}
$$

This shows

$$
M_{z}(T) \neq \gamma M_{z}(T)
$$

that is, $M_{z}(T)$ is not a subspace.
(ii) Let $z$ be a nonextreme boundary point of

W(T). Then lemma 1.10 implies

$$
M_{a}(T) \subset \gamma M_{z}(T) \text { for all a } \in W(T)
$$

Consequently,

$$
M(T)=\underset{a \in L}{u}\left\{M_{a}(T)\right\} \subset \gamma M_{z}(T)
$$

But $M(T)$ is a subspace by lemma 1.9 (ii). Hence

$$
\gamma M_{z}(T) \subset M(T)
$$

as $\gamma M_{z}(T)$ is the smallest subspace containing $M_{z}(T)$. Thus

$$
Y M_{z}(T)=M(T)
$$

Hence, by lemma 1.9 (iii),

$$
W(T) \subset L \text { if and only if } \gamma M_{z}(T)=H .
$$

(iii) If $W(T)$ is notaline segment and $z$ is an interior point of $w(T)$, lemma 1.10 gives

$$
M_{a}(T) \subset \gamma M_{z}(T) \text { for each } a \in W(T) \text {. }
$$

Thus

$$
H={\underset{a}{ } \in W(T)}_{u}\left\{M_{a}(T)\right\} \subset \gamma M_{z}(T)
$$

Hence

$$
\gamma M_{z}(T)=H
$$

On the other hand, if $z$ is a boundary point of $W(T)$,

$$
\underset{Z}{M_{z}(T)=\{ } \begin{array}{ll}
M_{z}(T) & \text { when } z \text { is extreme, } \\
M(T) & \text { when } z \text { is nonextreme, }
\end{array}
$$

and thus lemma l. 9 (iii) gives

$$
\gamma M_{z}(T) \neq H
$$

### 1.4 A Cauchy-Schwartz Inequality

Embry (1975) deduced a Cauchy-Schwartz inequality for the elements of

$$
M(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0, \quad z \in L \cap W(T)\right\}
$$

where $L$ is a line of support of $W(T)$. We give the inequality in the next theorem with a proof different from that given by Embry.

## Theorem 1.12 Let $L$ be a line of support for $W(T)$

aná
$U(T)=\left\{\propto \in H:\langle T x, x\rangle-z\|x\|^{2}=0, \quad z \in L \cap W(T)\right\}$.

Let $b$ be an element $c_{j}^{f}$ sucri that either $b$ is an extreme point of $W(T)$ or $B \in W(m)$. Then for alt $x$ and $y$ in $L(T)$,
$\left.\langle(T-\bar{D}) x, y\rangle\right|^{2} \leqslant\langle(T-\bar{B}) x, x\rangle\langle y,(T-\bar{D}) y\rangle$.

Proof First note that by virtue of lemma l.9 (i), the right hand side of the inequality is real. Without loss of generality we may take

$$
\begin{aligned}
& b=0, \\
& \\
& W(T) \cap I \subset R^{+} \\
& \text {and } \quad \operatorname{Im} W(T) \geqslant 0 \quad \text { (or } \leqslant 0) .
\end{aligned}
$$

Let us exclude the obvious case when $\mathrm{x}=0$ or $\mathrm{y}=0$.

$$
\text { Let } t_{1}, t_{2} \in R^{+} \text {be such that }
$$

$$
\frac{\langle T \mathrm{~T}, \mathrm{x}\rangle}{\|\mathrm{x}\|^{2}}=\mathrm{t}_{1} \quad \text { and } \quad \frac{\langle\mathrm{Ty}, \mathrm{y}\rangle}{\|\mathrm{y}\|^{2}}=\mathrm{t}_{2} .
$$

Consider points of $W(T)$ of the form

$$
g(\lambda)=\frac{\langle\mathrm{T}(\mathrm{x}+\lambda y), \mathrm{x}+\lambda y\rangle}{\|\mathrm{x}+\lambda y\|^{2}}
$$

where $\lambda$ is any complex scalar.

We have assumed $x+\lambda y \neq 0$ because if $x+\lambda y=0$, the inequality is trivially true.

Since $x \in M(T)$ and $L$ is the real axis,

$$
\operatorname{Im}\langle\mathrm{Tx}, \mathrm{x}\rangle=0
$$

Thus since $\operatorname{Im} W(T) \geqslant 0$, lemma 1.8 gives $\operatorname{Im} T x=0$ where

$$
\operatorname{Im} T=\frac{l}{2 i}\left(T-T^{*}\right)
$$

So $T x=T^{*} \mathrm{x}$ and hence

$$
\begin{aligned}
g(\lambda) & =\frac{\langle T x, x\rangle+|\lambda|^{2}\langle T y, y\rangle+\bar{\lambda}\langle T x, y\rangle+\lambda\langle T y, x\rangle}{\|x+\lambda y\|^{2}} \\
& =\frac{t_{1}\|x\|^{2}+t_{2}|\lambda|^{2}\|y\|^{2}+2 \operatorname{Re}(\bar{\lambda}\langle T x, y\rangle)}{\|x+\lambda y\|^{2}} .
\end{aligned}
$$

This shows $g(\lambda)$ is real and hence positive, since

$$
g(\lambda) \epsilon L \cap W(T) .
$$

So we have

$$
\begin{equation*}
t_{1}\|x\|^{2}+t_{2}|\lambda|^{2}\|y\|^{2}+2 \operatorname{Re}(\bar{\lambda}\langle T x, y>) \geqslant 0 . \tag{1.3}
\end{equation*}
$$

Choose $\lambda$ such that

$$
\operatorname{Re}(\bar{\lambda}\langle T x, y\rangle)= \pm|<T x, y\rangle \mid .
$$

Then the condition that li| satisfies (1.3) gives

$$
4|<T x, y>|^{2}-4 t_{2}\|y\|^{2} t_{1}\|x\|^{2} \leqslant 0 .
$$

Hence

$$
|\langle T x, y\rangle|^{2}-\langle T x, x\rangle\langle T y, y\rangle \leqslant 0,
$$

and so

$$
|\langle\mathbb{T} x, y\rangle|^{2}-\langle T x, x\rangle\langle y, T y\rangle \leqslant 0 .
$$

As given in theorem l.ll (i), Stampfli (1966) proved that $M_{z}(T)$ is a subspace if $z$ is an extreme point of $W(T)$.

This result can also be deduced from theorem l.l2.

Corollary 1.13 If $E$ is an extreme point of $W(T)$, then $M_{b}(\mathbb{T})=\left\{x \in H:\langle\mathbb{T} x, x\rangle-\dot{b}\|x\|^{2}=0\right\}$ is a subspace.

Proof Homogeneity being obvious we only have to prove the linearity.

Let

$$
x_{1}, x_{2} \in M_{b}(T)
$$

Thus $x_{1}, x_{2} \in M(T)$ as $M_{b}(T) \subset M(T)$.
But $M(T)$ is a subspace by lemma 1.9 (ii).

So

$$
x_{1}+x_{2} \in M(T)
$$

Now since $x_{1}, x_{2} \in M_{b}(T)$ and $x_{1}+x_{2} \in M(T)$, theorem l.12 gives

$$
\left\langle(T-b) \quad\left(x_{1}+x_{2}\right), x_{1}+x_{2}\right\rangle=0 .
$$

So, $x_{1}+x_{2} \in M_{b}(T)$.

Corollary 1.14 If $b$ is an extreme poirit of $W(T)$,
ther.

$$
\langle(T-b) x, y\rangle=0 \quad \text { and }\left\langle\left(T^{*}-\bar{b}\right) x, y\right\rangle=0
$$

for air $x \in M_{b}(T)$ and $z \in M^{\prime}(T)$ where

$$
M_{D}(T)=\left\{x \in H:\langle T x, x\rangle-\bar{b}\|x\|^{2}=0\right\}
$$

ara $M(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0, z \in L \cap W(T)\right\}$,

I being a ine of support for $W(T)$ passing through $b$.

Proof Obvious from theorem 1.12 and lemma 1.9 (i).

Corollary 1.15 Witt the same notatione as in corolzary
I.İ, $i_{0} x \in M_{b}(T)$ ana $-x \in(m)$, ther.
$T_{x}=\bar{D} x \quad \operatorname{arc} \bar{A} \quad{ }^{*} x=\bar{b} x$.

Proof Since by lemma 1.9 (ii), $M(T)$ is a subspace,
$T x \in M(T), \quad x \in M_{b}(T) \subset M(T)$ together imply

$$
T x-b x \in M(T)
$$

But by corollary 1.14,

$$
\langle T x-b x, y\rangle=0 \quad \text { whenever } y \in M(T)
$$

Taking $y=T x-b x$, we have $\|T x-b x\|^{2}=0$. Consequently $\mathrm{Tx}=\mathrm{bx}$ and so by lemma 1.9 (i), $\mathrm{T}^{*} \mathrm{x}=\overline{\mathrm{b}} \mathrm{x}$.

All the above corollaries are due to Embry. We give below another inequality given by her (with modified proof), from which orthogonality of subspaces associated with adjacent extreme points of $W(T)$ can be deduced.

Theorem 1.16 Let $\bar{b}$ anc $c$ be adijacent extreme points of $W(\mathbb{T})$ and $\bar{i} \in t$

$$
d=t i+(1-t) c, \quad 0 \leqslant t \leqslant 1 .
$$

If $x \in H_{b}(m)$ and $z \in W_{a}(\pi)$, then

$$
|\langle x, y\rangle| \leqslant \sqrt{\varepsilon}\|x\|\|z\| .
$$

In particuiar, $\left\langle x, y>=0\right.$ whenever $x \in U_{b}(T)$ and $y \in M_{e}(T)$.

Proof Without loss of generality, we may take
$\mathrm{b}=0$,
$c=1$,
$\operatorname{Im} W(T) \geqslant 0(o r \leqslant 0)$
and $L \cap W(T) \subset R^{+}$.

For any complex scalar $\lambda$, if $x+\lambda y=0$, we have

$$
|\langle x, y\rangle|-\sqrt{t}\|x\|\|y\|=0 .
$$

So let us assume that $x+\lambda y \neq 0$.

```
Consider elements of W(T) of the form
```

$$
g(\lambda)=\frac{\langle T(x+\lambda y), x+\lambda y\rangle}{\| x+\left.\lambda y\right|^{2}}
$$

$$
=\frac{\langle\mathrm{Tx}, \mathrm{x}\rangle+\|\left.\lambda\right|^{2}\langle\mathrm{Ty}, \mathrm{y}\rangle+\bar{\lambda}\langle\mathrm{Tx}, \mathrm{y}\rangle+\lambda\langle\mathrm{Ty}, \mathrm{x}\rangle}{\|\mathrm{x}+\lambda \mathrm{y}\|^{2}}
$$

$$
=\frac{\left\|\lambda:^{2}(1-t)\right\| y \|^{2}}{\|x+\lambda y\|^{2}}
$$

since lemma l. 8 , with our assumptions, gives $T x=T^{*} x$ and by corollary 1.14, $\langle T x, y\rangle=0$.

Thus $g(\lambda)$ is real and hence must belong to $[0,1]$. So we have

$$
|\lambda|^{2}(1-t)\|y\|^{2} \leqslant\|x+\lambda y\|^{2}
$$

or

$$
|\lambda|^{2}(1-t)\|y\|^{2} \leqslant\|x\|^{2}+|\lambda|^{2}\|y\|^{2}+2 \operatorname{Re}(\bar{\lambda}\langle x, y\rangle)
$$

Choose any $\lambda$ so that

$$
\operatorname{Re}(\bar{\lambda}\langle x, y\rangle)= \pm|\lambda||\langle x, y\rangle| .
$$

Hence

$$
\begin{equation*}
t\left|\lambda\left\|^{2}\right\| y \|^{2} \pm 2\right| \lambda||<x, y\rangle|+\|x\|^{2} \geqslant 0 . \tag{1.4}
\end{equation*}
$$

Then the condition that $|\lambda|$ satisfies (1.4) gives

$$
4|\langle x, y\rangle|^{2}-4 t\|y\|^{2}\|x\|^{2} \leqslant 0
$$

that is,

$$
|\langle x, y\rangle| \leqslant v \bar{t}\|x\|\|y\| .
$$

The following theorem of Embry (1975) considers two lines of support of $W(T)$ and relates the subsets associated with them to each other.

Theorem 1.17 Let $L_{1}$ anả $I_{2}$ De two non-parallel lines of support intersecting at the point $c$. Let
$M_{j}(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0, z \in I_{\dot{j}}\right\}, \quad j=1,2$.

Then

$$
\left\langle(T-c) x_{1}, x_{2}\right\rangle=0 \text { whenever } \approx_{i} \in M_{j}(T), j=1,2 .
$$

Proof Let $\theta_{j}$ be the acute angle between $I_{j}$ and the real axis. Let

$$
x_{j} \in M_{j}(T), \quad j=1,2
$$

Then by lemma l.9 (i),

$$
e^{i \theta_{j}}(T-c) x_{j}-e^{-i \theta_{j}}\left(T^{*}-\bar{c}\right) x_{j}=0, \quad j=1,2 .
$$

Thus

$$
\begin{aligned}
& e^{2 i \theta_{1}}\left\langle(T-c) x_{2}, x_{2}\right\rangle \\
= & \left\langle\left(T^{*}-\bar{c}\right) x_{1}, x_{2}\right\rangle \\
= & \left\langle x_{1},(T-c) x_{2}\right\rangle \\
= & \left\langle x_{1}, e^{-2 i \theta_{2}}\left(T^{*}-\bar{c}\right) x_{2}\right\rangle \\
= & e^{2 i \theta_{2}}\left\langle(T-c) x_{1}, x_{2}\right\rangle .
\end{aligned}
$$

Since $L_{1}$ and $L_{2}$ are non-parallel, $e^{2 i \theta_{1}} \neq e^{2 i \epsilon_{2}}$ and hence $\left\langle(T-c) x_{1}, x_{2}\right\rangle=0$.

In this chapter we have dealt with the numerical range as a convex set and defined subsets $M_{z}(T), M(T)$ associated with its different points and lines of support.

In section 1.3, conditions for linearity of these subsets have been examined. We also saw how the argument given in the proof of convexity of the numerical range from section 1.2 can be conveniently applied to the proof of the main lemma required for characterization of the numerical range by these subsets.

In section 1.4, we gave two inequalities for the vectors from these subsets and saw how a result from the previous section, namely, linearity of $M_{z}(T)$ when $z$ is an extreme point of $W(T)$, can be deduced as a corollary of one of these inequalities.

Note that all these theorems are inapplicable to the unattained boundary points of the numerical range. So a need for extension of these results to all points in the closure of the numerical range is realized. In our next chapter we attempt to supply such an extension.

## SUBSETS CHARACTERIZING THE CLOSURE OF THE NUMERICAL RANGE

### 2.1 Introduction

In this chapter we attempt to generalize all the results Of Embry given in the previous chapter. We define certain subsets associated with each point of the closure of the numerical range. As we see in section 2.2 , these sets are very similar in properties to those defined in Chapter l. But they consist of bounded sequences of vectors from the Hilbert space.

```
Let W(T)- denote the closure of W(T). Since W(T)
```

is convex, so is $W(T)^{-}$. But an extreme point of $W(T)$ need not be an extreme point of $W(T)^{-}$and vice versa. Also a nonextreme boundary point of $W(T)^{-}$can be an extreme point of $W(T)$ or may not belong to $W(T)$ at all.

In sections $2.3,2.6$ and 2.9 we show that the subset associated with an extreme point of the closure of the numerical range is in fact a subspace and if the subset associated with a point of $W(T)^{-}$is linear, then the point has to be extreme. We then consider the case when the point is a nonextreme boundary point or an interior point of $W(T)^{-}$and achieve results of the same type, but not exactly similar to those given by Embry for corresponding points of the numerical range.

To prove some of these results a modification of a technique given by Berberian (1962) and Berberian and Orland (1967) proves very useful, though the results can be obtained without the use of this technique as well. For example, Das and Craven proved the linearity of the subset associated with an extreme point of $W(T)$ by a direct method. This has been illustrated in section 2.3. However, since our technique has many applications we shall use it frequently throughout our dissertation.

By using this technique we extend the Hilbert space to another Hilbert space and consider a faithfil *-representation of our operator on this new space. The numerical ranges of these two operators are related; in fact the numerical range of the new operator is the closure of the numerical range of the original one. This was first shown by Berberian and Orland (1967). However, we shall prove this result without a Banach algebra approach. This enables us to use known results on numerical ranges for this new space and operator. Often this involves some calculations. Thus we obtain results for the closure of the numerical range. Sections 2.4 and 2.5 of this chapter explain this technique in detail.

In section 2.4 we develop a technical lemma to show the existence of a normalized positive linear functional which strictly separates any non-null sequence of positive numbers from the set of real null sequences. This functional has all
the properties of a Banach-Mazur generalized limit except translation invariance. We modify Berberian's technique in that we use this new functional instead of the Banach-Mazur generalized limit to define a pseudo-inner product on the space of bounded sequences of vectors from our Hilbert space. Positivity of this functional is essential to our proofs.

In sections 2.8 and 2.9 we generalize the CauchySchwartz type inequalities given in the first chapter to sequences of vectors. To do this we first use Berberian's technique and then use a direct method by which stronger inequalities can be obtained. From one of these inequalities we see that the results of Das and Craven can be deduced as a corollary.

### 2.2 Certain Subsets and Their Properties

Let $\hat{x}_{\infty}(H)$ be the set of all bounded sequences of vectors from H. We associate certain subsets of $\ell_{\infty}(H)$ with different points of the convex set $W(T)^{-}$. The definitions of these subsets are given below.

Definition 2.1 The set $N_{z}(T)$ corresponding to each point $z$ in $W(T)^{-}$is given by

$$
N_{z}(T)=\left\{\left(x_{n}\right) \epsilon f_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0\right\} .
$$

$\gamma N_{z}(T)$ is the linear span of $N_{z}(T)$. The sets $N(T)$ and $N_{L}(T)$ corresponding to a line of support $L$ of $W(T)$ are defined by

$$
N(T)=\left\{\left(x_{n}\right) \in \ell_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0, z \in L \cap W(T)\right\}
$$

and

$$
N_{L}(T)=\left\{\left(x_{n}\right) \in i_{\infty}(H): \inf _{z \in L}\left|\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2}\right| \rightarrow 0\right\}
$$

NOTE: i) $N_{z}(T)$ is closed and homogeneous.
ii) Since $N_{z}(T)$ is homogeneous,

$$
\begin{aligned}
\gamma N_{z}(T) & =N_{z}(T)+N_{z}(T) \\
& =\left\{\left(x_{n}+y_{n}\right):\left(x_{n}\right),\left(y_{n}\right) \in N_{z}(T)\right\}
\end{aligned}
$$

iii) $N(T)=\underset{z \in L}{u}\left\{N_{z}(T)\right\}$.
iv) If we look upon $H$ as embedded in $\ell_{\infty}(H)$ with the correspondence $x \rightarrow(x, x, \ldots)$, then $M_{z}(T)$ (defined in the last chapter) is embedded as subset of $N_{z}(T)$ whenever $z \in W(T)$. For unattained boundary points of $W(T), M_{z}(T)$ will consist of the zero vector only, while $N_{z}(T)$ will be a nontrivial set of sequences. Similar relations hold for $M(T)$ and $N(T)$.
v) If $L$ is a line of support of $W(T)$ and $z \in L \cap W(T)^{-}$, then

$$
N_{Z}(T) \subset N(T) \subset N_{L}(T)
$$

A question likely to be asked is whether $N(T)$ and $N_{L}(T)$ are closed subspaces. The author is unable to prove the linearity of $N(T)$, though lemma 2.3 will show that $N(T)$ is closed.

The following standard theorem from Real Analysis is needed in the proof of lemma 2.3.

Theorem 2.2 (Iterated Limit Theorem) Let ( $a_{m n}$ ) be
a double sequence in $R^{2}$. Suppose that the single iimits $\bar{D}_{m}=\operatorname{Iim}\left(a_{m n}\right), \quad c_{r_{i}}=\operatorname{Iim}\left(a_{m n}\right)$ exist for ail natural numbers $m$ and $n$, and that the convergence of one of these collections is uniform. Then botn interated iimits $\bar{D}=\underset{m}{\operatorname{iim}\left(b_{m}\right)}$ anä $c=\operatorname{Iim}_{n}\left(c_{n}\right)$ exist anci are equal.

Lemma 2.3 Let $L$ be a Iine of support of $h(T)$ and
$N(T)=\left\{\left(x_{n}\right) \in l_{\infty}(\ddot{i}):\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0, \quad z \in L \cap W(T)\right\}$.

Then $I I(T)$ is closed in the rorm topology of $l_{\infty}(H)$.

Proof If $L \cap W(T)^{-}$consists of only one point $z$, then $N(T)=N_{z}(T)$ and without loss of generality we may take $z=0$.

$$
\text { Let } x^{(m)} \rightarrow x^{(0)} \text { in } \ell_{\infty}(H) \text { as } m \rightarrow \infty \text { where }
$$

$$
x^{(m)}=\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}, \ldots\right)
$$

and

$$
x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}, \ldots\right) .
$$

Thus

$$
\left\|x^{(m)}-x^{(0)}\right\| \rightarrow 0
$$

anć hence $\left(x^{(m)}\right)$ converges uniformly to $x^{(0)}$.

Let $x^{(m)} \in N_{0}(T)$ for each $m$, that is, for each $m$,

$$
\left\langle\operatorname{Tx}_{n}^{(m)}, x_{n}^{(m)}\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

We have to show $\left\langle\operatorname{Tx}_{\mathrm{n}}^{(0)}, \mathrm{x}_{\mathrm{n}}^{(0)}\right\rangle \rightarrow 0$. Obviously as

$$
\left\|x^{(m)}-x^{(0)}\right\|=\sup _{n}\left\|x_{n}^{(m)}-x_{n}^{(0)}\right\| \rightarrow 0
$$

we have for each $n$,

$$
x \underset{n}{(m)} \rightarrow x_{n}^{(\circ)} \text { as } m \rightarrow \infty
$$

Thus for each $n$,

$$
\left\langle\operatorname{Tx}_{n}^{(m)}, \underset{n}{(m)}\right\rangle \rightarrow\left\langle\operatorname{Tx}_{n}^{(0)}, x_{n}^{(0)}\right\rangle \text { as } m \rightarrow \infty .
$$

 all natural numbers $m$ and $n$. Also the convergence of $\left(<\operatorname{Tx}_{n}^{(m)}, X_{n}^{(m)}>\right)$ as $m \rightarrow \infty$ is uniform.

