THE ALLELOPATHIC PROPERTIES OF SUNFLOWER,

HELIANTHUS ANNUUS L.

by

SHIRLEY ANNE FRASER Bachelor of Rural Science

> A thesis submitted for the degree of Master of Rural Science of the University of New England.

Department of Agronomy & Soil Science, University of New England, ARMIDALE. New South Wales, 2351, Australia.

April, 1983.

PREFACE

I certify that this thesis has not previously been submitted for any degree and is not being currently submitted for any other degree.

I certify that all sources and help received in the preparation of this thesis have been acknowledged.

Shirley Anne Fraser.

	Page
ACKNOWLEDGEMENTS	vii
SUMMARY	ix
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF PLATES	xvii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: PHYTOCHEMICALS	4
2.1 Types of Phytochemicals	7
2.2 Changes in Phytochemical Release	7
2.2.1 The climatic factors	7
2.2.2 Variability with plant part	16
2.2.3 Concentration changes with plant ageing and health	17
2.2.4 Soil fertility status	19
2.3 The Importance of the Phyllosphere in Phytochemical Production	20
2.4 Roles of Naturally Produced Compounds	21
2.4.1 Micro-organism/micro-organism interaction	21
2.4.2 Micro-organism/plant interaction	22
2.4.3 Plant/micro-organism interaction	22
2.4.3.1 Anti pathogen	22
2.4.3.2 Nitrogen fixation	24
2.4.4 Plant/insect interaction	25
2.4.5 Plant/animal (predator) interaction	27
2.4.6 Plant/plant/animal interaction	28
2.4.7 Plant/plant/weather interaction	28
2.4.8 Plant/insect/predator interaction	28
2.4.9 Plant/plant interaction	29
2.4.9.1 Enhancement of competitive ability	29
2.4.9.2 Autotoxicity	32
2.4.9.3 Smother crop effects	32
2.4.9.4 Crop residue effects	33
2.4.9.5 Plant succession	35

i.

CHAP	TER 3:	THE SUNF	LOWER	38
3.1	Morpho	logy		38
3.2	Histor	y, Origin	and Distribution	41
3.3	World	Status		43
	3.3.1	As a cro	p	43
		2 2 1 1	Wood problems	45
		2 2 1 2		40
		$2 \cdot 2 \cdot 1 \cdot 2$	Insect pests	40
		3.3.1.3	Pathogenic diseases	40
		3.3.1.4	Animal pests	48
	3.3.2	As a wee		48
		3.3.2.1	Weediness in old fields in the U.S.A.	48
		3.3.2.2	"Fairy rings"	49
		3.3.2.3	Nitrogen fixation	49
			i) Free living nitrogen fixersii) Symbiotic nitrogen fixationiii) Algae growthiv) Nitrogen levels in soil	50 51 52 52
		3.3.2.4	Changes with time, plant health and plant part	52
		3.3.2.5	Changes with nutrient status	53
		3.3.2.6	Changes with temperature	55
		3.3.2.7	Changes with ultra-violet radiation	55
		3.3.2.8	Allelochemicals present in sunflower	55
3.4	Exploi	tation of	Allelopathy	58
CHAP'	TER 4:	INVESTIG	ATION OF ALLELOPATHIC PROPERTIES	60
4.1	Determ Green of a H	ination o Leaves and ybrid Sun	f the Relative Toxicity of Chemicals Washed from d Leached Out of Green, Dried or Senesced Leaves flower (Suncross 53)	62
	4.1.1	Material	s and Methods	63
	4.1.2	Results		64
		4.1.2.1	Germination	64
		4.1.2.2	Radicle lengths	64
	4.1.3	Discussi	on and Conclusions	66

ii.