Thus considering a complex sequence as a sequence in $R^{2}$, we can apply theorem 2.2 to the double sequence $\left\langle T x(m), X_{n}^{(m)}\right\rangle$ and so conclude that both iterated limits are equal, that is,

$$
\lim _{n} \lim _{m}\left\langle\operatorname{Txx}_{n}^{(m)}, \quad \underset{n}{(m)}\right\rangle=\lim _{m} \lim _{n}\left\langle\operatorname{Tx}_{n}^{(m)}, x_{n}^{(m)}\right\rangle
$$


 side limit is zero.

$$
\text { So, } \quad \lim _{n}\left\langle\operatorname{Tx}_{n}^{(0)}, x_{n}^{(0)}\right\rangle=0 \text {. Hence } N(T) \text { is closed. }
$$

If $L$ r. $W(T)^{-}$is not a single point, then by a suitable translation and rotation, without loss of generality we may take

$$
L \cap W(T)^{-}=[0,1]
$$

and
$\operatorname{Im} W(T) \geqslant 0$.
In this case if $\mathrm{X}^{(\mathrm{m})} \in \mathrm{N}(\mathrm{T})$, we have for all m ,
$\left\langle\operatorname{Tx} \underset{n}{(m)}, x_{n}^{(m)}\right\rangle-z^{(m)}\left\|x_{n}^{(m)}\right\|^{2} \rightarrow 0$ where $z^{(m)} \in[0,1]$.

We have to show

$$
\langle\operatorname{Tx} \underset{n}{(0)}, \underset{n}{(0)}\rangle-z\|x(0)\|_{n}^{2} \rightarrow 0 \text { for some } \|^{2} \in[0,1]
$$

As before, the convergences

$$
\left\langle\operatorname{Tx}_{n}^{(m)}, \quad x_{n}^{(m)}\right\rangle \rightarrow\left\langle\operatorname{Tx}_{n}^{(0)} \underset{n}{\left(m_{n}\right)} \mathrm{X}_{n}^{(0)}\right\rangle \quad \text { as } \quad m \rightarrow \infty
$$

anā

$$
\|x \underset{n}{(m)} \rightarrow\|_{n}^{(c)} \| \text { as } m \rightarrow \infty
$$

are uniform.

If $z^{(m)}$ does not converge, there exists a subse-
quence $\left.m_{k}\right)$
such that

$$
z^{\left(m_{k}\right)} \rightarrow z^{\prime} \in[0,1], \text { as } z^{\left(m_{k}\right)} \in[0,1] .
$$

Thus $\left\langle T x_{n}^{\left(m_{k}\right)}, x_{n}^{\left(m_{k}\right)}>-z^{\left(m_{k}\right)}\left\|_{n}^{\left(m_{k}\right)}\right\|^{2}\right.$ converges uniformly to $\left\langle\operatorname{Tx}{ }_{\mathrm{n}}^{(0)}, \underset{\mathrm{n}}{(0)}>-z\left\|\mathrm{X}_{\mathrm{n}}^{(0)}\right\|^{2}\right.$ as $m \rightarrow \infty$.

Also,

$$
\lim _{n}\left[\langle\operatorname{Tx} \underset{n}{(m)}, x \underset{n}{(m)}\rangle-z^{(m)}\|x \underset{n}{(m)}\|^{2}\right]=0
$$

 $n \rightarrow \infty$.

Now application of theorem 2.2 gives the two iterated limits are equal, that is,

$$
\lim _{n}\left[\left\langle\operatorname{Tx}_{n}^{(0)}, x_{n}^{(0)}\right\rangle-z\left\|_{n}^{(0)}\right\|^{2}\right]=0
$$

We shall need the following lemma to show that $N_{L}(T)$ is a closed subspace.

Lemma 2.4 For a positive operator $S$ and $\left(n_{n}\right)$ ir $\hat{f}_{\alpha}(E)$,

$$
\left\langle S x_{r_{i}}, x_{n}>\rightarrow 0 \text { if and oniz if } S x_{n} \rightarrow 0\right. \text {. }
$$

Proof If $S x_{n} \rightarrow 0$, obviously $\left\langle S x_{n}, x_{n}\right\rangle \rightarrow 0$. For the
converse, let $\sqrt{ } \bar{s}$ be the positive square root of $S$. Then

$$
<S x_{n}, x_{n}>\rightarrow 0 \text { implies }\left\|\sqrt{S} x_{n}\right\| \rightarrow 0
$$

anç hence

$$
S x_{\mathrm{n}}=\sqrt{\mathrm{S}} \sqrt{\mathrm{~S}} \mathrm{x}_{\mathrm{n}} \rightarrow 0
$$

Lemma 2.5 Let $L$ be a ine of support of $W(T)$ and $N_{L}(T)=\left\{\left(x_{n}\right) \in \varepsilon_{\infty}(H): \inf _{z \in L}\left|<x_{n}, x_{r_{i}}>-z\left\|x_{n}\right\|^{2}\right| \rightarrow 0\right\}$.

Let $\theta=0$ if $L$ is parallel to the imaginary axis, otherwise let $\theta$ be the acute angle bevween $I$ and the real axis. Ther for any $z \in L$ we have

ii) $n_{L}(T)$ is a ciosed suispace of $i_{\infty}(H)$.

Proof By carrying out the standard reduction $T \rightarrow e^{i \theta}(T-z I)$, we may, without loss of generality, assume that
I is the imaginary axis
and

$$
\operatorname{Re} W(T) \geqslant 0
$$

Then

$$
\left.\left.\begin{array}{rl}
N_{L}(T) & =\left\{\left(x_{n}\right) \in l_{\infty}(H): \operatorname{Re}\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0\right\} \\
& =\left\{\left(x_{n}\right) \in l_{\infty}(H):\left\langle\operatorname{Re} \operatorname{Tx} n_{n}, x_{n}\right\rangle \rightarrow 0\right\} \\
& =\left\{\left(x_{n}\right) \in l_{\infty}(H): \operatorname{Re} \operatorname{Tx}\right. \\
n
\end{array}\right) 0\right\}
$$

by lemma 2.4 as $\operatorname{Re} W(T) \geqslant 0$ implies $\operatorname{Re} T$ is positive.

Also,

$$
\begin{aligned}
& \left\{\left(x_{n}\right) \in \ell_{\infty}(H): e^{i \in}(T-z) x_{n}-e^{-i \theta}\left(T^{*}-\bar{z}\right) x_{n} \rightarrow 0\right\} \\
& \left.=\left\{\left(x_{n}\right) \in l_{\infty}(H):(T-i b) x_{n}+\begin{array}{l}
\left(T^{*}+i b\right) x_{n} \rightarrow 0 \\
{[b y \text { the choice } O f}
\end{array}\right\} \text { and } z\right] \\
& =\left\{\left(x_{n}\right) \in l_{\infty}(H): \operatorname{Re} T x_{n} \rightarrow 0\right\} .
\end{aligned}
$$

This proves part (i) of the lemma. Part (ii) follows immediately.
2.3 Linearity on the Boundary of the Numerical Range

Das and Craven firs generalized theorem l.ll (i) for extreme points of $W(T)^{-}$. We shall here give their proof (modified) of this generalized theorem and then use a technique given by Berberian to give an alternative proof which is more conceptual and less computational in the next section.

$$
\begin{aligned}
& \text { Theorem } 2.6 \text { For anw point } z \text { in } W(T)^{-} \text {, Let } \\
& N_{Z}(\mathbb{I})=\left\{\left(x_{n}\right) \in l_{\infty}(H):\left\langle T x_{n}, \tilde{n}_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0\right\} \text {. } \\
& \text { Then } N_{z}(T) \text { is a subspace of } \ell_{\infty}(H) \text { if and only if } z \text { is } \\
& \text { an exireme point of } W(T)^{-} \text {. } \\
& \text { Proof Without loss of generality we may assume that } \\
& \qquad z=0 \text { and Re } W(\mathbb{T}) \geqslant 0 .
\end{aligned}
$$

Suppose $z$ is an extreme point of $W(T)^{-}$. Homogeneity being obvious we only have to prove linearity of $N_{z}(T)$.

$$
\text { Let }\left(x_{n}\right),\left(y_{n}\right) \in N_{z}(T) . \quad \text { Since }<\operatorname{Re} T x_{n}, x_{n}>\rightarrow 0 \text {, }
$$ lemma 2.4 gives $\operatorname{Re~} \mathrm{Tx}_{\mathrm{n}} \rightarrow 0$. Thus

$$
\left.\left\langle T\left(x_{n}+y_{n}\right), x_{n}+y_{n}\right\rangle-\left[\left\langle T x_{n}, x_{n}\right\rangle+\left\langle T y_{n}, y_{n}\right\rangle+2 i I m<T x_{n}, y_{n}\right\rangle\right] \rightarrow 0 .
$$

Since $\left\langle T x_{n}, x_{n}\right\rangle$ and $\left\langle T y_{n}, y_{n}\right\rangle$ both tend to zero, we only have to show $\operatorname{Im}\left\langle T x_{n}, y_{n}\right\rangle \rightarrow 0$. If $\operatorname{Im}\left\langle T x_{n}, y_{n}\right\rangle$ does not tend to zero, we will get a contradiction as shown below.

$$
\text { case } 1 \quad\left\|x_{n}+y_{n}\right\| \text { and }\left\|x_{n}-y_{n}\right\| \text { are bounded away }
$$

from zero for all n .

Passing on to subsequences if necessary, we may, without loss of generality, assume

$$
\frac{\operatorname{Im}\left\langle T x_{n}, y_{n}\right\rangle}{\left\|x_{n}+y_{n}\right\|^{2}} \rightarrow a
$$

and

$$
\frac{\left\|x_{n}+y_{n}\right\|^{2}}{\left\|x_{n}-y_{n}\right\|^{2}} \rightarrow b
$$

where $\mathrm{a}, \mathrm{b}$ are nonzero real numbers.

Thus

$$
\frac{\left\langle T\left(x_{n}+y_{n}\right), x_{n}+y_{n}\right\rangle}{\left\|x_{n}+y_{n}\right\|^{2}} \rightarrow 2 i a
$$

and

$$
\frac{\left\langle T\left(x_{n}-y_{n}\right), x_{n}-y_{n}\right\rangle}{\left\|x_{n}-y_{n}\right\|^{2}} \rightarrow-2 i b
$$

Since $2 i a$ and $-2 i b$ belong to $w(T)^{-} a n \bar{c} b>0$, this contraaicts that 0 is an extreme point of $W(T)^{-}$. Case $2 \quad\left\|x_{n}+y_{n}\right\| x_{n}-y_{n} \|$ is not bounded away from zero.
Consider the disjoint partition of the sequence
of all natural numbers such that

$$
(n)=\left(n^{\prime}\right) \cup\left(n^{\prime \prime}\right)
$$

and

$$
\min \left\{\left\|x_{n},+y_{n},\right\|,\left\|x_{n},-y_{n},\right\|\right\}<\frac{\varepsilon\|T\|}{2 M}
$$

where $M$ is an upper bound for $\left\|x_{n}\right\|$.

Since

$$
\left|\left\langle\operatorname{Tx}_{n^{\prime}}, Y_{n^{\prime}}\right\rangle\right| \leqslant\left|\left\langle\operatorname{Tx}_{n^{\prime}}, x_{n^{\prime}}\right\rangle\right|+\left|\left\langle\operatorname{Tx}_{n^{\prime}}, x_{n^{\prime}} \pm y_{n^{\prime}}\right\rangle\right|
$$

we have

$$
\left|\left\langle T x_{n}, y_{n},\right\rangle\right| \leqslant \left\lvert\,\left\langle T x_{n}, x_{n},\right\rangle+\frac{\varepsilon}{2} .\right.
$$

Thus, since $\left\langle\mathrm{Tx}_{\mathrm{n}^{\prime},}, \mathrm{X}_{\mathrm{n}^{\prime}}\right\rangle \rightarrow 0,\left\langle\mathrm{Tx}_{\mathrm{n}},{ }^{\prime}, \mathrm{Y}_{\mathrm{n}},\right\rangle \mid$ can be made less than $E$ by choosing $n^{\prime}$ sufficiently large. For the sequence ( $n^{\prime \prime}$ ), we can apply case l. Fience $N_{z}(T)$ is linear.

For the converse, if $z$ is not an extreme point of
$W(T)^{-}$, then either $z$ is an interior point of $W(T)$ and theorem 1.11 (i) shows that $M_{z}(T)$ and hence $N_{z}(T)$ is not linear; or $z$ is a nonextreme boundary point of $W(T)^{-}$, that is, there exist two sequences of unit vectors $\left(x_{n}\right),\left(y_{n}\right)$ such that

$$
\left\langle T x_{n}, x_{n}\right\rangle \rightarrow i a \text { and }\left\langle T y_{n}, y_{n}\right\rangle \rightarrow-i a(s a y)
$$

Let $\quad \therefore=x+i y$. Then

$$
\left.\left.<T\left(x_{n}+\lambda y_{n}\right), x_{n}+\lambda y_{n}\right\rangle-i a\left(1-|\lambda|^{2}\right)-2 i \operatorname{Im}\left(\bar{\lambda}<T x_{n}, y_{n}\right\rangle\right) \rightarrow 0
$$

40. 

Passing on to a subsequence if necessary, we may assume

$$
\operatorname{Im}\left(\bar{\lambda}<T x_{n}, Y_{n}>\right) \rightarrow b+i c
$$

Thus

$$
\left\langle T\left(x_{n}+\lambda y_{n}\right), x_{n}+\lambda y_{n}>\rightarrow i a\left(l-|\lambda|^{2}\right)+2 i(c x-b y) .\right.
$$

Hence

$$
\left(x_{n}+i y_{n}\right) \in N_{0}(T)
$$

for at least two distinct values of $\lambda$ satisfying the equation of the circle

$$
x^{2}+y^{2}+\frac{2(b y-c x)}{a}-1=0
$$

This shows $N_{z}(T)$ is not linear.

The following interesting example given by Das and Craven shows that though $N_{z}(T)$ is linear whenever $z$ is an extreme point of $W(T)^{-}$, the set

$$
N_{z}^{\prime}(T)=\left\{\left(x_{n}\right) \in \ell_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle /\left\|x_{n}\right\|^{2} \rightarrow z\right\}
$$

which is quite similar to $N_{z}(T)$ is not necessarily linear.

Suppose $\left(e_{n}\right)$ and ( $e_{n}^{\prime}$ ) are two disjoint sets of orthonormal elements of $H$. Define a linear operator $V$ such that

$$
v e_{n}=e_{n}
$$

and

$$
v e_{n}^{\prime}=\frac{1}{n} e_{n}^{\prime} .
$$

It is easy to verify that $V$ is selfadjoint.

Let

$$
x_{n}=\frac{e_{n}+n e_{n}^{1}}{\sqrt{1+n^{2}}} \text { and } y_{n}=\frac{e_{n}-n e_{n}^{1}}{\sqrt{1+n^{2}}}
$$

Thus $\left\|x_{n}\right\|=\left\|y_{n}\right\|=1$ and $v x_{n}=\frac{e_{n}+e_{n}^{\prime}}{\sqrt{1+n^{2}}} \rightarrow 0$. Similarly $V y_{n} \rightarrow 0$.

If we define $T=V^{2}$, then 0 is an extreme point of $W(T)^{-}$ and we note that though both $\frac{\left\langle T x_{n}, x_{n}\right\rangle}{\left\|x_{n}\right\|^{2}}$ and $\frac{\left\langle T y_{n}, y_{n}\right\rangle}{\left\|y_{n}\right\|^{2}}$ tend
to zero,

$$
\frac{\left\langle T\left(x_{n}+y_{n}\right), x_{n}+y_{n}\right\rangle}{\left\|x_{n}+y_{n}\right\|^{2}}=1 \text { for all } n
$$

This shows that $N_{0}^{\prime}(T)$ is not linear.

In the next few sections we construct an alternative approach to establish the result given in theorem 2.6. We employ a technique of S.K. Berberian (1962) and S.K. Berberian and G.H. Orland (1967). This approach appears to be more conceptual in that it enables us to deduce theorem 2.6 from theorem 1.11 (i). It also allows us to deduce sufficiency in the same theorem as a corollary from a Cauchy-Schwartz type inequality.

Using the same technique other results may also be generalized to unattained boundary points of the numerical range. This is illustrated in section 2.8 where we extend results of Embry (1975).

The results in sections 2.4-2.7 (except theorem 2.8, corollaries 2.11 and 2.12 and lemma 2.13) have been included in a joint paper by $S$. Majumdar anā Brailey Sims.

### 2.4 A Technical Lemma

Let $\ell_{\infty}, \ell_{\infty}^{+}, c$ and $c_{0}$ be the sets of real bounded, bounded nonnegative, convergent and null sequences respectively. Let $x=\left(x_{1}, x_{i}, \ldots, x_{n}, \ldots\right) \in l_{a}$ and $l_{\infty}^{*}$ be the dual of $l_{\infty}$.
we prove a simple lemma which will be used in the following sections to achieve our main results.

Lemma 2.7 For any $y \in l_{\infty}^{+} \backslash o_{0}$ there exists $f \in l_{\infty}^{*}$ such that
i) $f(y) \geqslant 0$,
ii) $f$ is positive, that is, $f(x) \geqslant 0$ for all $x \in \ell_{\infty}^{+}$, iii) $f(e)=1$ where $e=(1,1, \ldots)$ ani so $\|f\|=1$,
iv) $\left.f\right|_{c_{0}}=0, \quad a n a^{3}$
v) for ait $x \in \ell_{\infty}$, Iim $i_{n!} x_{n} \leqslant f(x) \leqslant \operatorname{Iim} \sup x_{n}$; in particular, for $x \in c, f(x)=\lim \tilde{n}_{n}$.

In other worde, $y$ may be strictly separated from $c_{0}$ by $x$ 'nomalized positive Iinear functional'.

Proof Let $A=\left\{x \in \varepsilon_{\infty}: \lim \sup x_{n} \leqslant 0\right\}$. We shall show that $A=c_{0}-\delta_{\infty}^{+}$.

Let $x=s-t$ where $s \in C_{0}, t \in \hat{X}_{\infty}^{+}$and suppose $\lim \sup \mathrm{x}_{\mathrm{n}} \gg 0$ 。
Take $0<\varepsilon<\frac{1}{2} \lim \sup x_{n}$,
then there exist but a finite number of terms of $s$ greater than $\varepsilon$ and hence only a finite number of terms of $x$ greater than $\varepsilon$. This contradicts that the limit superior of $x$ is strictly positive. So x E E .

Conversely, let $x \in A$. Write $x_{n}=s_{n}+t_{n}$ where

$$
s_{n}=\left\{\begin{array}{l}
x_{n} \text { if } x_{n} \geqslant 0, \\
0 \text { otherwise } .
\end{array}\right.
$$

Obviously, $\left(s_{n}\right) \in c_{0}$ and $\left(t_{n}\right) \in l_{\infty}^{-}$.

So $x \in c_{0}-\ell_{\infty}^{+}$.

To prove that $A$ is closed, let $x$ be a limit point of $A$, that is,

$$
\left\|x-x^{(m)}\right\|=\sup _{n}\left|x_{n}-x_{n}^{(m)}\right| \rightarrow 0 \text { as } m \rightarrow \infty, \text { where } x^{(m)} \in A
$$

Therefore, for given $\varepsilon>0$,

$$
\left|x_{n}-x_{n}^{(m)}\right|<\varepsilon
$$

for sufficiently large $m$ and all $n$.

Assume $a=\lim \sup x_{n}>0$.
So ( $a-\varepsilon, a+\varepsilon)$ where $\varepsilon=\frac{a}{4}$ must contain an infinite number of $x_{n}$ and consequentiy an infinite number of $x(m)$ for sufficiently large $m$. This contradicts that $x^{(m)} \epsilon A$.

Convexity being obvious, we conclude that $A$ is a closed convex subset of $i_{\infty}$.

Obviously, $y \notin A$ since $y \in \mathcal{C}_{\infty}^{+} \backslash c_{0}$. Hence by the separation theorem, there exists $g \in \ell_{\infty}^{*}$ with

$$
g(y)>0=\sup g(A)
$$

If $x \in c_{0}$, then $x,-x \in c_{0} \subset A$.

So $g(-x) \leqslant 0$, or, $g(x) \geqslant 0$;
that is, $g$ is positive on $\hat{i}_{\infty}^{+}$.

Further, $\|y\| e-y \in \ell_{\infty}^{+}$.
So $g(\|y\| e-y) \geqslant 0$ and we get $g(e) \geqslant 0$.
Write $f=g / g(e)$.
So $f(e)=1$ and $f$ is positive.
Thus $f(\|x\| e-x) \geqslant 0$,
or $f(x) \leqslant\|x\|$.
Thus $\|f\| \leqslant 1$,
but since $f(e)=1$, this gives $\|f\|=1$.

Again $f\left(\left(\lim \sup x_{r}\right) e-x\right) \geqslant 0$,
that is, $\lim \sup x_{n} \Rightarrow f(x)$.
Similarly, $\lim \inf x_{n} \leqslant f(x)$.

Hence $£$ satisfies all the properties required in
lemma 2.7.

### 2.5 A Modification of Berberian's Technique

S.K. Berberian (1962) used the existence of a BanachMazur generalized limit, glim, for bounded sequences of real numbers to introduce a pseudo-inner product on $\ell_{\infty}(H)$ and thereby obtained a Hilbert space extension $K$ of $H$. In fact glim was only required to be an element of $\ell_{\infty}^{+}$satisfying the properties (ii) to (v) of section 2.4. Thus for every f of the type described by lemma 2.7 we have the following construction.


```
Since
                        |<\mp@subsup{x}{n}{},\mp@subsup{y}{n}{}\rangle|\leqslant|\mp@subsup{x}{n}{}||\mp@subsup{y}{n}{}|, it is permissible to define
\[
\phi(s, t)=f\left(\left(\operatorname{Re}<x_{n}, y_{n}>\right)\right)+\operatorname{if}\left(\left(\operatorname{Im}<x_{n}, y_{n}>\right)\right)
\]
```

Evidently, $\phi(s, t)$ is a pseucio-inner product on $\quad f_{\infty}(H)$ and so satisfies the Cauchy-Schwartz inequality, hence

$$
\begin{aligned}
N & =\left\{S \in \delta_{\infty}(H): \emptyset(s, s)=0\right\} \\
& =\left\{S \in \lambda_{\infty}(H): c(s, t)=0 \text { for all } t \in \delta_{\alpha}(H)\right\}
\end{aligned}
$$

is a closed (can be easily verified from the properties of f) subspace of $\quad \ell_{\infty}(H)$.

We write $s^{\prime}$ for the coset $s+N$ and define the quotient inner product space

$$
K=\ell_{\infty}(H) / N
$$

with inner product

$$
\left\langle s^{\prime}, t^{\prime}\right\rangle=\phi(s, t) .
$$

If $x$ is in $H$, we write ( $x$ ) for the sequence all of whose terms are $x$ and $x^{\prime}$ for the $\operatorname{coset}(x)+N$. Hence $\left\langle X^{\prime}, y^{\prime}\right\rangle=\left\langle X, y^{\rangle}\right.$anç $x \rightarrow X^{\prime}$ is an isometric linear map of $H$ onto a closed subspace $H^{\prime}$ of K.
$A$ representation of $B(H)$

Every operator $T$ in $H$ determines an operator $T^{\circ}$ in $K$ as follows.

Since $\left|T x_{n}\right| \leqslant\|T\|\left|x_{n}\right|$,
$i=\left(x_{n}\right) \in l_{\infty}(H)$, so is $\left(T x_{n}\right)$.
Define the linear map $\mathrm{T}_{0}: \lambda_{\infty}(H) \rightarrow i_{\infty}(H)$ by $T_{0} s=\left(X_{n}\right)$. Hence, by positivity of 0 we have

$$
\begin{equation*}
\phi\left(T_{c} S, T_{c} S\right) \leqslant T \|^{2} c(S, S) . \tag{2.1}
\end{equation*}
$$

This shows that if $s \in N$, trat is $\phi(s, s)=0$, then

$$
\phi\left(I_{0} S, T_{0} S\right)=0
$$

anç hence

$$
\mathrm{T}_{\mathrm{c}} \mathrm{~s} \in \mathrm{~N}^{\prime}
$$

Thus the linear map $T^{\circ}: K \rightarrow K$ defined by $T^{\circ} s^{\prime}=\left(T_{0} S\right)^{\prime}$ is well defined and since from (2.1),

$$
\left\langle\mathrm{T}^{\circ} \mathrm{S}^{\prime}, \mathrm{T}^{\circ} \mathrm{S}^{\prime}\right\rangle \leqslant\|\mathrm{T}\|^{2}\left\langle\mathrm{~S}^{\prime}, \mathrm{S}^{\prime}\right\rangle \text { for all } \mathrm{s}^{\prime} \in \mathrm{K},
$$

$\mathrm{T}^{\circ}$ is continuous and $\left\|\mathrm{T}^{0}\right\| \leqslant\|\mathrm{T}\|$. But $T^{\circ} X^{\prime}=(T x)^{\prime}$ for all $x \in H$ and hence $\left\|T^{\circ}\right\| \geqslant\|T\|$. Thus we have $\left\|T^{\circ}\right\|=\|T\|$.

It can be easily verified that the mapping $T \rightarrow T^{\circ}$ is a faithful *-representation of $B(H)$ into $B(K)$, that is for $S, T \in B(H)$,
i) $(S+T)^{\circ}=S^{\circ}+T^{\circ}$
ii) $(\lambda T)^{\circ}=\lambda T^{\circ}$
iii) $(S T)^{\circ}=S^{\circ} T^{\circ}$
iv) $\left(T^{*}\right)^{\circ}=\left(T^{0}\right) *$
v) $I^{0}=I, \quad$ an
vi) $\mid T^{0}\|=\| T \|$.

Also it is easily seen that $T$ is positive if and only if $T^{\circ}$ is positive.

Berberian and Orland (1967) have shown in the proposition of section 3 of their paper that $W\left(T^{\circ}\right)=W\left(T^{-}\right)^{-}$. This fact is basic to our proofs. We give below a simple proof of this result, which, unlike the proof given by Berberian and Orland, needs no reference to Banach algebra; and instead makes use of a normalized positive linear functional $f$ with the properties given in lemma 2.7. This proof was suggested to the author by B. Sims.

Theorem 2.8 For any operator $T$ in $H$, $W\left(T^{\circ}\right)$
is closed; inajeed, $W\left(T^{0}\right)=W(T)^{-}$.

Proof The inclusion $W(T)^{-} \subset W\left(T^{\circ}\right)$ can be shown as follows.

```
    Let }\lambda=\operatorname{lim}<T\mp@subsup{T}{n}{\prime},\mp@subsup{x}{n}{}>\mathrm{ where ( }\mp@subsup{x}{n}{})\epsilon\mp@subsup{\ell}{\infty}{}(H),|\mp@subsup{x}{n}{}|=1
Writing s= ( }\mp@subsup{\textrm{X}}{n}{}\mathrm{ ) and }\mp@subsup{s}{}{\prime}=s+N\mathrm{ as before, we have
\| \mp@code { \| ' \| = ~ l ~ a n d }
```



```
(where f is as describeci in Iemma 2.7)
= lim<Tx
    For the converse we show \lambda&W(T)
\lambda & W(T'0).
```

    If \(\lambda \epsilon W(T)^{-}\), there exists a half-plane \(U\) such
    that $\lambda \notin U$ and $W(T)^{-} c U . \quad T h u s$ by carrying out the standard
transformation $T \rightarrow \alpha T+\beta$ with suitably chosen complex $\alpha, \beta$,
without loss of generality we may assume $\lambda=0$ and $\operatorname{Re} W(T)^{-}<0$.
It will be sufficient to show that
sup $\operatorname{Re} W\left(T^{\circ}\right) \leqslant \sup \operatorname{Re} W(T)$.

Let $\mu \in W\left(T^{\circ}\right)$.
Then

$$
\begin{aligned}
\operatorname{Re} \mu & =f\left(\left(\operatorname{Re}<T x_{n}, x_{n}>\right)\right) \text { for some }\left(x_{n}\right) \text { with } f\left(\left(\left\|x_{n}\right\|^{2}\right)\right)=1, \\
& =f\left(\left(\operatorname{Re} \mu_{n}\left\|x_{n}\right\|^{2}\right)\right)
\end{aligned}
$$

where $\mu_{n} \in W(T)$.
(If $x_{n}=0$ for some $n$, we put $\mu_{n}$ equal to any point of $W(T)$.

Thus
$\operatorname{Re} \mu \leqslant \mathcal{f}\left(\left(\left\|x_{n}\right\|^{2} \sup \operatorname{Re} W(\underline{T})\right)\right)$
by positivity of $f$,
or,
$\operatorname{Re} \mu \leqslant \sup \operatorname{Re} W(T)$.
2.6 Linearity of $N_{z}(T)$

We are now ready to give an alternative proof of

Theorem 2.6 For any point $z$ in W(T) , let

$$
N_{z}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0\right\} .
$$

Then $N_{z}(T)$ is a subspace of $\ell_{\infty}(H)$ if and onty if $z$ is an extreme point of $W_{(T)^{-} \text {. }}$

Proof By carrying out the standard reduction $T \rightarrow e^{i \epsilon}(T-z I)$ where $\theta$ is a suitably chosen real number, we can assume without loss of generality that $z=0$ and $\operatorname{Re} W(T) \geqslant 0$.

We first prove sufficiency. Homogeneity being clear, we need prove only linearity of $N_{z}(T)$.

By the construction of section 2.5 , for each $f$ of the type described in lemma 2.7 we have

$$
W\left(T^{0}\right)=W(T)^{-} .
$$

Indeed if $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0$, then $0=\left\langle T^{\circ} s^{\prime}, s^{\prime}\right\rangle$ where $s^{\prime}=s+N, \quad s=\left(x_{n}\right)$.

Now let $\left(x_{n}\right),\left(y_{n}\right)$ be such that both $\left\langle T x_{n}, x_{n}\right\rangle$ and $\left\langle T y_{n}, y_{n}\right\rangle$ tend to zero where 0 is an extreme point of $W(T)^{-}$.

Then $\left\langle T^{\circ} S^{\prime}, s^{\prime}\right\rangle=\left\langle T^{\circ} t^{\prime}, t^{\prime}\right\rangle=0$ is an extreme point of $W\left(T^{\circ}\right)$. So by theorem l.ll (i),

$$
\left\langle T^{\circ}\left(s^{\prime}+t^{\prime}\right), s^{\prime}+t^{\prime}\right\rangle=0,
$$

or

$$
\left\langle T\left(x_{n}+y_{n}\right)^{\prime},\left(x_{n}+y_{n}\right)^{\prime}\right\rangle=0 .
$$

Thus by the form of the inner product in $K$, for every possible choice of $f$ we have

$$
\begin{equation*}
f\left(\left(\operatorname{Re}<T\left(x_{n}+y_{n}\right), x_{n}+y_{n}>\right)\right)=0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\left(\operatorname{Im}<T\left(x_{n}+y_{n}\right), x_{n}+y_{n}>\right)\right)=0 \tag{2.3}
\end{equation*}
$$

Now $\alpha=\left(\alpha_{n}\right)=\left(\operatorname{Re}\left\langle T\left(x_{n}+y_{n}\right), x_{n}+y_{n}>\right) \in \ell_{\infty}^{+}\right.$ and so by (2.2) and lemma 2.7, $a_{i} \in c_{0}$, that is, $a_{n} \rightarrow 0$.

$$
\text { To show } E=\left(E_{n}\right)=\left(\operatorname{Im}\left\langle T\left(x_{n}+y_{n}\right), x_{n}+y_{n}\right) \in c_{0}\right.
$$

requires a little more work.

```
First note that
```

$$
\lim \inf E_{n} \leqslant f(f) \leqslant \lim \sup E_{n} \cdot
$$

Also, by (2.3), $f(E)=0$.

Assume $a=\lim \sup _{E_{n} \neq 0} 0$, then there exists a subsequence $\left(n_{k}\right)$ such that

$$
\operatorname{Im}<\mathrm{T}\left(\mathrm{x}_{\mathrm{n}_{\mathrm{k}}}+y_{n_{k}}\right), \mathrm{x}_{\mathrm{n}_{\mathrm{k}}}+y_{n_{k}}>\rightarrow a
$$

Passing on to a further subsequence we may assume

$$
\left\|x_{n_{k}}+y_{n_{k}}\right\| \rightarrow L \neq 0
$$

(If $L=0$, then $E_{n_{k}} \rightarrow 0$ contradicting $a>0$. )
Thus

$$
\operatorname{Im}<\frac{T\left(x_{n_{k}}+y_{n_{k}}\right)}{\left\|x_{n_{k}}+y_{n_{k}}\right\|}, \frac{x_{n_{k}}+y_{n_{k}}}{\left\|x_{n_{k}}+y_{n_{k}}\right\|}>\rightarrow \frac{a}{L^{2}}
$$

while

$$
\operatorname{Re}<\frac{T\left(x_{n_{k}}+y_{n_{k}}\right)}{\left\|x_{n_{k}}+y_{n_{k}}\right\|}, \frac{x_{n_{k}}+y_{n_{k}}}{\left\|x_{n_{k}}+y_{n_{k}}\right\|}>0
$$

So $i a / L^{2} \in W(T)^{-}$.
If also $b=\lim \inf \beta_{n} \nsupseteq 0$, we would similarly have
$i b / \ell^{2} \in W(T)^{-}$where $\hat{l} \neq 0$ is the limit of the norm of $a$
suitable subsequence of $\left(x_{n}+y_{n}\right)$.
Thus $\quad b / \ell^{2} \varsubsetneqq 0 \lesseqgtr a / L^{2}$
contradicting that 0 is an extreme point of $W(T)^{-}$.

Thus at least one of $a$ and $b$ is zero. Now $B$
can be decomposed as

$$
B=\beta^{0}+\left(\beta-\beta^{0}\right)
$$

where

$$
B_{n}^{\circ}=\left\{\begin{array}{l}
B_{n}-a, \quad \text { if } \beta_{n} \geqslant a ; \\
0 \text { otherwise } .
\end{array}\right.
$$

So $E^{\circ} \in C_{0}$ and ae $\left(E-E^{\circ}\right) \in i_{\infty}^{+}$

$$
\text { If } a=0, \quad E-Q^{0} \in i_{\infty}^{-}
$$

and similarly

$$
\text { if } b=0, \quad B-E^{0} \in{ }_{\infty}^{+} .
$$

But then for all $f$ satisfying the conditions of lemma 2.7 we have

$$
0=f(E)=f\left(E-E^{\circ}\right)
$$

and so

$$
E-E^{\circ} \in C_{0} .
$$

Thus $S \in C_{0}$ and consequently $N_{\circ}(T)$ is linear.

To prove the converse, if 0 is not an extreme point of $W(T)^{-}$, then either 0 is an interior point of $W(T)$ and theorem $1 . l(i)$ shows that $M_{o}(T)$ and hence $N_{\circ}(T)$ is not linear; or 0 is a nonextreme boundary point of $W(T)$ in which case we may assume that 0 lies on the join of ia and-ib where ia and -ib belong to $W(T)^{-}$, $a, b>0$. We will show that $N_{\circ}(T)$ is not linear.

Let $s=\left(x_{n}\right)$ and $t=\left(y_{n}\right)$ be two sequences of unit vectors such that

$$
\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \text { ia and }\left\langle T y_{n}, y_{n}\right\rangle \rightarrow-i b \text {. }
$$

Then since $<\left(T+T^{*}\right) X_{n}, X_{n}>0$, an extreme point of $W\left(T+T^{*}\right)^{-}$and so an approximate eigenvalue of the Hermitian operator $T+T^{*}$, we have $T x_{n}+T x_{n} \rightarrow 0$.

Further by passing on to subsequences if necessary, we may assume that for any $\therefore, \operatorname{Im}\left(\bar{\lambda}\left\langle T x_{n}, y_{n}\right\rangle\right)$ is convergent and hence it follows that $\left(\left\langle T\left(x_{n}+\lambda y_{n}\right), x_{n}+\lambda y_{n}\right\rangle\right)$ is convergent.

Now, given any f satisfying the conditions of
lemma 2.7, we have

$$
\left\langle T^{\circ} S^{\prime}, S^{\prime}\right\rangle=i a \text { and }\left\langle T^{\circ} t^{\prime}, t^{\prime}\right\rangle=-i b
$$

and so by lemma l.l0, we have

$$
\left\langle T^{0}\left(x_{n}+\lambda y_{n}\right)^{\prime},\left(x_{n}+\lambda y_{n}\right)^{\prime}\right\rangle=0
$$

for two distinct values of $\lambda$.

By (v) in lemma 2.7 and the construction of $K, T^{\circ}$, we therefore have for both these values of $\lambda$ that

$$
\begin{aligned}
& \lim <T\left(x_{n}+\lambda y_{n}\right), x_{n}+\lambda y_{n}> \\
& =f\left(\left(\operatorname{Re}<T\left(x_{n}+\lambda y_{n}\right), x_{n}+\lambda y_{n}>\right)\right) \\
& +i f\left(\left(\operatorname{Im}<T\left(x_{n}+\lambda y_{n}\right), x_{n}+\lambda y_{n}>\right)\right) \\
& =0 \text {, } \\
& \text { that is, }\left(x_{n}+\lambda y_{n}\right) \in N_{0}(T) \text { for two distinct values of } \lambda \text {. } \\
& \text { Hence } \mathrm{N}_{\mathrm{o}}(\mathrm{~T}) \text { is not linear. }
\end{aligned}
$$

### 2.7 Generalization of a Cauchy-Schwartz Inequality

Ir theorem 1.12 we have seen a version of the CauchySchwartz inequality for the vectors associated with points of $L r_{1} W(T)$, where $L$ is a Iine of support for $W(T)$. We translate this into a statement about sequences of vectors associated with points of $I \cap W(T)^{-}$. We then illustrate how other results may be extended to unattained boundary points of $W(T)$ by deriving generalizations for some of the consequences given in section 1.4 of Chapter 1 . In particular, the results of Das and Craven can be deduced as a corollary to a generalization of a Cauchy-Schwartz inequality.

Throughout let $L$ be a line of support for $W(T)$
and let
$N_{L}(T)=\left\{\left(x_{n}\right) \in \ell_{\infty}(H): \inf _{z \in L}\left|\left\langle\operatorname{Tx}_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2}\right| \rightarrow 0\right\} \quad$.

Lemma 2.5 (ii) shows that $N_{L}(T)$ is a subspace of $\ell_{\infty}(H)$.

Let $f$ satisfy the conditions of lemma 2.7. For any complex sequence $\left(\lambda_{n}\right)$, define $f\left(\left(\lambda_{n}\right)\right)$ by

$$
f\left(\left(\lambda_{n}\right)\right)=f\left(\left(\operatorname{Re} \lambda_{n}\right)\right)+\operatorname{if}\left(\left(\operatorname{Im} \lambda_{n}\right)\right)
$$

We have the following lemma.

Lemma 2.9 Let $f$ be as above and $z$ be a point of
$I$ such that either $z$ is an extreme point of $W(T)^{-}$or $z \notin W(\pi)^{-}$. Then for air $\left(\tilde{n}_{n} ;,\left(y_{n}\right) \in N_{L}(T)\right.$,

$$
\left|f\left(\left(\langle T-z) x_{n}, v_{n}\right\rangle\right)\right|^{2} \leqslant f\left(\left(\left\langle(T-z) x_{n}, x_{n}\right\rangle\right)\right) f\left(\left(\left\langle u_{n},(T-z) w_{n}\right\rangle\right)\right) .
$$

Proof By a suitable translation and rotation we may assume that $L$ is the imaginary axis, $z=0$ and $\operatorname{Re} W(T) \geqslant 0$.

For the given $f$, let $K$ and $T^{\circ}$ be as in section 2.5 and let $s=\left(x_{n}\right), \quad t=\left(y_{n}\right)$, then

$$
\operatorname{Re}\left\langle T^{\circ} s^{\prime}, s^{\prime}\right\rangle=f\left(\left(\operatorname{Re}\left\langle T x_{n}, x_{n}\right\rangle\right)\right)=0 \text { as } \operatorname{Re} T x_{n} \rightarrow 0
$$

Similarly $\operatorname{Re}\left\langle\mathrm{T}^{\circ} \mathrm{t}^{\prime}, \mathrm{t}^{\prime}\right\rangle=0$.

Theorem l.l2 therefore applies to give

$$
\left|\left\langle T^{\circ} S^{\prime}, t^{\prime}\right\rangle\right|^{2} \leqslant\left\langle T^{\circ} S^{\prime}, S^{\prime}\right\rangle\left\langle t^{\prime}, T^{\circ} t^{\prime}\right\rangle,
$$

or, using the definition of inner product in $K$, that

$$
f\left(\left(\left\langle T x_{n}, y_{n}\right\rangle\right)\right):^{2} \leqslant f\left(\left(\left\langle T x_{n}, x_{n}\right\rangle\right)\right) f\left(\left(\left\langle y_{n}, T y_{n}\right\rangle\right)\right)
$$

as required.

Corollary 2.10 If $z$ is an extreme point of $w(T)^{-}$ and I is a line of support for $\bar{Y}(T)$ passing through is, then

$$
\left.\operatorname{Iim}<(T-z) x_{n}, z_{n_{0}}\right\rangle=0
$$

ana

$$
\operatorname{Iim}\left\langle\left(T^{*}-\bar{z}\right) n_{n}, z_{n}=0\right.
$$

for all $\left(x_{n}\right) \in N_{z}(T)$ and $\left(y_{n}\right) \in N_{L}(T)$.
Proof Without loss of generality assume $z=0, I$ is the imaginary axis and $\operatorname{Re} W(T) \geqslant 0$.

Assume $\left\langle T x_{n}, y_{n}\right\rangle$ does not converge to 0 , then there exist subsequences $\left(\mathrm{X}_{\mathrm{n}_{\mathrm{K}}}\right),\left(\mathrm{Y}_{\mathrm{n}_{\mathrm{k}}}\right)$ such that either the
real or imaginary parts of $\left(\left\langle\mathrm{Tx}_{\mathrm{n}_{\mathrm{k}}}, \mathrm{Y}_{\mathrm{n}_{\mathrm{k}}}\right\rangle\right.$ form a subsequence in $l_{\infty}^{+} \backslash c_{0}$ (or $l_{\infty}^{-} \backslash c_{0}$ ).

By lemma 2.7, there is an $f$ with the stated proper-
ties such that $f\left(\left(\left\langle T x_{n_{k}}, y_{n_{k}}\right\rangle\right)\right) \neq 0$.
To derive a contradiction we note that $\left(\mathrm{X}_{\mathrm{n}_{\mathrm{k}}}\right) \in \mathrm{N}_{\mathrm{z}}(T)$.
So $\left\langle\mathrm{Tx}_{\mathrm{n}_{\mathrm{k}}}, \mathrm{X}_{\mathrm{n}_{\mathrm{k}}}\right\rangle \rightarrow 0$
and

$$
\left(\mathrm{y}_{\mathrm{n}_{\mathrm{k}}}\right) \in \mathrm{N}_{\mathrm{L}}(\mathrm{~T})
$$

Thus by lemma 2.9,

$$
\hat{\mathrm{F}}\left(\left(\left\langle\mathrm{Tx}_{\mathrm{n}_{\mathrm{k}}}, \mathrm{y}_{\mathrm{n}_{\mathrm{k}}}\right\rangle\right)\right)=0 .
$$

So we have

$$
\lim \left\langle(T-z) x_{n}, y_{n}\right\rangle=0
$$

whenever $z$ is an extreme point of $W(T)^{-}$and by lemma 2.5 (i) we also have

$$
\lim \left\langle\left(T^{*}-\bar{z}\right) x_{n}, y_{n}\right\rangle=0 .
$$

Corollary 2.11 Let $z$ and $L$ be as in corollary 8.10. If $\left(x_{n}\right) \in \Pi_{z}(\Omega)$ and $\left(x_{n}\right) \in \Pi_{L}(T)$, then

$$
\lim \left(m^{2}-z\right) x_{n}=\operatorname{iim}\left(m^{*}-\bar{z}\right) x_{n}=0
$$

```
Proof Again assume z = 0, L is the imaginary axis
```

and $\operatorname{Re} W(T) \geqslant 0$.
since $\left(x_{n}\right) \in N_{z}(T)$, by definition $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0$
and so by lemma 2.9,

$$
f\left(\left(\left\langle\mathrm{Tx}_{\mathrm{n}}, Y_{\mathrm{n}}\right\rangle\right)\right)=0 \quad \text { for all } \quad\left(y_{n}\right) \in \mathbb{N}_{L}(T)
$$

In particular, taking $y_{n}=T x_{n}$ we have

$$
\mathrm{E}\left(\left(\mathrm{Tx}_{\mathrm{n}} \|^{2}\right)\right)=0
$$

Now $\left(\left\|T x_{n}\right\|^{2}\right)$ is in $f_{\infty}^{+}$, so by lemma 2.7 we conclude that $T x_{n} \rightarrow 0$ and since $\operatorname{Re} T x_{n} \rightarrow 0$, that $T x_{n} \rightarrow 0$.