Page

TABLE OF CONTENTS

4.2	Detern from F	mination of Relative Toxicity of Leaf Chemicals Washed Five and Ten Week Old Sunflower (Suncross 53) Plants	69
	4.2.1	Materials and Methods	69
	4.2.2	Results	70
		4.2.2.1 Germination	70
		4.2.2.2 Radicle lengths	70
	4.2.3	Discussion and Conclusions	70
4.3	Determ Sunflc 24h Pe	mination of Conversion Effects in Leaf Wash Solutions of ower (Suncross 53) by Phyllosphere Micro-organisms over a eriod	73
	4.3.1	Materials and Methods	74
	4.3.2	Results	74
		4.3.2.1 Germination	74
		4.3.2.2 Radicle lengths	76
4.4	Elimin (Suncr	nation of Phyllosphere Micro-organisms from Sunflower coss 53) Leaf Wash Solutions	76
	4.4.1	Materials and Methods	78
	4.4.2	Results	78
		4.4.2.1 Germination	78
		4.4.2.2 Radicle or first seminal root lengths	85
	4.4.3	Discussion and Conclusions	90
4.5	Platin Examin	ng of Sunflower (Suncross 53) Leaf Wash Solutions, to ne Phyllosphere Micro-organisms	95
	4.5.1	Materials and Methods	95
	4.5.2	Results	95
	4.5.3	Discussion and Conclusions	95
4.6	Simula and Bi	ation of Direct Transmission of Sunflower (Suncross 53 Lotypes) Leaf Washings to Receiver Plants	96
	4.6.1	Materials and Methods	97
		4.6.1.1 Imbibition of hybrid sunflower (Suncross 53) leaf chemicals by bioassay species seeds	97
		4.6.1.2 Seedlings grown in sand watered with hybrid sunflower (Suncross 53) leaf wash	98

					Page
		4.6.1.3	Comparison o hybrid (Suno sunflowers o	of effects of leaf chemicals of cross 53) and Australian biotype on early seedling growth	98
		4.6.1.4	Comparison of hybrid (Sund some North A early seedli	of effects of leaf chemicals of cross 53), Australian biotype and American biotype sunflowers on ing growth	99
	4.6.2	Results			100
		4.6.2.1	Imbibition a leaf chemica	and hybrid sunflower (Suncross 53) als by bioassay species seeds	100
			4.6.2.1.1	Germination	100
			4.6.2.1.2 F	Radicle lengths	100
		4.6.2.2	Seedlings gr (Suncross 53	cown in sand watered with hybrid 3) sunflower leaf wash	100
			4.6.2.2.1 P	Plant height	100
			4.6.2.2.2 I	Leaf number	105
			4.6.2.2.3 F	Plant tops dry weight	105
			4.6.2.2.4 F	Root dry weight	105
			4.6.2.2.5 F	Root length	105
		4.6.2.3	Comparison c hybrid (Sunc sunflowers c	of effects of leaf chemicals of cross 53) and Australian biotype on early seedling growth	107
			4.6.2.3.1	Germination	107
			4.6.2.3.2 R	Radicle lengths	107
		4.6.2.4	Comparison of hybrid (Sund some North A seedling gro	of effects of leaf chemicals of cross 53), Australian biotype and american biotype sunflowers on early owth	107
			4.6.2.4.1 G	Germination	107
			4.6.2.4.2 R	Radicle lengths	112
	4.6.3	Discussi	on and Conclu	sions	112
4.7	The Ef of Hig (Suncr Biotyp	fects on h Concent oss 53), e Sunflow	Wheat and Lin ration (1:2) Australian Bi er	seed Germination and Early Growth Leaf Washings of Hybrid Sunflower otype Sunflower and North American	116

4.7.1 Materials and Methods

iv.