Corollary 2.12 (Das and Craven) If $z$ is an extreme point of $H(T)^{-}$, then $N_{\pi}(T)$ is a sunspace of $l_{\infty}(H)$.

Proof Homogeneity being obvious we only have to prove Iinearity.

$$
\text { Let }\left(x_{n}^{(i)}\right),\left(x_{n}^{(2)}\right) \in N_{z}(I) \text {. }
$$

Thus $\binom{(1)}{n},\binom{(2)}{n} \in N_{L}(T)$ where $L$ is a line of support for $W(T)$ passing through $z$.

$$
\begin{aligned}
& \text { But } N_{I}(T) \text { is a subspace by lemma } 2.5 \text { (ii). So } \\
& \left(x_{n}^{(i)}+x_{n}^{(2)}\right) \in N_{L}(T) \text {. } \\
& \text { Now since }\binom{(i)}{n} \in N_{z}(T), i=1,2 \text { and } \\
& \left(x_{n}^{(=)}+x_{n}^{(2)}\right) \in N_{L}(T), \text { by corollary } 2.10 \text {, } \\
& \lim <(T-z) x_{n}^{(i)}, x_{n}^{(i)}+x_{n}^{(2)}>=0 \text { for } i=1,2 .
\end{aligned}
$$

Hence

$$
\lim \left\langle(T-z)\left(x_{n}^{(i)}+x\binom{(z)}{n}, x_{n}^{(i)}+x_{n}^{(z)}\right\rangle=0\right.
$$

So $\left(x{ }_{n}^{(i)}+x_{n}^{(2)} \underset{n}{n}(N)\right.$.

Let $f$ be any linear functional satisfying the conditions of lemma 2.7. As before, for any complex sequence $\left(\lambda_{n}\right)$, define $f\left(\left(\lambda_{n}\right)\right)$ by

$$
f\left(\left(\lambda_{n}\right)\right)=f\left(\left(\operatorname{Re} \lambda_{n}\right)\right)+i E\left(\left(\operatorname{Im} \lambda_{n}\right)\right)
$$

We have the following lemma.

Lemma 2.13 Let $b$ an $\vec{a}=\overline{d e}$ adiacent extreme points 0 O $W(T)^{-}$anci iet $a=t \bar{b}+(I-t) c, 0 \leq t \leq I$. If $\left(x_{n_{i}}\right) \in N_{b}(T)$ and $\left(y_{n}\right) \in N_{a}^{(T)}$, then for all $f$ of the type describeá above,
$\left|f\left(\left(\left\langle x_{n}, u_{n}\right\rangle\right)\right)\right|^{2} \leqslant t f\left(\left(\left\|x_{n}\right\|^{2}\right)\right) f\left(\left(\left\|w_{n}\right\|^{2}\right)\right.$.

Ir partiouiar, if $\left(x_{n}\right) \in N_{E}(T)$ ana $\left(y_{n}\right) \in I_{c}(T)$, tinen Iir: $\left\langle x_{n}, z_{n}\right\rangle=0$.

Proof For the given f, let $K$ and $T^{\circ}$ be as in section 2.5 and let $s=\left(x_{n}\right), t=\left(y_{n}\right)$, then an easy application of theorem 1.16 gives

$$
\left\langle s^{\prime}, t^{\prime}\right\rangle \leq \sqrt{t} \mid s^{\prime}\| \| t^{\prime} \|,
$$

or, in terms of $f$,

$$
\left|f\left(\left(\left\langle x_{n}, y_{n}\right\rangle\right)\right)\right|^{2} \leqslant \quad t f\left(\left(\left\|x_{n}\right\|^{2}\right)\right) f\left(\left(\left\|y_{n}\right\|^{2}\right)\right)
$$

In particular, if $\left(y_{n}\right) \in N_{C}(T)$, then $t=0$ and hence $f\left(\left(\left\langle x_{n}, y_{n}\right\rangle\right)\right)=0$.

If $\left\langle x_{n}, y_{n}\right\rangle$ cioes not converge to zero, then there exist subsequences $\left(x_{n_{k}}\right),\left(y_{n_{k}}\right)$ such that either the real or imaginary parts of $\left(\left\langle x_{n_{k}}, y_{n_{k}}\right\rangle\right)$ form a subsequence in $\ell_{\infty}^{+} \backslash c_{0}$ (or $l_{\infty}^{-} \backslash c_{0}$ ).

By lemma 2.7, there is an $f$ with the stated properties such that

$$
\mathrm{f}\left(\left(\left\langle\mathrm{x}_{\mathrm{n}_{\mathrm{k}}}, \mathrm{y}_{\mathrm{n}_{\mathrm{k}}}>\right)\right) \neq 0\right.
$$

But $\left(x_{n_{k}}\right) \in N_{b}(T), \quad\left(y_{n_{k}}\right) \in N_{c}(T)$. Hence

$$
f\left(\left(\left\langle x_{n_{k}}, y_{r_{k}}>\right)\right)=0\right.
$$

and we get a contradiction. Therefore $\left\langle\mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right\rangle \rightarrow 0$.

In lemmas 2.9 and 2.13 we have obtained inequalities in terms of $f . \quad$ As we shall see in Chapter 4 , these inequalities are sufficient to enable us to deduce as a corollary, results of Garske (1979) and Das and Craven on weak convergence on the boundary of the numerical range. However, in the next section we use a direct method to get inequalities for the elements of $N(T)$ in terms $O$ limit supremum. Property (v) of lemma 2.7 shows that these inequalities are sharper than those obtained in this section. The contents of the next section cover part of a joint paper by Das, Majumdar and Sims (1).

### 2.8 Inequalities for $N(T)$ in Terms of Limit Supremum

In theorem 1.12 we have seen a sharper version of the Cauchy-Schwartz inequality for the vectors associated with the points of $L \cap W(T)$. In the last section, using a modification of Berberian's technique which involves a change of Hilbert space and operator via a construction based on normalized positive linear functionals in $l_{\infty}^{*}$, we have extended theorems 1.12 and 1.16 to the case of vectors associated with the points of in $\cap(T)^{-}$. Here we shall not use this technique; instead we exploit the notions of limit supremum anā limit infimum to obtain somewhat sharper inequalities. We prove the following theorem. Theorem 2.14 Let $Z$ De a inne of support for $W$. $T$ ) and
 Let $z$ Le an element of $L$ euch that either $z$ is an extreme point of $W(T)^{-}$or $\approx \xi W(T)^{-}$. Then for ait $\left(x_{n}\right),\left(u_{r_{0}}\right) \in N(T)$,
$\left.\lim \sup l\left|<\left(T-z i x_{n}, z_{n}\right\rangle\right|^{2}-\left|<(T-z) x_{n}, x_{n}\right\rangle\left|<(T-z) y_{n}, y_{n}\right\rangle\right\} \leqslant 0$.

Proof Let either $z$ be an extreme point of $W(T)^{-}$or $z \notin W(T)^{-}$.

Without loss of generality we can take $z=0$, $W(T)^{-} \cap I$ on the positive real axis and $\operatorname{Im} W(T) \geqslant 0$ (or $\leq 0$ ). We may assume $\left\|x_{n}\right\|$ and $\left\|y_{n}\right\|$ are nonzero for all $n$, because if zero, they will not alter the inequality.

Let $t_{1}, t_{2}$ be two positive real numbers such that

$$
\left\langle\mathrm{Tx}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right\rangle-t_{1}\left\|\mathrm{x}_{\mathrm{n}}\right\|^{2} \rightarrow 0
$$

and

$$
\left\langle\mathrm{TY}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right\rangle-t_{2}\left|\mathrm{y}_{\mathrm{n}}\right|^{2} \rightarrow 0
$$

Consider points of $W(T)$ of the form

$$
g_{n}\left(\lambda_{n}\right)=\frac{\left\langle T\left(x_{n}+\lambda_{n} y_{n}\right), x_{n}+\lambda_{n} y_{n}\right\rangle}{x_{n}+\lambda_{n} y_{n} \|^{2}}
$$

where $\lambda_{n}$ 's are complex scalars such that $\left|\lambda_{n}\right|=n$ for all n.

We have assumed $x_{n}+\lambda_{n} y_{n} \neq 0$ for all $n$, because if $x_{n}+x_{n} y_{n}=0$ for some $n$, it will not change the inequality. Since Im $W(T) \geqslant 0$, we have $T x_{n}-T^{*} x_{n} \rightarrow 0$. So

$$
g_{n}\left(\lambda_{n}\right)-h_{n}\left(\lambda_{n}\right) \rightarrow 0
$$

where

$$
h_{n}\left(\lambda_{n}\right)=\frac{t_{1}\left\|x_{n}\right\|^{2}+t_{2} n^{2}\left\|y_{n}\right\|^{2}+2 \operatorname{Re}\left(\bar{\lambda}_{n}<T x_{n}, y_{n}>\right)}{\left\|x_{n}+\lambda_{n} y_{n}\right\|^{2}}
$$

Hence

$$
\operatorname{Im} g_{n}\left(i_{n}\right) \rightarrow 0
$$

and

$$
\operatorname{Re} g_{n}\left(i_{n}\right)-h_{n}\left(i_{n}\right) \rightarrow 0
$$

Thus for any $\varepsilon>0$,

$$
-\varepsilon+\operatorname{Re} g_{n}\left(\lambda_{n}\right) \leqslant h_{n}\left(\lambda_{n}\right) \leqslant \varepsilon+\operatorname{Re} g_{n}\left(\lambda_{n}\right)
$$

for sufficiently large $n$, or,
$-\varepsilon+\liminf \operatorname{Re} g_{n}\left(\lambda_{n}\right) \leqslant \liminf h_{n}\left(\lambda_{n}\right) \leqslant \varepsilon+\liminf \operatorname{Re} g_{n}\left(\lambda_{n}\right)$.

If $\lim \inf \operatorname{Re} g_{n}\left(\lambda_{n}\right)=a<0$, then there exists
$\left(n_{k}\right)$ such that

$$
\operatorname{Re} g_{n_{k}}\left(\lambda_{n_{k}}\right) \rightarrow a
$$

and hence

$$
g_{n_{k}}\left(\lambda_{n_{k}}\right) \rightarrow \text { a as } \quad \operatorname{Im} g_{n_{k}}\left(\lambda_{n_{k}}\right) \rightarrow 0 .
$$

So $a \in W(T)^{-}$and thus $a \geqslant 0$ since $L \cap W(T)^{-} \subset R^{+}$. So,

$$
-\varepsilon+a \leqslant \lim \inf h_{n}\left(\lambda_{n}\right) \leqslant \varepsilon+a
$$

where $a \geqslant 0$.
This shows $\lim$ inf $h_{r}\left(\lambda_{n}\right) \geqslant 0$.
Moreover, since $\left(x_{n}+\lambda_{r_{1}} \ddot{Y}_{n}\right) \epsilon \delta_{\alpha}(H)$, we must have

$$
\lim \inf \left[t_{i}\left\|x_{n}\right\|^{2}+t_{2} n^{2}\left\|y_{n}\right\|^{2}+2 \operatorname{Re}\left(\bar{\lambda}_{n}\left\langle T x_{n}, y_{n}\right\rangle\right)\right] \geqslant 0 .
$$

Choose $\lambda_{n}$ such that

$$
\left.\operatorname{Re}\left(\bar{\lambda}_{\mathrm{n}}<\operatorname{Tx}_{\mathrm{n}}, y_{\mathrm{n}}\right\rangle\right)= \pm \mathrm{r}_{1}\left\langle\operatorname{Tx}_{\mathrm{n}}, y_{\mathrm{n}}>\right| .
$$

Given $\varepsilon>0$, we have for su£ficiently large $n$,

$$
t_{1}\left\|x_{n}\right\|^{2}+t_{2} n^{2}\left\|y_{n}\right\|^{2} \pm 2 n\left|<T x_{n}, y_{n}\right\rangle \geqslant \varepsilon \ldots
$$

So, by the condition for the above inequality to have solutions,

$$
\left.4\left|<T x_{n}, y_{n}\right\rangle\right|^{2}-4 t_{2}\left\|y_{n}\right\|^{2}\left(t_{1}\left\|x_{n}\right\|^{2}+\varepsilon\right) \leqslant 0
$$

Hence

$$
\lim \sup \left[\left|\left\langle T x_{n}, y_{n}\right\rangle\right|^{2}-\left|\left\langle T x_{n}, x_{n}\right\rangle\right|\left|\left\langle T y_{n}, y_{n}\right\rangle\right|\right] \leqslant 0
$$

A somewhat similar argument [see K.C. Das
S. Majumdar and Brailey Sims (1)] yields the corresponding result for $N_{L}(T)$, from which the result of Das and Craven for ar extreme point of $W(T)^{-}$can be deduced as a corollary.

Corollary 2.15 If $z \in I$ is an extreme point of
W(T) ${ }^{-}$, ther

$$
\operatorname{Iim}\left\langle(\pi-z) m_{n}, \ddot{u}_{n}\right\rangle=0
$$

$a n=3$

$$
\text { Iim }\left\langle\left(n^{*}-\bar{z}\right) x_{n}, \ddot{n}_{n}\right\rangle=0
$$

where $\left(x_{n}\right) \in N_{z}(T)$ and $\left(z_{n}\right) \in I(T)$.

Proof By theorem 2.14, obviously $\left\langle(T-z) x_{n} y_{n}\right\rangle \rightarrow 0$
and since $\left(y_{n}\right) \in N(T)=N_{L}(T)$, lemma 2.5 (i) gives $<(T *-\bar{z}) x_{n} \cdot y_{n}>\rightarrow 0$.

$$
\begin{aligned}
& \text { Theorem } 2.16 \quad \text { Let } b \text { anc o be adjacent extreme } \\
& \text { points of } W(T)^{-} \text {and let } a=t b+(1-t) c, 0 \leq t \leq 1 . \\
& \text { If }\left(x_{n}\right) \in N_{b}(T) \text { and }\left(y_{n}\right) \in N_{a}(1) \text {, then } \\
& \text { Iim } \sup _{n}\left[\left|\left\langle x_{n}, y_{n}\right\rangle\right|-\sqrt{t}\left\|x_{n}\right\|\left\|u_{n}\right\|\right] \leq 0 .
\end{aligned}
$$

Proof Without loss of generality we may take $b=0$, $c=1$ and $W(T)^{-} n L$ on positive real axis.

Let $\lambda_{i n}{ }^{\prime}$ s be complex scalars such that $\left|\lambda_{n}\right|=r$ for all $n$.

$$
\begin{aligned}
& \text { If } x_{n}+\lambda_{n} y_{n}=0 \text { for some } n, \text { we have } \\
& \quad\left|<x_{n}, y_{n}\right\rangle \mid-\sqrt{t}\left\|x_{n}\right\|\left\|y_{n}\right\|=0 .
\end{aligned}
$$

So let us assume that $x_{n}+\lambda_{n} y_{n} \neq 0$ for any $n$. Consider

$$
g_{n}\left(\lambda_{n}\right)=\frac{\left\langle T\left(x_{n}+\lambda_{n} y_{n}\right), x_{n}+\lambda_{n} y_{n}\right\rangle}{\left\|x_{n}+\lambda_{n} y_{n}\right\|^{2}}
$$

Since $\left\langle\mathrm{Tx}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}>\rightarrow 0\right.$ by corollary 2.15 , we have

$$
g_{n}\left(\lambda_{n}\right)-h_{n}\left(\lambda_{n}\right) \rightarrow 0
$$

where

$$
h_{n}\left(\lambda_{n}\right)=\frac{n^{2}(1-t)\left\|y_{n}\right\|^{2}}{\left\|x_{n}+\lambda_{n} y_{n}\right\|^{2}}
$$

Hence, by our assumption, $\lim \sup h_{n}\left(\lambda_{n}\right) \leqslant 1$.

Thus for any $\varepsilon>0$ and large $n$,

$$
n^{2}(1-t)\left\|y_{n}\right\|^{2} \leqslant(1+\varepsilon)\left[\left\|x_{n}\right\|^{2}+n^{2}\left\|y_{n}\right\|^{2}+2 \operatorname{Re}\left(\bar{\lambda}_{n}<x_{n}+y_{n}>\right)\right]
$$

$$
\lambda_{\mathrm{n}} \text { can be so chosen that }
$$

$$
\operatorname{Re}\left(\bar{\lambda}_{n}<x_{n}, y_{n}>\right)= \pm n\left|<x_{n}, y_{n}>\right|
$$

Hence

$$
\operatorname{tr}^{2}\left\|y_{n}\right\|^{2} \pm 2 \eta_{i}\left\langle_{n}, y_{n}>+\left\|_{n}\right\|^{2} \geqslant-\varepsilon\left\|x_{n}+\lambda_{n} y_{n}\right\|^{2} \geqslant-M \varepsilon\right.
$$

where $\sqrt{M}$ is an upper bound for $\left\|x_{n}\right\|+n\left\|y_{n}\right\|$. So

$$
\left|<x_{n}, y_{n}>\right|^{2}-t\left\|x_{n}\right\|^{2}\left\|y_{n}\right\|^{2} \leqslant \operatorname{Met}\left\|y_{n}\right\|^{2} \leqslant \operatorname{Mmte}
$$

where $m$ is an upper bound for $\left\|y_{n}\right\|^{2}$. Hence

$$
\lim \sup \left[\left.\left|<x_{n}, y_{n}\right\rangle\right|^{2}-t\left\|x_{n}\right\|^{2}\left\|y_{n}\right\|^{2}\right] \leqslant 0
$$

It is worth noting that since for each $z \in L$, $a$ line of support for $W(T)$,

$$
N_{L}(T)=\left\{\left(x_{n}\right) \in \delta_{\infty}(H): \epsilon^{i \epsilon}(T-z) x_{n}-e^{-i \theta}(T *-\bar{z}) x_{n} \rightarrow 0\right\}
$$

where $\theta$ is the acute angle between $L$ and the imaginary axis, $\left(T x_{n}\right) \in N_{L}(T)$ if and only if $\left(T{ }^{*} X_{n}\right) \in N_{L}(T)$ for any operator T. Furthermore, if $\left(x_{n}\right)$ is a non-null sequence of $N_{L}(T)$ and $T x_{n}-z x_{n} \rightarrow 0$, then necessarily $z \in L$ and $T *_{n}-\bar{z} X_{n} \rightarrow 0$.

Thus if $\left(x_{n}\right)$ is a bounded sequence of approximate eigenvectors associated with the boundary of $W(T)^{-}$and ( $y_{n}$ ) is a bounded sequence of approximate eigenvectors for some other approximate eigenvalue, then $\left\langle\mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}\right\rangle \rightarrow 0$. This may be compared with the similar results for eigenvalues (see, for example, Embry (1975)).

For convexoid operators, that is, the operators for which $W(T)^{-}$is the convex hull of the spectrum, any extreme point of $W(T)^{-}$is an approximate eigenvalue, and so this will hold for all extreme points of $W(T)^{-}$. Theorem 2.16 shows that $\left\langle x_{n}, y_{n}\right\rangle \rightarrow 0$ whenever $\left(x_{n}\right) \in N_{b}(T),\left(y_{n}\right) \in N_{C}(T)$ where $b$ and $c$ are adjacent extreme points of $W(T)^{-}$.

The following generalization of theorem l.l7 is true for two non-parallel lines of support of $W(T)$.

Theorem 2.17 Let $I_{1}$ and $L_{2}$ De two non-paraliel
Iines of support of $W\left(\begin{array}{rl}(\pi) & I_{1} n_{i} L_{2}=\{c\} \text { and }\end{array}\right.$

$$
\begin{gathered}
N_{j}(I)=\left\{\left(x_{n_{i}}\right) \in i_{\infty}^{0}(H):\left\langle\lim _{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0, \quad z \in I_{i} \cap W(I)-\right\}, \\
j=1, z .
\end{gathered}
$$



Proof Let $\epsilon_{j}$ be the acute angle between $\tau_{j}$ and the imaginary axis.
Let $\left(x_{n}^{(j)}\right) \in N_{j}(T), \quad j=1,2$.
Then since $N_{j}(T)=N_{L_{j}}(T), j=1,2$ and by lemma 2.5 (i),

$$
\begin{gathered}
N_{L_{j}}(T)=\left\{\left(x_{n}\right) \epsilon \hat{c}_{\alpha}(H): \epsilon^{i \epsilon_{j}}(T-c) x_{n}-e^{-i \epsilon_{j}}\left(T^{*}-\bar{c}\right) x_{n} \rightarrow 0\right\}, \\
j=1,2,
\end{gathered}
$$

we have

$$
e^{i \ell^{j}}(T-c) \times \underset{n}{(j)}-e^{-i \epsilon} j(T *-\bar{c}) \times \underset{n}{(j)} \rightarrow 0, j=1,2
$$

A simple manipulation shows that

$$
e^{2 i \theta_{1}}<(T-C) x_{n}^{(2)}, X_{n}^{(2)}>-e^{2 i \theta_{2}}<(T-C) x_{n}^{(1)}, x_{n}^{(2)}>\rightarrow 0 .
$$

Since $L_{1}, L_{2}$ are non-parallel, $e^{2 i \theta_{1}} \neq e^{2 i \theta_{2}}$ and hence

$$
\left\langle(T-C) X_{n}^{(1)}, X_{n}^{(z)}\right\rangle \rightarrow 0 .
$$

In this section we have seen how the orthogonal
tendency of vectors can be derived from Cauchy-Schwartz type inequalities. We have also mentioned that the result of Das and Craven can be deduced as a corollary to a similar inequality for elements of $N_{I}(T)$. This result is based on the case when $z$ is an extreme point of $W(T)^{-}$. The cases when $z$ is a nonextreme boundary point or an interior point of $W(T)^{-}$will be discussed in the next section. Whe contents of the next section have been used in a joint paper by Das, Majumdar and sims (2).

### 2.9 Characterization of $W(T)^{-}$

Theorem 1.11 of Chapter 1 characterizes every point of $W(T)$ as either an extreme point or a nonextreme boundary point or an interior point in terms of the subset $M_{Z}(T)$ and its linear span $\quad \gamma M_{z}(T)$ where

$$
M_{z}(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0\right\}
$$

This theorem, though very interesting, cannot characterize the unattained boundary points of the numerical range.

In this section we attempt to fill this gap by
achieving a generalization of these results which can be applied to every point of $W(T)^{-}$. In section 2.3 we have seen that the corresponding result to theorem l.ll (i) holds for $N_{z}(T)$ when $z$ is an extreme point of $W(T)^{-}$. In section 2.6 we proved the same result from another approach involving Berberian's technique. The cases when $z$ is a nonextreme boundary or an interior point of $W(T)^{-}$are yet tc be considered. We begin by proving the following preliminary lemma.