116

4.7.2

		Page
4.7.1.1	Comparison of high concentration leaf washings (1:2) of the hybrid (Suncross 53) and the Australian biotype sunflowers	116
4.7.1.2	Comparison of high concentration leaf washings (1:2) of the hybrid (Suncross 53), the Australian biotype, and some North American biotype sunflowers	117
4.7.1.3	Comparison of internal and external leaf chemicals of hybrid (Suncross 53) and Australian biotype sunflowers on early seedling growth	117
4.7.1.4	Comparison of leached and washed internal and external leaf chemicals of the hybrid (Suncross 53) and the Australian biotype sunflowers on early seedling growth	118
Results		118
4.7.2.1	Comparison of high concentration leaf washings (1:2) of the hybrid (Suncross 53) and the Australian biotype sunflower	118
	4.7.2.1.1 Germination	118
	4.7.2.1.2 Radicle lengths	118
4.7.2.2	Comparison of high concentration leaf washings (1:2) of the hybrid (Suncross 53), the Australian biotype, and some North American biotype sunflowers	120
	4.7.2.2.1 Germination	120
	4.7.2.2.2 Radicle and seminal root lengths	120
4.7.2.3	Comparison of internal and external leaf chemicals of hybrid (Suncross 53) and Australian biotype sunflowers on early seedling growth	120
	4.7.2.3.1 Germination	120
	4.7.2.3.2 Radicle and seminal root lengths	125
	4.7.2.3.3 Coleoptile heights	125
4.7.2.4	Comparison of leached and washed, internal and external leaf chemicals of the hybrid (Suncross 53) and the Australian biotype sunflowers on early seedling growth	129

4.7.2.4.1	Germination	129
4.7.2.4.2	Seminal root lengths	131
4.7.2.4.3	Coleoptile heights	131

				Page
	4.7.3	Discussi	on and Conclusions	131
CHAP	TER 5:	GENETIC	INHERITANCE OF ALLELOPATHIC PROPERTIES	137
5.1	Germin	ation and	Early Seedling Growth Experiments	137
	5.1.1	Material	s and Methods	137
	5.1.2	Results		137
		5.1.2.1	Germination	137
		5.1.2.2	First seminal root length	139
		5.1.2.3	Coleoptile heights	139
5.2	Chemic	al Analys	es of Leaf Wash Solutions	139
	5.2.1	Material	s and Methods	141
		5.2.1.1	Leaf wash solutions	141
		5.2.1.2	Macerated leaf solutions	141
		5.2.1.3	Leaf chemical changes with plant ageing	141
		5.2.1.4	Chemical analysis	142
	5.2.2	Results		143
		5.2.2.1	Leaf wash solutions	143
			5.2.2.1.1 SC and W plants (July sampling)	143
			5.2.2.1.2 SC, OR1 and W plants (April sampling)	143
		5.2.2.2	Macerated leaf solutions (July sampling)	143
		5.2.2.3	Leaf chemical changes with plant ageing (June sampling)	144
	5.2.3	Discussio	on and Conclusions	144
5.3	Leaf S	urface St	ructures	147
	5.3.1	Material	s and Methods	147
		5.3.1.1	Light microscopy	147
		5.3.1.2	Scanning electron microscopy (SEM)	148
	5.3.2	Results		148
		5.3.2.1	Light microscopy	148
		5.3.2.2	SEM	148
	533	Discussio	on and Conclusions	1.51

CHAP'	TER 6: INTEGRATING DISCUSSION AND CONCLUSIONS	156
6.1	Type of Experiment	157
6.2	Change in Chemical Identity and Concentration	158
6.3	Type and Treatment of Plant Material	158
6.4	Seasonal Effects	159
6.5	Effects of Micro-organisms	160
6.6	Presence of Trichomes	160
6.7	Time of Application of Allelochemicals	161
REFE	RENCES CITED	163
		1 70
APPE	NDIX I	179
APPE	NDIX II	191

APPENDIX	III	203

ACKNOWLEDGEMENTS

The following project was carried out at the Department of Agronomy and Soil Science, at the University of New England. The author wishes to thank the many members of the Department, and the University, who helped with the design and running of the project, the writing of the thesis, and the financial support of the author.

Specifically, she would like to thank Associate Professor John Lovett for his advice on the project and his constructive criticism of the thesis material; Dr. Vic Bofinger of the Mathematics Department for his help with the statistics and data interpretation; Dr. Rob Davidson of the C.S.I.R.O. for his encouragement and valuable assistance throughout the duration of the project; Associate Professor John Brown and Dr. Steve Allen of the Botany Department for information on the current disease status of Australian crop sunflowers; Dr. D.S. (Woody) Horning of the Macleay Museum, University of Sydney for information on leaf surface structures and Dr. Elroy Rice of the Department of Botany and Microbiology, University of Oklahoma for specific information on the nature of chemicals found in, and the taxonomy of, the wild North American sunflower.

Messrs. Gary Cluley, Charles (Jock) Gibbon, Roy Wright and David Randall are thanked for their technical assistance, and Miss Janet Gorst, Ms. Judy Levitt, Mrs. Wendy Mason, Mr. Rajan Amartalingam and Miss Jenny Alvin for their technical and editorial assistance.

Messrs. Mike Speak and Peter Garlick of the Electron Microscope Unit are thanked for their assistance, and patience. Ms. Shirley Dawson of the Photography Unit is also thanked for assistance with the light microscope work.

vii.

Dr. Alan Duffield of the Biomedical Mass Spectrometry Unit, University of New South Wales and his team are gratefully thanked for their assistance with analyses of solutions, and for much help given while trying to identify the components of the solutions.

Thanks also go to Dr. Keith White of the Arthur Yates and Co. Pty. Ltd., Narromine, for supplying seed of the Suncross 53 parent line OR1, and for making available information about the genetics of the line; to Mr. Robert Macpherson for supplying germination data of OR1; and to Dr. Alan Gibson and Ms. A.E. Grant Lipp of the Plant Introduction Service, Canberra, for supplying seeds of, and information on, the three North American wild sunflower biotypes.

Lastly, Laurie O'Donnell for his patience, although it wore a bit thin at times, and his continued support over the last four years.

SUMMARY

Allelochemicals which may have allelopathic effects on other plants, including others of the same species, are released from many plant types including the North American weed or wild biotype sunflower. Both living plants and decaying debris have been shown to release these allelochemicals. Allelopathic responses have been noted in horticultural and agricultural plant communities.

Workers in North America have documented allelotoxic activity in the biotype sunflower, which enables it to be a strong competitor in old-field succession. Many workers suggest that this type of activity is common in weed species, but that it has been bred out of types developed into crop plants to improve yields, and the harvested product.

Experiments were carried out on an Australian naturalised biotype sunflower which showed little evidence for allelopathic activity, however, experiments on an unreleased hybrid cultivar sunflower showed, unexpectedly, consistent allelopathic properties in petri dish trials from living, dried and senesced leaf material. Similar, but less restricting activity was found in the male parent line of the hybrid.

Gas chromatographic/mass spectrometric analyses of leaf wash solutions of the three sunflower types indicated that many organic compounds were common to all types. The hybrid and its parent generally had more compounds, and at higher concentrations than the Australian biotype. An ion mass of 127 was particularly noted; it may belong to the naphthyl group.

Leaf surface structures were examined under both light and

ix.

scanning electron microscopy. Glandular trichomes were found on all three sunflower types, but much more abundantly on the hybrid. These may be storage sites for the leaf allelochemicals.

The evidence found for allelopathic activity in the hybrid cultivar is discussed in the context of allelochemicals as agents which may contribute to the defence and/or competitive ability of those plants which possess them in active concentrations, and that their presence may be an heritable factor.

LIST OF TABLES

,

Table 2.	: Nutritional (stimulatory) substances released from plants by rain washing or dew/fog condensation and drip leaching.	5
Table 2.	Chemicals identified from plant exudates and phyllosphere environments.	8
Table 2.	: Crop, weed, shrub, grass and tree species known to release allelochemicals.	30
Table 3.	: Sunflower production - world figures (F.A.O. Monthly Bulletin of Statistics, 1982).	44
Table 3.	: Allelochemicals identified from leachates or washings of sunflower (H. annuus).	56
Table 5.	: Leaf structure counts of sunflower SEM leaf prints of the hybrid Suncross 53, the hybrid's male parent 1 line OR1, and an Australian biotype sunflower (three 1 µm ² fields per print, averaged for two prints).	.51