Lemma 2.18 Let $z$ De in the irterior of a Iine serment Witr endooints a ana $\bar{B}$ in $W(T)^{-}$. Ther the set $\because{ }_{C}^{\prime}(\mathbb{T}) \subset \gamma H_{z}(T)$ where

$$
\tilde{n}_{a}^{\prime}(\mathbb{T})=\left\{\left(x_{n_{i}}\right) \in \ell_{\infty}(B):\left\langle x_{x_{i}}, x_{r_{i}}\right\rangle /\left\|x_{n}\right\|^{2} \rightarrow a\right\}
$$

Proof Let $\left(X_{n}\right) \in \delta_{\infty}(H)$ be such that

$$
\left\langle T x_{n}, x_{n}\right\rangle /\left\|x_{n}\right\|^{2} \rightarrow a
$$

Without loss of generality we may take $a=1, b=0$ and $\left\|x_{n}\right\|=1$.

Let $\left(y_{n}\right) \in N_{0}(T), \quad\left\|y_{n}\right\|=1$.
By separately rotating each $y_{n}$ we may, without loss of generality, assume

$$
\operatorname{Re}\left\langle\operatorname{Im} \mathrm{Tx}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right\rangle=0 .
$$

Let $\quad h_{n}=r_{n} x_{n}+y_{n}, r_{n} \in R$. Then

$$
\left.\left.\left\langle\operatorname{Im} T h_{n}, h_{n}\right\rangle=r_{n}^{2}<\operatorname{Im} I x_{n}, x_{n}\right\rangle+\left\langle\operatorname{ImT} y_{n}, y_{n}\right\rangle+2 r_{n} \operatorname{Re}<\operatorname{Im} T x_{n}, y_{n}\right\rangle \rightarrow 0
$$

with our assumptions.

So $\quad \operatorname{Im}<\mathrm{Th}_{\mathrm{n}}, \mathrm{h}_{\mathrm{n}}>\rightarrow 0$.
For large $n$ and any fixed $z \in(0,1)$, consider the equation

$$
\begin{equation*}
\left\langle\operatorname{Re} T h_{n}, h_{n}\right\rangle-z \mid h_{n} \|^{2}=0 \tag{2.4}
\end{equation*}
$$

We want to show the existence of two $\dot{\text { iistinct }}$ real values of $r_{r}$ such that (2.4) holds. (2.4) is equivalent to

$$
\begin{aligned}
r_{n}^{2}\left(<\operatorname{Re} T x_{n}, x_{n}>-z\right) & +2 r_{n} \operatorname{Re}<(\operatorname{Re} T-z) x_{n}, y_{n}> \\
& \left.+\left(<\operatorname{Re} T y_{n}, y_{n}\right\rangle-z\right)=0 .
\end{aligned}
$$

Let $\varepsilon_{n}=\left\langle\operatorname{Re} T x_{n}, x_{n}\right\rangle-1$ and $\varepsilon_{n}^{\prime}=\left\langle\operatorname{Re} T y_{n}, Y_{n}\right\rangle$. Then $\varepsilon_{n}, \varepsilon_{n}^{\prime}$ both tend to zero as $n \rightarrow \infty$. Hence (2.4) is equivalent to

$$
r_{n}^{2}\left(1-z+\varepsilon_{n}\right)+2 r_{n} \operatorname{Re}<(\operatorname{Re} T-z) x_{n}, Y_{n}>+\left(\varepsilon_{n}^{\prime}-z\right)=0 .
$$

This is of the form

$$
A_{n} r_{n}^{2}+B_{n} r_{n}+C_{n}=0
$$

Now

$$
\begin{aligned}
& B_{n}^{2}-4 A_{n} C_{n} \\
& =4\left[\operatorname{Re}<(\operatorname{Re} T-z) x_{n}, y_{n}>\right]^{2}-4\left(1-z+\varepsilon_{n}\right)\left(\varepsilon_{n}^{\prime}-z\right) \\
& =4\left[\operatorname{Re}<(\operatorname{Re} T-z) x_{n}, y_{n}>\right]^{2}+4 z(1-z)+\varepsilon_{n}\left(\varepsilon_{r_{n}^{\prime}}, \varepsilon_{n}^{\prime}\right)
\end{aligned}
$$

where $\delta_{n}\left(\varepsilon_{n}, \varepsilon_{n}^{\prime}\right)$ is the sum of terms containing $\varepsilon_{n}$ and $\varepsilon_{n}^{\prime}$. Thus since $z$ is a fixed constant in $(0,1), \delta_{n}\left(\varepsilon_{n}, \varepsilon_{n}^{\prime}\right)$ can be made sufficiently small for large $n$ so thã $B_{n}^{2}-4 A_{n} C_{n}>0$.

$$
\text { So there exist two distinct values of } r_{n} \text { say, }
$$

$r_{n}^{(1)},{\underset{n}{(2)}}_{\left(r_{n}\right.}$ such that

$$
r_{n}^{(1)}-r_{n}^{(i)}=\frac{\sqrt{B_{n}^{2}-4 A_{n} C_{n}}}{A_{n}}
$$

But for sufficiently large $n, \frac{\sqrt{B_{n}^{2}-4 A_{n} C_{n}}}{A_{n}}$ is uniformly bounded away from zero. So we have ${ }^{n}$

$$
\left(r_{n}^{(I)} x_{n}+y_{n}\right) \in N_{z}(T)
$$

anc

$$
\left(r_{n}^{(2)} x_{n}+y_{n}\right) \in N_{z}(T)
$$

that is,

$$
\left(\left(r_{n}^{(2)}-\underset{n}{(2)}\right) x_{n}\right) \in N_{z}(T)+N_{z}(T)=\gamma N_{z}(T),
$$

or, $\left(X_{n}\right) \in \gamma N_{z}(T)$ since $\underset{n}{(1)}-r_{n}^{(2)}$ is uniformly bounded away from zero.

Remark The above lemma shows an easy way to prove the convexity of $W(T)$ (theorem l.2) as follows.

Let $z$ lie in the interior of a line segment with enapoints $\bar{a}, b \in W(T)$. Let $\langle T x, x\rangle=a,\langle T y, y\rangle=b$, $\|x\|=\|y\|=1$. We want to show there exists an $h \in H$ such that $\langle\operatorname{Th}, h\rangle /\|h\|^{2}=z$.

Without loss of generality we may take $a=1, b=0$, $z \in(0,1)$ and $R e\langle I m T x, y\rangle=0$.

$$
\text { Since } a=1, b=0, x \text { and } y \text { are linearly inde- }
$$

pendent. Let $h=x+r y, r \in R$.
Thus $\|h\| \neq 0$ and

$$
\begin{aligned}
\langle\operatorname{Im} \mathrm{Th}, \mathrm{~h}\rangle & =\langle\operatorname{Im} \mathrm{Tx}, \mathrm{x}\rangle+\mathrm{r}^{2}\langle\operatorname{Im} \mathrm{Ty}, \mathrm{y}\rangle+2 \mathrm{r} \operatorname{Re}\langle\operatorname{Im} \mathrm{Tx}, \mathrm{y}\rangle \\
& =0 \text { with our assumptions. }
\end{aligned}
$$

Thus

$$
\frac{\langle T h, h\rangle}{\|h\|^{2}}=\frac{\langle\operatorname{ReTh}, \mathrm{h}\rangle}{\|h\|^{2}}
$$

Consider the equation

or
$\frac{\langle\operatorname{Re} T x, x\rangle+r^{2}\langle\operatorname{Re} T y, y\rangle+2 r \operatorname{Re}\langle\operatorname{Re} T x, y\rangle}{l+r^{2}+2 r \operatorname{Re}\langle x, Y\rangle}=z$,
on,

$$
r^{2} z+2 r \operatorname{Re}\langle(z I-\operatorname{Re} T) x, y\rangle+z-l=0
$$

Now since

$$
[\operatorname{Re}\langle(z I-\operatorname{Re} T) x, y\rangle]^{2}-z(z-I)>0,
$$

there exist two distinct values of $r$ which satisfy equation (2.5) and thus prove the existence of $h$ as required. Note that in contrast with the proof of convexity given by Halmos (1967), this method gives two values of r explicitly.

Now we are ready to prove the main theorem of this section.

Theorem 2.19 Every element $z$ of $W(T)^{-}$can be characterizeà as follows.
i) $z \quad i s$ an exireme point of $\bar{W}(T)^{-}$if and oniy if $N_{z}(T)$ is a subspace.
ii) If $z$ is a ronextreme bounaxry point of $W(T)^{-}$and $I$ the iine of support for W'T ' passing through $z$, ther
a) $\quad \gamma_{z}(T)=I(T)+N_{z}(T)$.
b) $T_{-}(T)=\delta_{\infty}(\tilde{H})$ if anc oniz if $W(T)^{-} \subset L$.
iiif If $n(T)^{-}$is not a siraight inne sement, then $z$ is
ar inemior point of $W()^{-} \quad i \because$ ana oniy if
$I^{\prime}(I) \subset \gamma H z_{z}^{(I)}$ where
$N^{\prime}(T)=\left\{\left(x_{r_{i}}\right) \in l_{\infty}(H):\left\langle T n_{n_{i}}, x_{n_{i}}\right\rangle /\left\|\tilde{x}_{n}\right\|^{2} \rightarrow a, a \in W(T)^{-}\right\}$.

Proof i) Already proved in section 2.6 .
ii) (a) We first show that $N_{a}(T) \subset \gamma N_{z}(T)$ whenever $a \in W(T)^{-} \cap L$.

Without loss of generality we may take $L$ as the real axis and $\operatorname{Im} W(T) \geqslant 0$.
$\operatorname{Let}\left(x_{n}\right) \in N_{a}(T)$ and $\left(y_{n}\right) \in \mathbb{N}_{b}(T), \quad\left\|y_{r_{1}}\right\|=1$. By multiplying $\left(y_{n}\right)$ with $\alpha_{n},\left|\alpha_{n}\right|=l$, if necessary, we may take $\operatorname{Re}\left\langle y_{n}, x_{n}>=0\right.$.

Thus corollary 2.10 gives

$$
\operatorname{Re}\left\langle\mathrm{T}_{Y_{n}}, X_{r_{1}}\right\rangle \rightarrow 0 .
$$

For each choice let table

$$
I_{n}= \pm \sqrt{\frac{a-z}{z-b}}\left\|x_{n}\right\|
$$

Since $I m<T y_{n}, Y_{n}>\rightarrow 0$ and $\operatorname{Im} W(T) \geqslant 0$, we have $T y_{n}-T^{*} y_{n} \rightarrow 0$ and thus

$$
\left\langle\operatorname{Tx}_{n}, Y_{n}\right\rangle+\left\langle\mathrm{T}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}}\right\rangle-2 \mathrm{Re}\left\langle\mathrm{~T}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}}\right\rangle \rightarrow 0 .
$$

Hence

$$
\begin{aligned}
& \left\langle T\left(x_{n}+r_{n} y_{n}\right), x_{n}+r_{n} y_{n}>-z\left\|x_{n}+r_{n} y_{n}\right\|^{2}\right. \\
& -\left[\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2}+r_{n}^{2}<T y_{n}, y_{n}>-z r_{n}^{2}\right] \rightarrow 0
\end{aligned}
$$

so that we have

$$
\left\langle T\left(x_{n}+r_{n} y_{n}\right), x_{n}+r_{n} y_{n}\right\rangle-z\left\|x_{n}+r_{n} y_{n}\right\|^{2} \rightarrow 0
$$

with the chosen values of $r_{n}$. This shows

$$
\left(x_{n} \pm \sqrt{\frac{a-z}{z-b}}\left\|x_{n}\right\| y_{n}\right) \in N_{z}(T)
$$

or,

$$
\left(x_{n}\right) \in \gamma N_{z}(T)
$$

Thus $N_{a}(T) \subset \gamma N_{z}(T)$ for all a $\in L \cap W(T)^{-}$, that is,
$N(T) \subset \gamma N_{z}(T)$. So we have

$$
N_{z}(T) \subset N(T)=\gamma N_{z}(T)
$$

or,

$$
\gamma N_{z}(T)=N_{z}(T)+N_{z}(T) \subset N(T)+N_{z}(T) \subset \gamma N_{z}(T)+N_{z}(T)
$$

which gives

$$
N(T)+N_{z}(T)=Y N_{z}(T)
$$

since

$$
N_{z}(T) \subset M_{z}(T)
$$

(b) Without loss of generality we may take

I as the imaginary axis. So

$$
N_{L}\left(T^{\prime}\right)=\left\{\left(X_{n}\right) \leqslant \ell_{\infty}(H): \operatorname{Re}\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0\right\}
$$

Now if $W(T)^{-} \subset I$,

$$
\left.\left(x_{n}\right) \in \ell_{\infty}(H) \text { implies Re<Tx} n_{n}, x_{n}\right\rangle /\left\|x_{n}\right\|^{2}=0
$$

for all nonzero $x_{n}$.

Also if $x_{n}=0$ for some $n,\left\langle T x_{n}, x_{n}\right\rangle=0$.
Thus $\left(x_{n}\right) \in N_{L}(T)$,
that is, $N_{L}(T)=i_{\infty}(H)$.
Again if $W(T)^{-} \& I$, there exists $\left(x_{n}\right) \in \ell_{\infty}(H),\left\|x_{n}\right\|=1$,
such that $R e<T x_{n}, x_{n}>0$,
or, equivalentiv, $\left(x_{n}\right) \& N_{L}(T)$.
Hence $N_{L}(T)=i_{\infty}(H)$.

```
iii) If }z\mathrm{ is an interior point of W(T)', by
```

lemma 2.18,

$$
\begin{aligned}
N^{\prime}(T)=\left\{\left(x_{n}\right)=i_{\infty}(H)\right. & :\left\langle T x_{n}, x_{n},\left\langle x_{n} \|^{2} \rightarrow a, a \in W(T)\right\}\right. \\
& \subset \gamma N_{z}(T) .
\end{aligned}
$$

On the other hand, if $z$ is a boundary point of
$W(T)^{-}$, then $\gamma N_{z}(T) \subset N_{L}(T)$ since $N_{I}(T)$ is a suispace. But $N^{\prime}(\mathbb{T})$ is not a subset of $\mathbb{N}_{I^{\prime}}(\mathbb{T})$ as $W(\mathbb{T})^{-}$द I. Thus $N^{\prime}(\mathbb{T})$ is not contained in $\gamma N_{z}(T)$.

In this chapter we defined the subsets $N_{z}(T)$ and $\gamma N_{z}(T)$; and the subsets $N(T)$ and $N_{L}(T)$ (for a line of support $L$ of $W(T)$ ) associated with points of $W(T)^{-}$. We saw that though $N_{L}(T)$ and $\gamma N_{z}(T)$ are subspaces, $N_{z}(T)$ is so if and only if $z$ is an extreme point of $W(T)^{-}$. Linearity of $N(T)$ we were unable to prove.

Then we gave a characterization of $W(T)^{-}$in terms of these subsets and developed a modification of a useful technique given by Berberian, which enabled us not only to prove the linearity of $N_{Z}(T)$ when $z$ is an extreme point of $W(T)^{-}$, but also to achieve generalizations of Cauchy-Schwartz type inequalities given by Embry (1975). The use of limit supremum and limit infimum helped us to sharpen these inequalities for the elements of $N(T)$. Many corollaries follow from these two versions of these inequalities, for example, the existence of limits of certain sequences of vectors and the orthogonal tendency of vectors from $N_{z}(T)$ anà $N_{I}(T)$.

Our next chapter will be on the numerical range of different operators. We Eirst aiscuss various results that hold for points of the numerical rance and then extend these results to points of $W(T)^{-}$. These extensions cover a part of the paper by Das, Majumāar and Sims (1).

## Chapter 3

## RESULTS ON NUMERICAL RANGE <br> OF SPECIAL OPERATORS

### 3.1 Introduction

In this chapter we obtain various results for normal, seminormal, convexoid and other particular types of operators in terms of their numerical range.

Embry (1971) has shown that it is possible to classify some of these special operators by means of subsets associated with their numerical range. We have seen the definitions of these subsets in Chapter 1 . In section 3.2 we give these theorems of Embry and then extend the results to points of the closure of the numerical range. For this we use subsets associated with the closure of the numerical range as definea in Chapter 2.

In section 3.3, as given by Stampfil (1966) and de Barra (1981), we see that if the sets associated with the numerical range are subspaces then possibly subject to some additional conditions, they are reducing for the operator. For example, in one of the theorems we need the operator to be seminormal. We also prove a theorem generalizing Lin (1975) to obtain some necessary and sufficient conditions for an extreme point of the closure of the numerical range of a convexoid operator to be an eigenvalue.

All the results in section 3.3 are then extended in section 3.4 to cover the case of unattained boundary points of $W(T)$. Berberian's technique of Chapter 2 is again used to give a simple proof for one of these results. The same technique is used again to provide an alternative proof of the known result that a seminormal operator is convexoid.
3.2 Classification of Operators by $M_{z}(T)$ and $N_{z}(T)$

In Chapter 1 we have defined various subsets associated with different points of the numerical range. In Chapter 2, following a similar line we have defined subsets associated with different points of the closure of the numerical range and noticed that properties of these two types of subsets are very similar. It seems natural to ask whether these subsets behave in a particular Eashion if the operator $T$ has special characteristics or vice-versa. In this section, as shown by Embry (1971), we prove that in many cases the type of operator and behaviour of $M_{z}(T)$ are related. We then extend these results for elements of $\mathrm{N}_{\mathrm{Z}}(\mathrm{T})$.

We begin with the following definitions.

Definition 3.1 The operator $T$ is normat if TT* $=T * T$ and hyponormal if $T^{*} T-T T^{*}$ is positive. $T$ is seminormal if either $T$ or $T^{*}$ is hyponormal. Also following Embry, $T$ is called an isometry if $T * T=I$ and unitary if $T * T=T T *=I$.

Let ker $T$ denote the kernel or null space of $T$. The results and proofs of this section are essentially due to Embry (1971).

## Lemma 3.2 If $f, g, h$ and $k$ are bilinear functionals

 on $H$, then the conaition$$
\begin{equation*}
f(x, x) g(x, x)=h(x, x) k(x, x) \text { for all } x \in H \tag{3.1}
\end{equation*}
$$

is equivalent to

$$
f(x, y) g(x, y)=h(x, y) \bar{k}(x, y) \text { for ali } x \text { and } y \text { in } H . \ldots(3.2)
$$

Proof (outline) Let $x, y \in H$ and $\lambda$ be an arbitrary complex scalar. Substitute $x+\lambda y$ for $x$ in equation (3.1) and equate coefficients of $\bar{\lambda}^{2}$ to obtain equation (3.2). The converse is obvious.

Theorem $3.3 \quad T$ is a scalar multipie of an isometry if and only if for each complew $\approx$,

$$
\left\{T x: x \in M_{z}(T)\right\} \subset M_{z}(T)
$$

proof Equivalently we need prove that for all $x \in H$,

$$
\begin{equation*}
\left\langle\mathrm{T}^{2} \mathrm{x}, \mathrm{Tx}\right\rangle\|\mathrm{x}\|^{2}=\langle\mathrm{Tx}, \mathrm{x}\rangle\|\mathrm{Tx}\|^{2} \tag{3.3}
\end{equation*}
$$

whenever $T$ is a scalar multiple of an isometry and vice-versa.

Suppose equation (3.3) is true for all $x \in H$. Thus by lemma 3.2,

$$
\left\langle T^{2} x, T y\right\rangle\langle x, y\rangle=\langle T x, y\rangle\langle T x, T y\rangle \text { for all } x, y \in H
$$

...(3.4)

Thus

$$
\{x\}^{\perp} \subset\{T x\}^{\perp} \cup\{T * T x\}^{\perp}
$$

and interchanging $x$ and $y$ in (3.4), we have

$$
\{x\}^{\perp} \subset\{T * x\}^{\perp} \cup\{T * T x\}^{\perp}
$$

Since $\{y\}^{\perp}$ is a subspace, we get

$$
\{x\}^{\perp} \subset\{T * T x\}^{\perp} \text { or }\{x\}^{\perp} \subset\{T x\}^{\perp} n\{T * x\}^{\perp} .
$$

Both cases show the existence of a scalar $r_{x}$ such that

$$
T * T x=r_{x} x
$$

It now follows by standard arguments that $T$ is a scalar multiple of an isometry (see, for example, the proof of lemma 3. 6 where a similar argument is detailed). The converse is obviously true.

Theorem 3.4 $T^{*}$ is a scalar multiple of an isometry if and only if for each complex $z$,

$$
\left\{T^{*} x: x \in W_{z}(T)\right\} \subset W_{z}(T)
$$

Proof Follows from applying theorem 3.3 to $T^{*}$ and noting that

$$
M_{Z}\left(T^{*}\right)=M_{Z}(T) \text { for each complex } z
$$

Theorem $3.5 \quad I$ is a nonzero scalar multiple of a unitary operator if ana only if for each complex $z$,

$$
\left\{T x: x \in N_{z}(T)\right\}=N_{z}(T)
$$

Proof Combine theorems 3.3 and 3.4 to give $T$ is a scalar multiple of a unitary operator if and only if for each complex $z$ both

$$
\left\{T \mathrm{~T}: \mathrm{x} \in \mathrm{M}_{z}(T)\right\} \subset M_{z}(T)
$$

and

$$
\left\{T * X: x \in M_{z}(T)\right\} \subset M_{z}(T)
$$

Thus if $T$ is nonzero, this is equivalent to

$$
\left\{T x: x \in M_{z}(T)\right\} \subset M_{z}(T) \subset\left\{T x: x \in M_{z}(T)\right\}
$$

proving the result.

For the next theorem, the following lemma is required.

Lemma 3.6 If $T$ and $A$ are operators on $H$ such that

```
ker T \subset ker A
```

and for each $x \in H$ either
i) $\|s x\|=\|A x\|$, or
ii) there exists a real number ${ }^{r}{ }_{x}$ such that

$$
T^{*} T x=r_{x} A^{*} A x,
$$

then $T * T$ is a scalar muitipie of $A^{*} A$.
Proof For $x, y \in H$, let $z=t x+(I-t) y$ where
$0<t<l$.
$\quad$ Suppose $A * A x$ and $A * A y$ are linearly independent
and condition (ii) holds, that is, there exist real numbers $r_{x}$
and $r_{y}$ such that

$$
T * T x=r_{x} A * A x, \quad T * T y=r_{y} A * A y
$$

Hence either there exists a real number $r_{z}$ such that

$$
T^{*} T z=r_{z} A^{*} A z \text { or }\|T z\|=\|A z\|
$$

But if $T * T z=r_{z} A^{*} A z$,
since $0<t<1$, linear independence of $A * A x$ and $A * A y$ gives

$$
r_{x}=r_{y}=r_{z} .
$$

Now suppose $r_{x} \neq r_{y}$, then we must have $\|\mathrm{Tz}\|=\|A z\|$ where $z=t x+(1-t) y, \quad 0<t<1$.

Letting $t$ approach 1 and 0 , we have

$$
\|T \mathrm{x}\|=\|A \mathrm{x}\| \quad \text { and } \quad\|\mathrm{Ty}\|=\|A y\|
$$

Since $A * A x$ and $A^{*} A y$ are nonzero, this gives

$$
r_{x}=r_{y}=1 .
$$

Thus in all cases if $A * A x$ and $A * A y$ are linearly independent, we have

$$
r_{x}=r_{y}=r \quad(\text { say })
$$

Now suppose $A^{*} A z$ and $A^{*} A y$ are linearly dependent and $T * T x=r_{x} A * A x$ and $T * T y=r_{y} A^{*} A y$. In this case, since ker $T \subset$ ker $A$, we can choose $r_{x}=r_{y}=r$.

So for all $x \in H$, we have
either

$$
\|T x\|=\|A x\| \quad \text { or } \quad T^{*} T x=r A^{*} A x
$$

This gives

$$
\begin{array}{r}
\|T x\| \leqslant\|A x\| \text { for all } x \in H, \text { or, }\|T x\| \geqslant\|A x\| \\
\qquad \text { for all } x \in H .
\end{array}
$$

In either case the set

$$
\{x \in H:\|T x\|=\|A x\|\}
$$

is linear by theorem 1.11 (i) and so

$$
H=\left\{x \in H: T^{*} T x=r A^{*} A x\right\} \cup\{x \in H:\|T x\|=\|A x\|\}
$$

which shows either $T * T=r A * A$ or $T * T=A * A$.

Theorem 3.7 $T$ is normal if and on it if for each complex $z$,

$$
\left\{x: T x \in M_{z}(T)\right\}=\left\{x: T^{*} x \in N_{z}(T)\right\}
$$

```
Proof Suppose the above two sets are equal, then
```

$$
\begin{equation*}
\left\langle T^{2} \mathrm{x}, \mathrm{Tx}\right\rangle\left\|\mathrm{T}^{*} \mathrm{x}\right\|^{2}=\left\langle\mathrm{T}^{*} \mathrm{X}, \mathrm{~T} \mathrm{X}\right\rangle\|\mathrm{T}\|^{2} . \tag{3.5}
\end{equation*}
$$

Also we note that the following are equivalent:
i) $T x=0$,
ii) $T x \in M_{z}(T)$ for all complex $z$,
iii) $T * x \in M_{z}(T)$ for all complex $z$,
iv) $T^{*} X=0$,
and hence ker $T=$ ker $T^{*}$.

Using the same techniques as in theorem 3.3, we can show that if $x \in H$,
either there exists $b \in R$ such that $T T * x=b T * T x$, or there exist $c, d \in R$ such that

$$
T T^{*} x=C T T^{*} x \text { and } T * T^{2} x=d T * T x
$$

These last two equations together with (3.5) and (3.6) give either

$$
\begin{equation*}
T x=T^{*} X=0 \tag{3.7}
\end{equation*}
$$

or

$$
c=\mathrm{a} .
$$

They also imply that

$$
T^{* 2} x=C T^{*} X \text { and } T^{2} x=d T x
$$

Now (3.6) gives

$$
T T^{*} x=c T x \text { and } T * T x=d T^{*} x
$$

Thus if (3.7) does not hold we have

$$
\left\|T^{*} x\right\|^{2}=c\langle T x, x\rangle=\bar{a}\langle x, T * x\rangle=\|T x\|^{2} .
$$

Hence we see that both $T$ and $T *$ satisfy the conditions of lemma 3.6 and thus there exists a real number $r$ such that

```
TT* = rT**.
```

Thus $r= \pm 1$.
But if $r=-1$, choosing an $x \in$ ker $T$ we arrive at the contradiction

$$
\|T x\|^{2}=\left\|T^{*} x\right\|^{2}=0
$$

Hence $r=I$ and so $T$ is normal.

## Corollary 3.8 Let $T$ be an invertible operator on

H. Then the following are equivalent:

$$
\begin{aligned}
& \text { i) } T \text { is normal; } \\
& \text { ii) }\left\{T^{-1} x: x \in M_{z}(T)\right\}=\left\{T^{*-1} x: x \in H_{z}(T)\right\} \text { for each } \\
& \\
& \text { complex } z ; \\
& \text { iii) }\left\{T^{-1} x: x \in M_{z}\left(T^{*} T^{-1}\right)\right\}=\left\{T^{*^{-1}} x: x \in M_{z}\left(T^{*} T^{-1}\right)\right\} \text { for }
\end{aligned}
$$ each complen 2.

Proof If $T$ is invertible, theorem 3.7 shows the equivalence of (i) and (ii). Again, application of theorem 3.5 to the operator $T^{*} T^{-1}$ gives the equivalence of (i) and (iii).

If we look upon $H$ as embedded in $l_{\infty}(H)$ with the correspondence $x \rightarrow(x, x, \ldots)$, then it is obvious that

$$
\left\{\left(T x_{n}\right):\left(x_{n}\right) \in N_{z}(T)\right\} \subset N_{z}(T)
$$

implies

$$
\left\{T x: x \in M_{z}(T)\right\} \subset M_{z}(T)
$$

for all complex numbers of $z$.

This enables us to generalize all the above results as follows.

Theorem $3.9 \quad T$ is a scalar multiple of an isometry if and only if for each complex $z$,

$$
\left\{\left(T x_{n_{1}}\right):\left(x_{n}\right) \in N_{z}(T)\right\} \subset N_{z}(T)
$$

Theorem $3.10 \quad T^{*}$ is a scaiar muitiple of ar isometry if and only if for each complex $z$,

$$
\left\{\left(T^{*} x_{n}\right):\left(x_{n}\right) \in N_{z}(T)\right\} \subset N_{z}(T) .
$$

Theorem 3.11 $T$ is a nonzero scalar multiple of a unitary operator if and onily if for each complex $z$,

$$
\left\{\left(T x_{n_{r}}\right):\left(x_{n}\right) \in N_{z}^{\prime}(\mathbb{T})\right\}=N_{z}(T)
$$

Theorem $3.12 \quad T$ is normal if and only if for each complex $z$,

$$
\begin{aligned}
& \left\{\left(x_{n}\right) \in l_{\infty}(H):\left(T x_{n}\right) \in N_{z}(T)\right\} \\
& =\left\{\left(x_{n}\right) \in l_{\infty}(H):\left(T^{*} x_{n}\right) \in N_{z}(T)\right\}
\end{aligned}
$$

Corollary 3.13 Let $T$ be an invertible operator.
Then the following are equivalent:
i) $T$ is normal;
ii) $\left\{\left(T^{-1} x_{n}\right):\left(x_{n}\right) \in N_{z}(T)\right\}=\left\{\left(T^{*-1} x_{n}\right):\left(x_{n}\right) \in N_{z}(T)\right\}$ for each complex $z$;
iii) $\left\{\left(T^{-1} x_{n}\right):\left(x_{n}\right) \in N_{z}\left(T^{*} * T^{-1}\right)\right\}=\left\{\left(T^{*-1} x_{n}\right):\left(x_{n}\right) \in N_{z}\left(T^{*} T^{-1}\right)\right\}$
for each complex $z$.

The proof for each of the above 'if and only if' theorems consists of easy verification for one side and use of the corresponding theorem of Embry for the converse.

### 3.3 Results on Attained Points of $\partial W(T)$ for Special Operators

In this section we deal with results on the attained boundary points of the numerical range for convexoid and seminormal operators. As proved by Lin (1975), we obtain some necessary and sufficient conditions for an extreme point of the numerical range of a convexoid operator to belong to the point spectrum. In the next section this result will be extended to unattained boundary points of $W(T)$.

Stampfli (1966) has shown that if $T$ is hyponormal and $z$ is an extreme point of $W(T)$, then $M_{z}(T)$ is a reducing subspace of $T$. de Barra (1981) has shown that for such $T, M(T)$ is a reducing subspace and $\left.T\right|_{M(T)}$ is normal. We first give these theorems for seminormal operators borrowing proofs from Stampfli and using a modification of the proof given by de Barra. We then show in the next section that similar properties hold for $N_{z}(T)$ (with $z$ an extreme point of $\left.W(T)^{-}\right)$and $N_{L}(T)$.

First we recall some definitions.

Definition 3.14 If $z \in \partial W(T)$ and $z_{0}$ is the centre of a closed disc $D$ such that $z \in \partial D$ and $\partial W(T) \cap D=\{z\}$, then $z_{\text {。 }}$ is said to be an outer centre point with respect to z. (In general take $\left.Z_{o} \quad W(T)\right)$.

Definition 3.15 If $z \in \partial W(T)$ and there exists a closed disc $D$ such that $z \in \partial D$ and $W(T)^{-} \subset D$, then $z$ is said to be a Bare point of $W(T)^{-}$.

Definition 3.16 If $~ z$ is a bare point of $W(T)^{-}$and $z$ 。 is the centre of a closed disc $D$ such that $z \in \partial D$ and $W(T) \subset D$, then $Z_{0}$ is said to be an inner eentre point with respect to $z$.

Definition 3.17 The numerical radius of the operator
$T$ is defined by

$$
w(T)=\sup _{\lambda \in W(T)}|\lambda|
$$

and the spectral raaius by

$$
r(T)=\sup _{\lambda \in \sigma(T)}|\lambda|
$$

where $\sigma(T)$ is the spectrum of $T$.

Let $d\left(z_{0, W}(T)\right)$ denote the distance of $z_{0}$ from $W(T) ; E(T)$ and $B(T)$ respectively the sets of extreme and bare points of $W(T)^{-}$and $\sigma_{p}(T)$ and $\sigma_{a p}(T)$ respectively the point and approximate point spectra of $T$.

Theorem 3.18 Let $T$ be a convexoid operator and $z$ an extreme point of $W(T)^{-}$sucn that $z=\langle T x, x\rangle, \quad\|x\|=1$. Let $z_{0}$ be an outer centre point with respect to z. Then the following are equivalent:

$$
\begin{aligned}
& \text { i) } \quad T x=z x \\
& \text { ii) }\|T x-z a x\|^{-1}=r\left(\left(T-z_{0}\right)^{-1}\right) ; \\
& \text { iii) }\|T x-z\|_{0}\left\|^{-1}=\right\|\left(T-z_{0}\right)^{-1} \|
\end{aligned}
$$

Proof Since $T$ is convexoid, $E(T) c \sigma(T)$. Thus
$z \in \sigma(T) \cap \partial W(T)$.
Also since

$$
\begin{aligned}
\left\|\left(T-z_{0}\right)^{-1}\right\| & \leqslant\left[d\left(z_{0}, W(T)\right)\right]^{-1}=\left[d\left(z_{0}, \sigma(T)\right)\right]^{-1} \\
& =r\left(\left(T-z_{0}\right)^{-1}\right) \leqslant\left\|\left(T-z_{0}\right)^{-1}\right\|
\end{aligned}
$$

we have

$$
r\left(\left(T-z_{0}\right)^{-1}\right)=\left\|\left(T-z_{0}\right)^{-1}\right\|=\left[d\left(z_{0}, W(T)\right)\right]^{-1}
$$

Thus
(i) implies (ii) since

$$
\left\|\left(T-z_{0}\right) x\right\|^{-1}=\left|z-z_{0}\right|^{-1}=\left[d\left(z_{0}, W(T)\right)\right]^{-1}=r\left(\left(T-z_{0}\right)^{-1}\right)
$$

(ii) implies (iii) since

$$
r\left(\left(T-z_{0}\right)^{-1}\right)=\left\|\left(T-z_{0}\right)^{-1}\right\|
$$

and (iii) implies (i) for

$$
\left\|T x-z_{0} x\right\|=d\left(z_{0}, W(T)\right)=\left|z-z_{0}\right|=\left|\left\langle\left(T-z_{0}\right) x, x\right\rangle\right|
$$

and hence by the condition for equality in Cauchy Schwartz, $\left(T-z_{0}\right) x=\lambda x$ for some complex $\lambda$. Since $\langle T x, x\rangle=z$, this gives $T x=z x$.

If $z=\langle T x, x\rangle \in \partial W(T), \quad\|x\|=1$, by lemma 1.9 (i),
$T x=z x$ if and only if $T * x=\bar{z} x$. The following corollary given by Lin can be easily verified from this fact and the proof of the above theorem.

## Corollary 3.19 For any operator $T$,

1) If $\langle T x, x\rangle=z \in \partial W(T),\|x\|=I$ and $z_{0}$ is an outer centre point with respect to $z$, then the following are equivalent:
i) $\left\|T x-z a^{x}\right\|=d\left(z_{0}, W(T)\right)$;
ii) $T x=z x$;
iii) $T^{*} x=\bar{z} x$
and
2) If $\langle T x, x\rangle=z \in B(T),\|x\|=1$ and $z_{0}$ is an inner centre point with respect to 2 , then the following are equivalent:

$$
\begin{aligned}
& \text { i) }\left\|T x-z_{0} x\right\|=w\left(T-z_{0}\right) \text {; } \\
& \text { ii) } T x=z x ; \\
& \text { iii) } \quad T^{*} x=\bar{z} x .
\end{aligned}
$$

The next theorem gives conditions for $M(T)$ to be a reducing subspace for $T$ and for the restriction of $T$ to $M(T)$ to be normal.

> Theorem 3.20 Let $T$ be a seminormal operator and $M(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0, \quad z \in L \cap W(T)\right\}$ where $L$ is a line of support for $W(T)$. Then $M(T)$ is a reducing subspace for $T$ and $\left.T\right|_{M(T)}$ is normat.

Proof By lemma 1.9 (ii), $M(T)$ is a subspace. For any $z \in L$, by carrying out the standard reduction $T \rightarrow e^{i e}(T-z I)$, without loss of generality we may assume that $L$ is the imaginary axis and $\operatorname{Re} W(T) \geqslant 0$.

```
Thus as in lemma l.9 (i),
```

$$
M(T)=\left\{X \in H: T X+T^{*} X=0\right\}
$$

Hence

$$
\left\langle T^{*} T X-T T^{*} x, X\right\rangle=0
$$

Thus by lemma 1.8 ,

```
T*Tx = TT*X as T*T - TT* \leqslant 0 or \geqslant0.
```

Now

$$
\left(T+T^{*}\right) T x=T^{2} x+T * T x=T^{2} x+T T^{*} X=T\left(T X+T^{*} x\right)=0
$$

Similarly

$$
\left(T+T^{*}\right) T^{*} X=0
$$

Hence $M(T)$ is reducing and since $T * T x=T T * x$ for all $x$ in $M(T)$, we have $\left.T\right|_{M(T)}$ is normal.

The following theorem proves the reducing property of $M_{z}(T)$ with $z$ an extreme point of $W(T)$ and $T$ seminormal.

Theorem 3.21 Let $T$ De seminormal and $a$ be ar
extreme point of $W(T)$.
Let $\quad M_{z}(T)=\left\{x \in H:\left\langle T_{x}, x\right\rangle-z\|x\|^{2}=0\right\}$.
Then $N_{z}(T)$ is a reducing subspace of $T$.

Proof Without loss of generality we may assume $z=0$ and $\operatorname{Re} W(T) \geqslant 0$.
$M_{0}(T)$ is a subspace by theorem $1 . l l$ (i) and $M_{0}(T) \subset M(T)$. But $T$ is normal on $M(T)$ and therefore since Re $W(T) \geqslant 0$, the condition

$$
\langle T x, x\rangle=0 \text { implies that } T x=0
$$

Hence obviously $M_{\circ}(T)$ is reducing for $T$.

In the next section we shall use Berberian's technique to achieve a generalization of theorem 3.2l. We shall also generalize by direct calculations the other two theorems in this section. Note that since a seminormal operator is convexoid, theorem 3.18 is valid for seminormal operators. Using Berberian's technique an alternative proof of this known result, that a seminormal operator is convexoid, will also be given.
3.4 Generalized Results on $\partial W(T)$ for Special Operators

The following theorems deal with sequences of vectors from $H$ rather than $H$ itself and thus the results are in terms of limits.

Theorem 3.22 Let $T$ be a convexoid operator and $z$ an extreme point of $W(T)^{-}$. Let ( $n_{n}$ ) De a sequence of unit vectors sunh that $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow z$. Let $z_{0}$ be an outer centre point with respect to $z$. Then the following are equivalent:
i) $\operatorname{Lim}\left\|T x_{n}-z x_{n}\right\|=0$;
ii) $\lim \left\|T x_{n}-z a_{n}\right\|^{-1}=r\left((T-z o)^{-1}\right)$;
iii) $\quad \operatorname{im}\left\|T x_{n}-z o_{n_{n}}\right\|^{-1}=\left\|\left(I-z_{0}\right)^{-I}\right\|$.

Proof Similar to the proof of theorem 3.18. Only note that in (i) $\Rightarrow$ (ii) we use the fact that if $\left\|T x_{n}-z x_{n}\right\| \rightarrow 0$, then $\left\|T x_{n}-z_{0} x_{n}\right\| \rightarrow\left|z-z_{0}\right|$.

This is so because

$$
\begin{array}{r}
\left\|T x_{n}-z_{0} x_{n}\right\|^{2}=\left\|(T-z) x_{n}+\left(z-z_{0}\right) x_{n}\right\|^{2} \\
\quad \rightarrow\left|z-z_{0}\right|^{2} \text { since }(T-z) x_{n} \rightarrow 0
\end{array}
$$

and hence

$$
\left(\left\|\left(T-z_{0}\right) x_{n}\right\|+\left|z-z_{0}\right|\right)\left(\left\|\left(T-z_{0}\right) x_{n}\right\|-\left|z-z_{0}\right|\right) \rightarrow 0,
$$

that is,

$$
\left\|T x_{n}-z_{0} x_{n}\right\| \rightarrow\left|z-z_{0}\right|
$$

as $\left\|\left(T-z_{0}\right) x_{n}\right\|+\left|z-z_{0}\right|$ is bounded away from zero.

$$
\text { Also in }(i i i) \Rightarrow \text { (i) }
$$

$$
\left\|T x_{n}-z x_{n}\right\|^{2}=\left\|\left(T-z_{0}\right) x_{n}-\left(z-z_{0}\right) x_{n}\right\|^{2}
$$

$$
=\left\|\left(T-z_{0}\right) x_{n}\right\|^{2}+\left|z-z_{0}\right|^{2}-2 \operatorname{Re}\left(\left(\overline{z-z_{0}}\right)<\left(T-z_{0}\right) x_{n}, x_{n}>\right) \rightarrow 0
$$

as $\left\|\left(T-z_{0}\right) x_{n}\right\| \rightarrow\left|z-z_{0}\right| \cdot$

Thus we get

$$
\left\|T x_{n}-z x_{n}\right\| \rightarrow 0
$$

The following corollary is readily verified from the proof above and lemma 2.5 (i).

Corollary 3.23 Let $T$ be an arbitrary operator.

1) If $\left(x_{n}\right)$ is a sequence of unit vectors such that
$\left\langle T x_{n}, x_{n}\right\rangle \rightarrow z \in \delta W(T)$ and $z_{0}$ is an outer centre point
with respect to $z$, then the following are equivalent:
i) $\left\|\left(T-z_{0}\right) x_{n}\right\| \rightarrow \bar{a}\left(z_{0}, W(T)\right) ;$
ii) $T x_{n}-z x_{n} \rightarrow 0$;
iiii) ${ }_{T}^{*} x_{n}-\bar{z} x_{n} \rightarrow 0$
and
2) If $\left(n_{n_{i}}\right)$ is a sequence of unit vectors such that
$\left\langle T x_{n}, x_{n}\right\rangle \rightarrow z \in B(T)$ and $z_{0}$ is an inner centre point with
respect to $z$, then the following are equivalent:
i) $\left\|\left(T-z_{0}\right) x_{n}\right\| \rightarrow u\left(T-z_{0}\right) ;$
ii) $\quad T x_{n}-z x_{n} \rightarrow 0$;
iii) $T{ }^{*} x_{n}-\bar{z} x_{n} \rightarrow 0$.

The next theorem is a generalization of theorem 3.20
for elements of the subspace $N_{L}(T)$. We give below a proof by direct method. The result can also be proved using Berberian's technique.

Theorem 3.24 Let $T$ be a seminormal operator and

$$
N_{L}(T)=\left\{\left(x_{n}\right) \in \ell_{\infty}(H): \inf _{z \in L}\left|<T x_{n_{2}}, x_{n}>-z\left\|x_{n}\right\|^{2}\right| \rightarrow 0\right\}
$$

where $L$ is a line of support for $W(T)$. Then for each $\left(x_{n}\right) \in N_{L}(T), \quad\left(T x_{n}\right) \in N_{L}(T)$ and $\left(T^{*} x_{n}\right) \in N_{L}(T)$. Also $T$ approximates normal behaviour on sequences in $H_{L}(T)$ in the sense that if $\left(x_{n}\right) \in N_{L}(T)$, then $\left(T^{*} T-T T^{*}\right) x_{n} \rightarrow 0$.

Proof By lemma 2.5 (ii), $N_{L}(T)$ is a subspace. Without loss of generality we may take $L$ as the imaginary axis and $\operatorname{Re} W(T) \geqslant 0$ in which case as we have seen

$$
N_{L}(T)=\left\{\left(x_{n}\right) \epsilon \quad \ell_{\infty}(H): T x_{n}+T^{*} x_{n} \rightarrow 0\right\}
$$

Let $\left(x_{n}\right) \in N_{L}(T)$.
Hence $T x_{n}+T^{*} x_{n} \rightarrow 0$,
or, $\left\|T x_{n}\right\|^{2}-\left\|T x_{n}\right\|^{2} \rightarrow 0$,
or, (T*T-TT*) $X_{n} \rightarrow 0$
by lemma 2.4, since either $\mathrm{T}^{*} \mathrm{~T}-\mathrm{TT*}$ or $T T^{*}-\mathrm{T}^{*} \mathrm{~T}$ is positive.

Also continuity of $T$ gives $T^{2} \mathrm{X}_{\mathrm{n}}+\mathrm{TT}^{*} \mathrm{X}_{\mathrm{n}} \rightarrow 0$,
or $\left(T^{2} x_{n}+T * T x_{n}\right)-\left(T * T x_{n}-T X_{n}\right) \rightarrow 0$.
Thus $T^{2} X_{n}+T^{*} T x_{n} \rightarrow 0$.
Hence $\left(T x_{n}\right) \in N_{L}(T)$.
In a similar way it can be proved that

$$
\left(T^{*} X_{n}\right) \in N_{L}(T)
$$

By $T \rightarrow T^{\circ}$ we will denote the faithful *-representation constructed by Berberian as explained in section 2.5. The following simple lemma is used in the proofs of later theorems.