LIST OF FIGURES

Figure 2.1:	Biosynthetic relationships of secondary plant products.	4
Figure 3.1:	Helianthus annuus: sunflower.	40
Figure 3.2:	Evolutionary geography of cultivated Helianthus annuus.	42
Figure 4.1:	Germination percentage of linseed over 120h in solutions of Suncross 53 sunflower fresh green leaf wash, leachates of green leaf, dried green leaf and senesced leaf, and sterile water.	65
Figure 4.2:	Mean radicle lengths of linseed over 120h when watered with solutions of Suncross 53 sunflower green leaf wash, leachates of green leaf, dried green leaf and senesced leaf, and sterile water.	67
Figure 4.3:	Germination percentage of linseed over 120h in solutions of five and ten week old Suncross 53 sunflower leaf wash, and sterile water.	71
Figure 4.4:	Mean radicle length of linseed at 12Ch when watered with leaf wash solutions of five and ten week old Suncross 53 sunflower, and sterile water.	72
Figure 4.5:	Germination percentage of linseed over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 24h old leaf wash, and sterile water.	75
Figure 4.6:	Mean radicle length of linseed at 120h when watered with solutions of Suncross 53 sunflower fresh leaf wash, 24h old leaf wash, and sterile water.	77
Figure 4.7:	Germination percentage of linseed over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 1.2 μ m and 0.2 μ m filtered leaf wash, and sterile water.	80
Figure 4.8a:	Germination percentage of wheat over 120h in solutions of Suncross 53 sunflower fresh leaf wash, $1.2\mu m$ and $0.2\mu m$ filtered leaf wash, and sterile water.	81
Figure 4.8b:	Germination percentage of phalaris over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 1.2 μ m and 0.2 μ m filtered leaf wash, and sterile water.	82
Figure 4.8c:	Germination percentage of white clover over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 1.2 μ m and 0.2 μ m filtered leaf wash, and sterile water.	83

xiii.

Page

86

- Figure 4.8d: Germination percentage of sunflower over 120h in solutions of Suncross 53 sunflower leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.8e: Germination percentage of perennial ryegrass over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.8f: Germination percentage of lucerne over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 87 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.8g: Germination percentage of sorghum over 120h in solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.9: Mean radicle length of linseed at 120h when watered 89 with solutions of Suncross 53 sunflower fresh leaf wash, $1.2\mu m$ and $0.2\mu m$ filtered leaf wash, and sterile water.
- Figure 4.10a: Mean first seminal root length of wheat at 120h when watered with solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.10b: Mean first seminal root length of phalaris at 120h when watered with solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.10c: Mean radicle length of white clover at 120h when watered with solutions of Suncross 53 sunflower fresh 91 leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.10d: Mean first seminal root length of perennial ryegrass 92 at 120h when watered with solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.10e: Mean radicle length of lucerne at 120h when watered 92 with solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.
- Figure 4.10f: Mean first seminal root length of sorghum at 120h when watered with solutions of Suncross 53 sunflower fresh leaf wash, 1.2µm and 0.2µm filtered leaf wash, and sterile water.

		xiv.
		Page
Figure 4.11:	Germination percentage of linseed over 120h in sterile water, after soaking in Suncross 53 sunflower leaf wash solution for periocs of Oh to 24h.	101
Figure 4.12:	Mean radicle length of linseed at 120h, when watered with sterile water, after soaking in Suncross 53 sunflower leaf wash solution for periods of 0h to 24h.	102
Figure 4.13:	Mean height of linseed seedlings over eight days when watered with Suncross 53 sunflower leaf wash solution, and distilled water.	103
Figure 4.14:	Mean leaf number of linseed seedlings over eight days when watered with Suncross 53 sunflower leaf wash solution, and distilled water.	104
Figure 4.15:	Mean plant top weight of linseed seedlings at eight days when watered with Suncross 53 sunflower leaf wash solution, and distilled water.	106
Figure 4.16:	Mean plant root weight of linseed seedlings at eight days when watered with Suncross 53 sunflower leaf wash solution, and distilled water.	106
Figure 4.17:	Mean plant root length of linseed seedlings at eight days when watered with Suncross 53 sunflower leaf wash solution, and distilled water.	103
Figure 4.18:	Germination percentage of linseed over 120h in solutions of the Australian biotype sunflower leaf wash, and sterile water.	109
Figure 4.19:	Germination percentage of linseed over 120h in solutions of Suncross 53 and the Australian biotype sunflower leaf wash, and sterile water.	110
Figure 4.20:	Mean radicle length of linseed at 120h when watered with solutions of the Australian biotype sunflower leaf wash, and sterile water.	111
Figure 4.21:	Mean radicle length of linseed at 120h when watered with solutions of Suncross 53,and the Australian biotype sunflower leaf wash, and sterile water.	111
Figure 4.22:	Germination percentage of linseed over 120h in solutions of Suncross 53, Australian biotype, and U.S.A. biotype (1467,1468,1469) sunflower leaf wash, and sterile water.	113
Figure 4.23:	Mean radicle length of linseed at 120h when watered with solutions of Suncross 53, Australian biotype, and U.S.A. biotype (1467,1468,1469) sunflower leaf wash, and sterile water.	114