Lemma $3.25 \quad T^{\circ}$ is seminormal if and only if $T$ is seminormal.

Proof By the properties of $T^{\circ}$ as given in section 2.5, $\left(T^{0}\right) * T^{\circ}-T^{\circ}\left(T^{0}\right)^{*}=\left(T^{*}\right)^{\circ} T^{\circ}-T^{\circ}\left(T^{*}\right)^{\circ}=\left(T * T-T T^{*}\right)^{\circ}$.

Thus, since $T^{0}$ preserves positivity,

$$
\left(T^{0}\right) * T^{0}-T^{\circ}\left(T^{0}\right) * \geqslant 0 \text { or } \leqslant 0
$$

if and only if

```
T*T - TT* \geqslant0 or \leqslant 0 respectively.
```

Theorem 3.26 Let $T$ be seminormal and $z$ be an
extreme point of $W(T)^{-}$. Let

$$
N_{z}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0\right\}
$$

Then for each $\left(x_{n}\right) \in N_{z}(T)$,

$$
\left(T x_{n}\right) \in N_{z}(T) \text { and }\left({ }^{m *} x_{n}\right) \in N_{z}(T)
$$

[NOTE: This theorem can be deduced as a corollary of theorem 3.24, if $z$ is not an endpoint of a straight line segment on $2 W(T)$.

Proof Since by theorem 2.6, $N_{Z}(T)$ is a subspace, $\left(T x_{n}\right) \epsilon N_{z}(T)$ if and only if $e^{i \theta}\left(T x_{n}-z x_{n}\right) \in N_{z}(T)$. Thus by the standard transformation $T \rightarrow e^{i \theta}(T-z I)$, without loss of generality we may assume $z=0$ and $\operatorname{Re} W(T) \geqslant 0$.

Now as in the proof (using Berberian's technique) of theorem 2.6, with the same notations,

$$
\left(x_{n}\right) \in N_{0}(T) \text { implies } s^{\prime}=\left(x_{n}\right)^{\prime} \in M_{0}(T)
$$

where

$$
M_{0}\left(T^{0}\right)=\left\{S^{\prime} \in K:\left\langle T^{\circ} S^{\prime}, S^{\prime}\right\rangle=0\right\}
$$

Since by lemma 3.25, $\mathrm{T}^{\circ}$ is seminormal, theorem 3.21 gives $T^{\circ} S^{\prime} \in M_{c}\left(T^{\circ}\right)$, in fact the proof of that theorem shows $T^{\circ} S^{\prime}=0$.

$$
\text { Thus } f\left(\left(\left\|T x_{\mathrm{n}}\right\|^{2}\right)\right)=0
$$

for all $f$ where $f$ is any linear functional with the properties given in lemma 2.7.

Since $\left(\left\|T x_{n}\right\|^{2}\right) \in l_{\infty}^{+}$, by lemma 2.7 we conclude that $T x_{n} \rightarrow 0$.

Again since $\left\langle\operatorname{Re} T x_{n}, x_{n}\right\rangle \rightarrow 0$, lemma 2.4 gives
Re $T x_{n} \rightarrow 0$ and hence we have $T * x_{n} \rightarrow 0$.

Thus $\left(T x_{n}\right) \in N_{z}(T)$ and $\left(T x_{n}\right) \in N_{z}(T)$.

Putnam (1965) and Stampfli (1965) have shown independently that a seminormal operator is convexoid. We give below an alternative proof using Berberian's technique. Let co denote the convex hull. We need the following lemma given by Berberian (1962).

Lemma 3.27 For any operator $T$,

$$
\sigma_{a p}\left(T^{0}\right)=\sigma_{a p(T)} .
$$

Proof A complex number $\mu$ does notbelong to $\sigma_{a p}{ }^{(T)}$ if and only if there exists $\varepsilon>0$ such that $(T-\mu I) *(T-\mu I) \geqslant \varepsilon I$ which is equivalent to $\left(T^{0}-I\right) *\left(T^{0}-\mu I\right) \geqslant \varepsilon I$ by the properties of $T^{\circ}$ given in section 2.5 .

Theorem 3.28 For a seminormal operator $T$,

$$
W(T)^{-}=c o \sigma(T) .
$$

Proof By lemma 3.25, $T^{0}$ is seminormal. An application of theorem 3.21 to $T^{0}$ gives

$$
E\left(T^{0}\right) \cap W\left(T^{\circ}\right) \subset \sigma_{p}\left(T^{0}\right)
$$

But since by theorem 2.8, $W\left(T^{\circ}\right)=W(T)^{-}$, we have

$$
E(T)=E\left(T^{0}\right)
$$

and hence

$$
\begin{equation*}
E(T) \subset \sigma_{p}\left(T^{\circ}\right) \subset \sigma_{a p}\left(T^{\circ}\right)=\sigma_{a p}(T) \tag{T}
\end{equation*}
$$

by lemma 3.27.

Thus co $E(T) \subset \operatorname{co} \sigma(T)$.
But $W(T)^{-}=\operatorname{CO} E(T)$
and co $\sigma(T) \subset W(T)^{-}$.
So we must have $W(T)^{-}=\operatorname{co} \sigma(T)$.

In this chapter we looked at different operators with special characteristics in terms of $M_{z}(T)$ and the action of the operator $T$ on them. Then we extended the results to $W(T)^{-}$ and saw that the same type of set inclusions still holds for elements of $N_{z}(T)$.

In section 3.3 we provided two equivalent conditions in terms of spectral radius and operator norm for an extreme point of a convexoid operator to belong to the point spectrum. We showed that for a seminormal operator $T, M(T)$ is a reducing subspace of $T$. Moreover $T$ on $M(T)$ behaves as a normal operator. Also for seminormal $T$, if $z$ is an extreme point of $W(T), M_{z}(T)$ has the same reducing property. This was shown in theorem 3.21.

In the final section we obtained generalizations to the results of section 3.3 . In some cases it was convenient to use Berberian's technique concerning change of operators and Hilbert space. By the same technique we gave an alternative proof of the essentially known result that a seminormal operator is convexoid.

In the following concluding chapter we will consider weak convergent sequences of unit vectors which generate sequences of points in the numerical range converging to the boundary of the numerical range. We shall also discuss the question of convexity for a newly defined restricted numerical range. The convexity of $W(T)$ and Stampfli's numerical range $W_{\delta}(T)$ will follow as corollaries.

## Chapter 4

## CONVEXITY OF DIFFERENT NUMERICAL RANGES AND WEAK CONVERGENCE ON $\partial W(T)$

### 4.1 Introduction

In this chapter we define a restricted numerical range in terms of appropriate subsets of $S$ of the unit sphere and investigate conditions on $S$ which will ensure the restricted numerical range is convex. The convexity of Stampfli's numerical range follows as a corollary. Kyle (1977) used a different technique to prove this result. We include his method in section 4.3.

In section 4.2 we consider the weak convergence of a sequence of unit vectors corresponding to a sequence of points in the numerical range with its limit on the boundary of $W(T)$. de Barra $\epsilon t$ al. (1972), Sims (1974), Das (1973, 1974, 1977) and Garske (1979) investigated which boundary points of $W(T)$ are attained. Das and Craven gave a bound for the norm of the weak limit of vectors when the corresponding boundary point is not attained, but lies on the straight line segment on the boundary. We use the method of proof for these results given by Garske and Das and Craven. We then demonstrate how all these results can be obtained as a simple corollary to one of the inequalities obtained in Chapter 2.

### 4.2 Weak Convergence on $\partial W(T)$

In the previous chapters we obtained results for those boundary points of the numerical range which are attained by the operator $T$ and then extended these results to unattained boundary points of $W(T)$. The question arises as to which boundary points of $W(T)$ are in fact attained.

Garske (1979) showed that if $\lambda$ is an extreme point of $W(T)^{-}$, then the following statement is true.
(A) Let $\left(x_{n}\right)$ be a sequence of unit vectors in $H$ with weak limit $x \in H$ and $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \lambda \in \partial W(T)$. Then either
i) $\mathrm{x}=0$,
or ii) $\langle T x, x\rangle /\|x\|^{2}=\lambda$.
Weak compactness of the unit sphere in $H$ ensures the existence of such a sequence.

The following example given by Garske (1979) shows that (A) need not hold for all boundary points of $W(T)$.

Example 4.1 Let $T: L^{2}[-1, I] \rightarrow L^{2}[-1,1]$ be the self-adjoint multiplication operator defined by
$(T f)(t)=t f(t)$
for $f \in L^{2}[-1,1], \quad t \in[-1,1]$.
It follows that $W(T)=(-1, I)$ and so $0 \in \partial W(T)$ is not an extreme point of $W(T)^{-}$.

Let $\quad f_{n}(t)=\left\{\begin{array}{l}\frac{1}{\sqrt{2}} \text { if }-1 \leqslant t<0, \\ \cos \pi n t \text { if } 0 \leqslant t \leqslant 1 .\end{array}\right.$
and

$$
f(t)=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}} \text { if }-1 \leqslant t<0 \\
0 \text { if } 0 \leq t<1
\end{array}\right.
$$

Then $\left\|f_{n}\right\|=1, \quad\|f\|=\frac{1}{\sqrt{2}}$ and $f_{n}$ converges to $f$ weakly.
But

$$
\begin{aligned}
\left\langle T f_{n}, f_{n}\right\rangle & =\int_{-1}^{0} \frac{1}{2} t d t+\int_{0}^{1} t\left(\frac{1}{2}+\frac{1}{2} \cos 2 \pi n t\right) d t \\
& =\int_{-1}^{1} \frac{1}{2} t d t+\frac{1}{2} \int_{0}^{1} t \cos 2 \pi n t d t \rightarrow 0
\end{aligned}
$$

whereas $\langle T f, f\rangle=\int_{-1}^{0} \frac{1}{2} t d t=\frac{1}{4}$.

Thus $\left\langle T f_{n}, f_{n}\right\rangle+\frac{\langle T f, f\rangle}{\|f\|^{2}}$.

Das and Craven considered points on a line segment on the boundary of the numerical range and gave a bound for the norm of the weak limit for such points. We shall later state the results of Garske and Das and Craven in a single theorem and give their method of proof; but first we begin with a shortened proof of the following lemma due to Das and Craven.

Lemma 4.2 Let $\lambda \in L \cap W(T)^{-}$where $L$ is a line of support for $W(T)$. Let $x_{n}-x$ be a weakly convergent sequence of vectors such that $\left\langle I x_{n}, x_{n}\right\rangle \rightarrow \lambda$. Then either $x=0 \quad$ or $\langle I x, x\rangle /\|x\|^{2} \in L$.

Proof By a suitable translation and rotation, we may, without loss of generality, assume that $L$ is the imaginary axis and $\operatorname{Re} W(T) \geqslant 0$.

Hence $\left\langle\operatorname{Re} T x_{n}, x_{n}>\rightarrow 0\right.$
and thus by lemma 2.4, $\quad$ Re $T x_{n} \rightarrow 0$.

But ReTx $\rightarrow$ Re Tx
and hence the uniqueness of the weak limit gives $\operatorname{Re} T x=0$.

So $\operatorname{Re}\langle T \mathrm{Tx}, \mathrm{x}\rangle=0$ and hence
either $x=0$ or $\langle T x, x\rangle /\|x\|^{2} \in L$.

The following theorem is a combination of results of Garske and Das and Craven. We first give their method of proof.

Theorem 4.3 Let $x_{n} \rightarrow \approx$ be a weakly convergent
sequence of unit vectors such that $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \lambda \epsilon \partial W(T)$.
Thus either
i) $x=0$, or,
ii) $\langle T x, x\rangle /\|x\|^{2}=\lambda$, or
iii) $\lambda$ is not an extreme point of $W(T)^{-}$and $x \neq 0$, in which case $\lambda$ and $\langle T x, x\rangle /\|x\|^{2}$ Iie in a Iine segment on the boundary of $W(T)$ and $\|x\|^{2} \leqslant \frac{p}{q}$ where $p$ and $q$ are respectively the distances from $\lambda$ and $\langle T x, x\rangle /\|x\|^{2}$ to the extreme point of $W(T)^{-}$colzinear with $\lambda$ and

$$
\begin{aligned}
& \langle I x, x\rangle /\|x\|^{2} \text { and on the opposite side of } \lambda \text { from } \\
& \langle I x, x\rangle /\|x\|^{2} \text {. }
\end{aligned}
$$

Proof First consider the case when $\lambda$ is an extreme point of $W(T)^{-}$.

Let $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \lambda_{1} \quad\left\|x_{n}\right\|=1$.
This gives $\|x\| \leqslant l$ and so $i=y_{n}=x_{n}-x$, then $\left\|y_{n}\right\| \leqslant 2$.
Thus passing on to a subsequence we may assume

$$
\left\|Y_{n}\right\| \rightarrow \varepsilon \in R^{+}
$$

(We can exclude the trivial case when $\varepsilon=0$.)

So we have

$$
1=\left\|x_{n}\right\|^{2}=\left\|y_{n}\right\|^{2}+2 \operatorname{Re}\left\langle x_{n}, x\right\rangle+\|x\|^{2}
$$

or, since $x_{n} \rightarrow x_{r}$ this gives

$$
\varepsilon^{2}+\|x\|^{2}=1
$$

Again

$$
\left\langle T x_{n}, x_{n}\right\rangle=\left\langle T y_{n}, y_{n}\right\rangle+\left\langle y_{n}, T * x\right\rangle+\left\langle T x, y_{n}\right\rangle+\langle T x, x\rangle \rightarrow \lambda,
$$

or,

$$
\left\langle T y_{n}, y_{n}\right\rangle \rightarrow \lambda-\langle T x, x\rangle
$$

If we call $\mu=\langle T x, x\rangle /\|x\|^{2}$ (assuming $x \neq 0$ ), this gives

$$
\alpha=\frac{\lambda-\|x\|^{2} \mu}{E^{2}}
$$

where

$$
\alpha=\lim \frac{\left\langle T y_{n}, y_{n}\right\rangle}{\left\|y_{n}\right\|^{2}}
$$

Thus $\quad \lambda=\varepsilon^{2} \alpha+\|x\|^{2} \mu$.
Since $\varepsilon^{2}+\|x\|^{2}=1, \lambda$ lies on the line segment from
$u$ to $a$ and thus as $\lambda$ is an extreme point of $W(T)^{-}$, either
$\lambda=\mu$ or $\lambda=\alpha$.
If $\lambda=a$, we have

$$
\mu\|x\|^{2}=\left(1-\varepsilon^{2}\right) \alpha=a\|x\|^{2}
$$

and hence again $\lambda=\mu$.

Now consider the case when $\lambda \neq \mu$ and $\lambda$ is not
an extreme point of $W(T)^{-}$. If $\|x\|=1$, then $x_{n} \rightarrow x$ and thus $\lambda=\mu$. So if $x \neq 0$, we may assume $0<\|x\|^{2}<1$.

Consider

$$
\frac{\left\langle T\left(x+t x_{n}\right), x+t x_{n}>\right.}{\left\|x+t x_{n}\right\|^{2}} \quad(t \in R)
$$

which, under the assumption $x_{n} \rightarrow x$, is equal to

$$
\lambda=\frac{(\mu-\lambda)(2 t+1)\|x\|^{2}}{t^{2}+(2 t+1)\|x\|^{2}}
$$

Let

$$
u=\frac{(2 t+1)\|x\|^{2}}{t^{2}+(2 t+1)\|x\|^{2}}
$$

It can be easily verified that

$$
\frac{\|x\|^{2}}{\|x\|^{2}-1} \leqslant u \leqslant 1
$$

By lemma 4.1, $\mu$ and $\lambda+\frac{\left(\mu-\lambda\left(\|x\|^{2}\right.\right.}{\|x\|^{2}-1} \quad$ are collinear with $\lambda$ and clearly lie on the opposite sides of $\lambda$. Hence

$$
\frac{\mid \mu-\lambda\|x\|^{2}}{1-\|x\|^{2}} \leqslant p
$$

or,

$$
\|x\|^{2} \leqslant \frac{p}{|\mu-\lambda|+a}=\frac{p}{q} .
$$

The above theorem can be deduced as a simple corollary of theorem 2.14 as given below.

Corollary 4.4 Let $x_{n}-\infty$ be a weakly convergent sequence of unit vectors such that $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \lambda \in \operatorname{\partial W}(T)$. Let $I$ be a line of support of $W(\mathbb{T})$ passing through $\lambda$. Then either
a) $\lambda$ is an extreme point of $W(T)^{-}$in which case one of the foilowing hoias:
i) $x=0$;
ii) $\langle T x, x\rangle /\|x\|^{2}=\lambda$; or
b) $\lambda$ is a nonextreme bounaary point of $W(T)^{-}$in which case one of the following holds:
i) $x=0$;
ii) $\langle T x, x\rangle /\|x\|^{2}=a$ where $a \in L$ is an extreme point of $\overline{i l}()^{-}$. Iri this case $\|x\| \leqslant \sqrt{\frac{\lambda-a}{a-b}}$ where $b$ is the cther extreme point of $W(T)^{-} \cap L$.
iii) $\|x\| \leqslant \sqrt{\frac{\lambda-a}{\mu-a}}$ where $\mu=\langle T x, x\rangle /\|x\|^{2}$ and $a \in I$ is an extreme point $0=W(T)^{-}$.

Proof By lemma 4.2, $\lambda, \mu, a, b \in L$. If we consider the sequence $(x, x, \ldots)$, it is obvious that $(x, x, \ldots) \in N(T)$ where $N(T)$ is as given in theorem 2.14. Also ( $x_{n}$ ) $\in N(T)$. Thus an application of theorem 2.14 with $\lambda$ as an extreme point gives

$$
\lim \mid<(T-\lambda) x_{n}, x>1=0 \quad \text { since }<(T-\lambda) x_{n}, x_{n}>\rightarrow 0
$$

and hence

$$
\langle\mathrm{Tx}, \mathrm{x}\rangle=\lambda\|\mathrm{x}\|^{2}
$$

that is, either $x=0$ or $\langle T x, x\rangle /\|x\|^{2}=\lambda$.

If $\lambda$ is a nonextreme boundary point of $W(T)^{-}$, another application of theorem 2.14 with $a$ as an extreme point of $W(T)^{-}$gives

$$
\left.\lim \left|<(T-a) x_{n}, x>\left.\right|^{2} \leqslant \lim \right|<(T-a) x_{n}, x_{n}\right\rangle \lim |<(T-a) x, x>| .
$$

Thus if $x \neq 0$,

$$
|\langle(T-z) x, x\rangle|^{2} \leqslant|\lambda-a||\mu-a|\|x\|^{2},
$$

or

$$
|\mu-a|^{2}\|x\|^{2} \leqslant|\lambda-a||\mu-a|,
$$

that is, $\mu=a$ or $\|x\|^{2} \leqslant \frac{|\lambda-a|}{|\mu-a|}=\frac{\lambda-a}{\mu-a}$ since $\lambda, \mu$ and $a$ are collinear and $a$ is an extreme point of $W(T)^{-}$.

If $\mu=a$, application of the same theorem with $b$
as the other extreme point gives

$$
\|x\|^{2}<\frac{\lambda-a}{a-\dot{b}}
$$

Note that the inequality given in theorem 4.3 (iii) is equivalent to the combined two inequalities given in corollary 4.4 (b).

We also note that the above result could also be obtained as a corollary to lemma 2.9.

Throughout our dissertation we used the fact that $W(T)$ is a convex set. In our next section we define a new restricted numerical range and investigate under what condition convexity holds for this set. As a corollary we obtain a result given by Kyle (1977). These results are contained in a paper by Das, Majumdar and Sims (3).
4.3 Restricted Numerical Range and Convexity of $W_{\delta}(T)$

Stampfli (1970) introduced the concept of $W_{\delta}(T)$, a modification of $W(T)$ and asked if $W_{\delta}(T)$ is convex. He defined

$$
W_{\delta}(T)=\text { closure }\{\langle T f, f\rangle:\|f\|=I,\|T f\| \geqslant \delta, f \in H\}
$$

Kyle (1977) settled this question in the affirmative using ideas which are improvements on basic ideas of Dekker (1969).

In the next section we define a restricted numerical range by

$$
W_{S}(T)=\{\langle T f, f\rangle:\|f\|=1, \quad f \in S \subset H\}
$$

We obtain conditions on $S$ which ensure that $W_{S}(T)$ is convex. Our results are more general than those of Kyle, convexity of both $W(T)$ and $W_{\delta}(T)$ following as corollaries.

We begin with some generalizations and modifications of results originally used by Kyle to obtain the convexity of $W_{\delta}(T)$.

Lemma 4.5 Let $t$ and $E$ be self-acifoint operators
ana

$$
N=\left\{f \in E:\|f\|=1,\langle A f, f\rangle \geqslant \delta \text { and }\left\langle E_{i}^{f}, f\right\rangle=0\right\} .
$$

Then $N$ is path comnesteä.

$$
\text { Proof Suppose } f, g \in M \text {. If } f, g \text { are linearly }
$$

dependent, they both lie on an arc of

$$
\left\{e^{i \theta} f: 0 \leqslant \theta \leqslant 2 \pi\right\}
$$

which lies in $M$ whenever $f \in M$. If $f, g$ are linearly independent, since $f$ and $e^{i \theta} f$ with suitably chosen real values of $\theta$ are path connected and $g$ and $(-1)^{n} g, n=1,2$ are path connected, without loss of generality we may assume

$$
\operatorname{Re}\langle B f, g\rangle=0 \text { and } \operatorname{Re}\langle(A-\delta) f, g\rangle \geqslant 0 .
$$

Let

$$
f(t)=\frac{t f+(1-t) g}{\|t f+(1-t) g\|}
$$

Then

$$
\begin{aligned}
& \langle B f(t), f(t)\rangle \\
& =\frac{t^{2}\langle B f, f\rangle+(I-t)^{2}\langle B g, g\rangle+2 t(1-t) \operatorname{Re}\langle B f, g\rangle}{\|t f+(1-t) g\|^{2}} \\
& =0 \text { with our assumptions. }
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \langle A f(t), f(t)\rangle \\
& =\frac{t^{2}\langle A f, f\rangle+(I-t)^{2}\langle A g, g\rangle+2 t(1-t) \operatorname{Re}\langle A f, g\rangle}{t^{2}+(1-t)^{2}+2 t(1-t) \operatorname{Re}\langle f, g\rangle} \\
& \geqslant \frac{t^{2} \delta+(I-t)^{2} \delta+2 \delta t(I-t) \operatorname{Re}\langle f, g\rangle+2 t(1-t) \operatorname{Re}\langle(A-\delta) f, g\rangle}{t^{2}+(1-t)^{2}+2 t(1-t) \operatorname{Re}\langle f, g\rangle} \\
& =\delta+\frac{2 t(1-t) \operatorname{Re}\langle(A-\delta) f, g\rangle}{\|t f+(I-t) g\|^{2}} \\
& \geqslant \delta \operatorname{since} \operatorname{Re}\langle(A-\delta) f, g\rangle \geqslant 0 .
\end{aligned}
$$

Thus $t \rightarrow f(t)$ is a path connecting $f$ to $g$ in $M$ as required.

Lemma 4.6 Let $T_{1}, T_{2}$ and $A$ be self-adioint operators and

$$
V=\left\{\left(\left\langle m_{1} f, f\right\rangle,\left\langle T_{2} f, f\right\rangle\right):\|f\|=I,\langle A f, f\rangle \geqslant \delta, \quad f \in H\right\} .
$$

Then $V$ is a convex subset of $R^{2}$.

$$
a x+b y+c=0
$$

It is sufficient to show $V \cap I$ is connected.

$$
\text { Let } \quad B=a T_{1}+b T_{2}+c
$$

Then the mapping $T_{1}$ given by $T_{i}(f)=\left(\left\langle T_{1} f, f\right\rangle,\left\langle T_{2} f, f\right\rangle\right)$ is continuous and the set

$$
\begin{aligned}
& \{f:\|f\|=1,\langle A f, f\rangle \geqslant \delta \text { and } \pi(f) \in L\} \\
& =M \text { where } M \text { is as given in lemma } 4.5 .
\end{aligned}
$$

Thus $V \cap L=\pi(M)$ is connected.

Theorem 4.7 Let I be any operator anaj let $A$ be a selfadioint operator. Ther the set

$$
W=\{\langle T f, f\rangle:\|f\|=I \text { and }\langle A f, f\rangle \geqslant \delta\}
$$

is convex.

Proof Suppose $T=T_{1}+i T_{2}$ where $T_{1}$ and $T_{2}$ are both self-adjoint. Then

$$
w=\{x+i y:(x, y) \in V\}
$$

where $V$ is as given in lemma 4.6.
Hence $W$ is convex.

Corollary 4.8 For any two operators $T$ and $A$, the set

$$
\{\langle T f, f\rangle:\|f\|=1 \text { and }\|A f\| \geqslant \delta\}
$$

is convex.

Proof Obvious from theorem 4.7 by replacing $A$ by A*A and noting that

$$
\langle A * A f, f\rangle \geqslant \delta^{2} \text { if and only if }\|A f\| \geqslant \delta .
$$

Corollary 4.9 $\ddot{i}_{\delta}(T)$ is convex.

Proof Take $A=T$ in corollary 4.8. Thus the set

$$
\{\langle T f, f\rangle:\|f\|=1 \text { and }\|T f\| \geqslant \delta\}
$$

is convex.
$W_{\delta}(T)$ is the closure of the above set and hence $W_{\delta}(T)$ is convex.

At the beginning of this section we have defined the restricted numerical range $W_{S}(T)$. We now impose certain properties on $S$ so that $W_{S}(T)$ becomes convex.

## Let $S \subset H$ satisfy the following two properties:

$$
\text { Property (i) } \quad f \in S \text { implies } \alpha f \in S,|\alpha|=1
$$

```
Property (ii) f,g \in S implies for all real positive r,
    either }\frac{f+rg}{|f+rg|}\inS\mathrm{ or }\frac{f-rg}{|f-rg|}\inS\mathrm{ .
```

We give below some examples of such $S$.

Example $4.10 \quad H$ itself or any subspace of $H$, for example, the range or null space of any operator $A$ trivially satisfies properties (i) añ (ii).

Example 4.11 A useful example of such a set is

$$
S=\left\{f \in H:\|f\|=1, \quad\langle A f, f\rangle \geqslant \delta, A=A^{*}\right\}
$$

That $S$ satisfies properties (i) and (ii) can be verified as follows.

$$
\begin{aligned}
& \text { If } r \text { is real and } f, g \in S, \\
& \frac{\langle A(f+r g), f+r g\rangle}{\|f+r g\|^{2}} \\
& =\frac{\langle A f, f\rangle+r^{2}\langle A g, g\rangle+2 r \operatorname{Re}\langle A f, g\rangle}{1+r^{2}+2 r \operatorname{Re}\langle f, g\rangle} \\
& \geqslant \quad \delta+\frac{2 r \operatorname{Re}\langle(A-\delta) f, g\rangle}{\|f+r g\|^{2}} .
\end{aligned}
$$

It is obvious therefore that either $\frac{f+r g}{\|f+r g\|} \in S$ or $\frac{f-r g}{\|f-r g\|} \in S$ for all positive $r$ depending on the sign of $\operatorname{Re}\langle(A-\delta) f, g>$.

Example 4.12 Another example of such an $S$ is

$$
S=\{f \in H:\|f\|=1,\|A f\| \geqslant \delta\}
$$

where A is any operator.

This is obvious from example 4.11 by noting that $\|A f\| \geqslant \delta$ is equivalent to $\langle A * A f, f\rangle \geqslant \delta^{2}$.

```
        Theorem 4.13 Let S be a set with properties (i) anả
``` (ii) mentionea apove. Then \(K_{S}(T)\) is a convex set in the compiex piane.

Proof Let \(\|f\|=\|g\|=1, f, g \in S\).
For any complex scalar \(z=x+i y\) and \(0<t<l\), consider the equation
\[
\begin{equation*}
\frac{\langle T(f+z g), f+z g\rangle}{\|f+z g\|^{2}}=t\langle T f, f\rangle+(I-t)\langle T g, g\rangle \tag{4.1}
\end{equation*}
\]

Equation (4.1) on simplification yields an expression of the form
\[
|z|^{2}+C z+D \bar{z}-\frac{1-t}{t}=0
\]
where \(C, D\) are complex numbers, in general dependent on \(t\).

Separating real and imaginary parts we get
\[
\begin{equation*}
x^{2}+y^{2}+2 a x+2 b y-\frac{1-t}{t}=0 \tag{4.2}
\end{equation*}
\]
and
\[
\begin{equation*}
c x+d y=0 \tag{4.3}
\end{equation*}
\]
where \(a, b, c, d\) are some real numbers independent of \(x\) and \(y\).

Since \(\frac{l-t}{t}>0,(4.2)\) gives an equation of a circle containing the origin and (4.3) gives a straight line through the origin. Hence there will be two values of \(z\) of the form \(r_{i} e^{i \theta}\) and \(r_{2} e^{i \hat{\theta}}\) satis干ying equations (4.2) and (4.3). But by our assumption either
\[
\frac{f+r_{1} e^{i \theta} g}{\left\|f+r_{1} e^{i \theta} g\right\|} \in S \quad \text { or } \quad \frac{f-r_{2} e^{i \theta} g}{\left\|f+r_{2} e^{i \theta} g\right\|} \in S
\]

Thus there exists an element \(h \in S,\|h\|=1\) such that
\[
\langle T h, h\rangle=t\langle T X, x\rangle+(I-t)\langle T y, y\rangle
\]
and the proof is complete.

By taking \(S=H\) we have

Corollary 4.14 \(W(T)\) is convex.

Indeed a similar technique was used in theorem 1.2 to prove the convexity of \(W(T)\).

Since the sets in examples 4.11 and 4.12 have the properties required in theorem 4.13, we have

Corollary 4.15 The set
\[
\left\{\langle T f, f\rangle:\|f\|=I, \quad\langle A f, f\rangle \geqslant \delta, \quad A=A^{*}\right\}
\]
is convex for any operator \(T\).
\[
\text { Proof Take } S=\{f \in H:\|f\|=1,\langle A f, f\rangle \geqslant \delta, A=A *\}
\] and apply theorem 4.13.

Corollary 4.16 (Kyle) The set
\[
\{\langle m f, f\rangle:\|f\|=1 \text { and }\|A f\| \geqslant \delta\}
\]
is convex for any two operators \(A\) and \(T\).

Proof Take \(S=\{f \in H:\|f\|=1,\|A f\| \geqslant \delta\}\) and apply theorem 4.13.
corollary \(4.17 \quad W_{j}(T)\) is convex.
Proof Obvious from corollary 4.16 by taking \(A=T\).

It is worth noting that using similar proofs it can be shown that \(W_{S}(T)\) is convex if \(S\) is equal to any of the sets given below.
\[
\begin{aligned}
& S_{1}=\{f \in H:\|f\|=1, \quad\|m f\| \leqslant \delta\}, \\
& S_{2}=\{f \in H:\|f\|=1, \quad\|T f\| \supsetneqq \delta\}, \\
& S_{3}=\{f \in H:\|f\|=1, \quad\|T f\| \leqq \delta\} .
\end{aligned}
\]

In this chapter we saw that any extreme point of \(W(T)^{-}\)which is approached by \(\left\langle T x_{n}, x_{n}\right\rangle\) with the unit vectors \(x_{n}\) weakly converging to \(x\), must be attained if the weak limit is not zero. For other points on the boundary this result need not in general hold. For such points we obtained an upper bound for the weak limit.

To prove this result we used an inequality in terms of limit supremum as given in theorem 2.14. Since the limits in question do in fact exist, we could have used an inequality (given in lemma 2.9) in terms of \(f\), where \(f\) has the properties detailed in lemma 2.7. This provides yet another example of the usefulness of Berberian's technique as described in Chapter 2.

We also saw how an argument based on path-connectedness proved the convexity of \(W_{o}(T)\). Then we defined a restricted numerical range \(W_{S}(T)\) and imposed certain conditions on the set \(S\) to make \(W_{S}(T)\) convex. This provided another method of obtaining the convexity of \(W_{\delta}(T)\).

\section*{CONCLUSION}

We have considered the numerical range \(W(T)\) of an operator \(T\) on a Hilbert space \(H\) as a convex set in the complex plane and associated subsets \(M_{z}(T)\) of vectors from H with every point \(z\) of the numerical range. We saw that \(M_{z}(T)\) is a subspace if and only if \(z\) is an extreme point of \(W(T)\). When this is not the case, we obtained results in terms of the linear span of \(M_{z}(T)\). This led to the characterization of \(W(T)\) in terms of the subsets \(M_{z}(T)\) as given by Embry. Since this characterization excludes the case of unattained boundary points of \(W(T)\), we generalized these results to achieve a characterization of the closure of the numerical range in terms of subsets \(N_{z}(T)\) consisting of bounded sequences of vectors. We saw that the sets \(\mathrm{N}_{\mathrm{z}}(\mathbb{T})\) and \(\mathrm{N}_{\mathrm{z}}(\mathbb{T})\) have similar properties and that the two characterizations are also similar, though not exactly alike.

Two Cauchy-Schwartz type inequalities of Embry associated with the union of \(M_{z}(T)\) over all points \(z\) on a line of support of \(W(T)\) were given and orthogonality of vectors from these subsets was observed. These results were again generalized in terms of sequences of vectors.

We proved these results, sometimes by direct methods, but often using a modification of a technique given by Berberian
which involved a change of Hilbert space and operator via a construction based on normalized positive linear functionals.

In Chapter 3 we gave various known results concerning attained boundary points of the numerical range of seminormal and convexoid operators. These results were then extended to unattained boundary points. Again Berberian's technique proved useful in the proofs.

Embry showed that the subsets \(M_{z}(T)\) behave in a particular fashion for several special types of operator. We observed that the generalized subsets \(N_{z}(T)\) retain these characteristics.

Finally, we considered convexity of different numerical ranges. We defined a restricted numerical range \(W_{S}(T)\) and attached certain properties to the set \(S\) so that \(W_{S}(T)\) is convex. As a corollary we obtained the convexity of Stampfli's numerical range \(W_{\delta}(T)\), a result proved differently by kyle.

In Chapter 2 several areas for further investigation suggested themselves. For example, in section 2.2 we proved that corresponding to a line of support \(L\) of \(W(T)\), the sets \(N_{L}(T)\) and \(N(T)\) are closed. Moreover, \(N_{L}(T)\) is a subspace. Is the same true for \(N(T)\) ? Homogeneity being obvious only linearity has to be verified. If we could prove the linearity of \(N(T)\), in theorem 2.19 (ii) we would have been able to show \(\gamma N_{z}(T)=N(T)\) where \(z \in L\) is a nonextreme boundary point of \(W(T)^{-}\). This is similar to the corresponding result for \(M_{z}(T)\) given in theorem l.ll (ii).

In lemma 2.18, we showed \(N_{a}^{\prime}(T) \subset \gamma_{z}(T)\) where \(z\) lies in the interior of a line segment with end points \(a, b \in W(T)^{-}\). We had to assume \(\left\|x_{n}\right\|\) is bounded away from zero as a requirement for the proof. Is it possible to omit this condition and get a result of the form \(N_{a}(T) \subset \gamma N{ }_{z}(T)\) ? If this were true this lemma could be used in the proofs of both parts (ii) and (iii) of theorem 2.19.

Embry (1970) gave a theorem in terms of the intersection of maximal subspaces of \(M_{z}(T)\). It is worth investigating whether similar results hold for the intersection of maximal subspaces of \(N_{z}(T)\). If this were possible we would have the following result as a corollary:
```

I I is hyponommal anç z is a bounāari point of w'(I)
we have

```
\[
\begin{aligned}
& \cap\left\{\operatorname{maximal} \text { subspaces of } n_{z}(T)\right\} \\
& =\left\{\left(x_{n}\right) \epsilon l_{\infty}(B): T x_{n}-z x_{n} \rightarrow 0 \text { and } T^{\prime} x_{n}-\bar{z} x_{n} \rightarrow 0\right\}
\end{aligned}
\]

This, in turn, would lead to an alternative proof of the known result:
```

For hyponormal ', if z is an extreme point of W(T)',
then z}\mathrm{ is an approximate eigenvalue of }T\mathrm{ .

```

Another question of interest is whether or not the separating functional in lemma 2.7 , in addition, can be assumed to satisfy (vi). fis multiplicative on \(l_{\infty}\) with respect to
the pointwise algebraic product. Were this the case, this could lead to new results as well as provide shorter proofs for several results given in the thesis.

These and similar questions seem worthy of further investigation, an investigation which \(I\) hope to undertake in the near future.

\section*{BIBLIOGRAPHY}
G. Bachman and L. Narici (1966), Functionat Anazusis, Academic Press, New York.
G. de Barra (1981), The boundary of the numerical range, GZasgow Math. e'., 22, 69-72.
G. de Barra, J.R. Giles and Brailey Sims (1972), On the numerical range of compact operators on Hilbert spaces, J. London Matr. Soe., (2) 5, 704-706.
F.F. Bonsall and J. Duncan (1971), Numeriaai Raraes cf Crerators
 Cambridge Liniversity Dress, Jondon.
F.F. Bonsall and J. Duncan (1973), Numerical pances II, Cambriage University Press, Lonaon.
S.K. Berberian (1962), Approximate proper vectors, Proc. Amer. Math. Soc., 13, 111-114.
S.K. Berberian (1964), The numerical range of a normal operator, Duke Matr. J., 31, 479-483.
S.K. Berberian (1967), Compact convex sets in inner product spaces, Amer. Math. Monthzy, 74, 702-705.
S.K. Berberian and G.H. Orland (1967), On the closure of the numerical range of an operator, Proc. Amer. Math. Soc., 18, 499-503.
S.J. Bernau and F. Smithies (1963), A note on normal operators, Proc. Camb. Phil. Soc., 59, 727-729.
M. Cho and M. Takaguchi (1979), Boundary of joint numerical range, Sci. Rep. Eirosaki Univ., 29, 69-71.
K.C. Das (1973), Extrema of Rayleigh quotient and normal behaviour of an operator, J. Math. Araz. Appi., 41, 765-774.
K.C. Das (1974), On stationary values of Rayleigh quotient of an operator, J. Matr. Enal. Appl., 48, 527-533.
K.C. Das (1977), Boundary of numerical range, j. Matr. Anaz. AppI., 60, 779-780.
K.C. Das and B.D. Craven (to appear), Linearity and weak convergence on the boundary of numerical range, \(J\). Austral. Math. Soc.
K.C. Das, S. Majumdar and Brailey Sims (1), On the classification of operators and subsets by the numerical range (to appear).
K.C. Das, S. Majumdar anc Brailey Sims (2), Subsets characterizing the closure of the numerical range (to appear).
K.C. Das, S. Majumdar and Brailey Sims (3), Restricted numerical range and weak convergence on the boundary of the numerical range (to appear).
A.T. Dash (1972), Joint numerical range, Glasnik Matematicki, 27, 75-81.
C. Davis (1971), The Toeplitz-Hausdorff theorem explained, Canad. Matr. Euiz., 14(2), 245-246.
N.P. Dekker (1969), Joint numerical range and joint spectrum of Hilbert space operators, Ph.D. thesis, Amsterdam.
W.F. Donoghue Jr (1957), On the numerical range of a bounded operator, !icinigan Math. J., 4, 261-263.
M.R. Embry (1970), The numerical range of an operator, Eacific J. Nath., 32, 647-650.
M.R. Emiry (1971), Classifying special operators by means of subsets associated with the numerical range, pacific J. Math., 38, 6I-65.
M.R. Embry (1975), Orthogonality and the numerical range, J. Matr. Soc. :apar, 27, 405-411.

Gerhard Garske (1979), The boundary of the numerical range of an operator, ei. Matr. Anal. Appl., 68, 605-607.
K.E. Gustafson (1970), The Toeplitz-Hausãorff theorem for Iinear operators, Eroo. Amer. Matr. Soc., 25, 203-204.
P.R. Halmos (1967), Ei2Eert Spaee Erobiem Book, Van Nostrand, New York.
V. Istratescu and I. Istratescu (1970), On bare and semibare points for some classes of operators, Portugal Matr., 29, 205-211.

Pushpa Juneja (1976), On extreme points of the joint numerical range of commuting normal operators, Pacific J. Math., 67, 473-476.
J. Kyle (1977), \(W_{\delta}(T)\) is convex, Facific J. Math., 72, 483485.
J.S. Lancaster (1975), The boundary of the numerical range, Proc. Amer. Math. Soc., 49, 393-398.
C.S. Lin (1975), Boundary of the numerical range of an operator, Canad. Natin. Buz2., 17, 689-692.
C.R. Maccluer (1965), On extreme points of the numerical range of normal operators, Proc. Amer. Math. Soc., 16, 1183-1184.
S. Majumdar and Brailey Sims (to appear), Subspaces associated with boundary points of the numerical range.

Alan McIntosh (1978), The Toeplitz-Hausdorff theorem and ellipticity conditions, Amer. Math. Montriz, 85, 475-477.
C.H. Meng (1957), A condition that a normal operator have a closed numerical range, Froc. Amer. Math. Soc., 8, 475-477.
C.H. Meng (1963), on the numerical range of an operator, Proc. Amer. Math. Soc., 14, 167-171.
G.H. Orland (1964), On a class of operators, Proc. Amer. Math. SOC., 15, 75-80.
F.M. Pollack (1974), Numerical range and convex sets, Carad. Matヶ. Buzて., 17(2), 295-296.
C.R. Putnam (1965), on the spectra of seminormal operators, Trans. Amer. Math. Soc., 119, 509-523.
M. Radjabalipour and H. Radjavi (1975), On the geometry of numerical ranges, Pacific J. Math., 61, 507-511.
R. Raghavendran (1969), Toeplitz-Hausdorff theorem on numerical ranges, Proc. Amer. Math. Soc., 20, 284-285.
F. Riesz and B. Sz-Nagy (1955), Functional Analysis, Fredric Ungar, New York.
I.H. Sheth (1966), On hyponormal operators, Eroc. Amer. Math. Soc., 17, 998-1000.

Brailey Sims (1972), Ph.D. thesis, University of Newcastle.

Brailey Sims (1974), On a connection between the numerical range and spectrum of an operator on a Hilbert space, J. Londion Matit. Soc., (2) 8, 57-59.
J.G. Stampfli (1962), Hyponormal operators, Pacific ë. Matr., 12, 1453-1458.
J.G. Stampfli (1965), Hyponormal operators and spectral density, trans. Amer. Math. Soc., 117, 469-476.
J.G. Stampfli (1966), Extreme points of the numerical range of a hyponormal operator, Michigan Math. J., 13, 87-89.
J.G. Stampfli (1969), On hyponormal and Toeplitz operators, Math. Ann., 183, 328-336.
J.G. Stampfli (1970), The norm of a derivation, Eacific J. Math., 33, 737-747.

Angus E. Taylor (1958), Irtroduction to Functional Analysis, Wiley, New York.
A. Wilansky (1964), Functionat Analusis, Blaisdell, New York.

\section*{ACKNOWLEDGEMENTS}

I am deeply spateful to Dr. B. Sims, my supervisor, for his constant encouragement and for the many hours he has spent in reaciing and discussing mu materiaz. It is my pleasant privilege to thank him for reajing the ertire manuscript and for various improvemente he maie in style and presentation of this thesis.

I would also iike to express my gratitude to Associate Professor E. N. Dancer for his Kina supervision during Dr Sims's absence, for readirg a draft \(0:\) my thesis, as weil as for several invaruable aiscussions.

My áeepest thanks go to Dr K.C. Das wino introáucea me to this particuiar area of research. I am especially inabetea to him for reading and critizing my work, for making a rumber of vaiuable suggestions about content and allowing me tio use his yet unpubiished manuscript.

I have profited a great deal from conversations anà discussions with Mr I. Thomson. I owe rim more than \(I\) can possibly express. His encouragement and unaerstanding throughout mi studies have been of immeasurable value to me.
```

I would also like to thank:

```

Dr T.K. Mutherjee, unäer whose guidance I started research for the first time;

Associate Professor J.A. Hempel and Dr E. H . Bowen for helpfur conversations; Professor R.C.T. Smith and Professor G.R. Morris, who gave me every assistance within the Department of Mathematics at the University of New Enaland; Dr E. Bofinger anả Dr V.u. Sofinger for giving me ail the support I needed as a foreign stuànt in Australia; anà

Wre E. Hughes, Mre M. Vivers ana Mrs M. Christensen for patient and very comperent typinc.
```

Lastiy I wish to express my aratitucie to the council of

```
Soientific and Irdustriai Reseaver, Inäia and the Uriversitu of New England, without whose echoiarships this research woula have been impossible. Thanks are also due to the Departmert of Mathematics as well as St Albert's Colzege ana Duval College of the university of New Englara for providing me financial assistance ir the form of a part-time tutorship ana resiacnt tutorships.```