xv.

- Figure 4.24: Germination percentage of linseed over 120h in solutions of Suncross 53, and Australian biotype sunflower leaf wash, and sterile water.
- Figure 4.25: Mean radicle length of linseed at 120h when watered with solutions of Suncross 53, and Australian biotype sunflower leaf wash, and sterile water.
- Figure 4.26: Germination percentage of linseed over 120h in solutions of Suncross 53, the Australian biotype, 122 and U.S.A. biotype (1468,1469) sunflower leaf wash, and sterile water.
- Figure 4.27: Germination percentage of wheat over 120h in solutions of Suncross 53, the Australian biotype, and U.S.A. biotype (1468,1469) sunflower leaf wash, and sterile water.
- Figure 4.28: Mean radicle length of linseed at 120h when watered with solutions of Suncross 53, the Australian ¹²⁴ biotype, and U.S.A. biotype (1468,1469) sunflower leaf wash, and sterile water.
- Figure 4.29: Mean first seminal root length of wheat at 120h when watered with solutions of Suncross 53, the Australian biotype, and U.S.A. biotype (1468,1469) sunflower leaf wash, and sterile water.
- Figure 4.30a: Germination percentage of linseed at 120h when watered 126 with leaf wash and ground leaf solutions of Suncross 53, and the Australian biotype sunflower, and sterile water.
- Figure 4.30b: Germination percentage of wheat at 120h when watered with leaf wash and ground leaf solutions of Suncross 53, and the Australian biotype sunflower, and sterile water.
- Figure 4.31a: Mean radicle length of linseed at 120h when watered with leaf wash and ground leaf solutions of Suncross 53,and the Australian biotype sunflower, and sterile water.
- Figure 4.31b: Mean first seminal root length of wheat at 120h when watered with leaf wash and ground leaf solutions of Suncross 53, and the Australian biotype sunflower, and sterile water.
- Figure 4.32: Mean coleoptile height of wheat at 120h when watered with leaf wash and ground leaf solutions of Suncross 128 53,and the Australian biotype sunflower, and sterile water.

- Figure 4.33: Germination percentage of wheat over 120h in leaf wash and ground leaf solutions, and sandwich 130 treatments of green, green dried and senesced leaves, of Suncross 53 and the Australian biotype sunflower, and sterile water.
- Figure 4.34: Mean first seminal root length of wheat at 120h when watered with leaf wash and ground leaf solutions, and leachates of green, green dried and senesced leaves, of Suncross 53 and the Australian biotype sunflower, and sterile water.
- Figure 4.35: Mean coleoptile height of wheat at 120h when watered with leaf wash and ground leaf solutions, and 132 leachates of green, green dried and senesced leaves, of Suncross 53 and the Australian biotype sunflower, and sterile water.
- Figure 5.1: Germination percentage of wheat over 120h in solutions of Suncross 53, the Australian biotype and the 138 hybrid parent lines OR1 sunflower leaf wash, and sterile water.
- Figure 5.2: Mean first seminal root length of wheat at 120h in solutions of Suncross 53, the Australian biotype and the hybrid parent line OR1 sunflower leaf wash, and sterile water.
- Figure 5.3: Mean coleoptile height of wheat at 120h in solutions of Suncross 53, the Australian biotype and the hybrid parent line OR1 sunflower leaf wash, and sterile water.

LIST OF PLATES

- Plate 1: Elongated (Type 1) glandular trichomes and non-glandular leaf hairs on Suncross 53 sunflower adaxial leaf surface (x 10).
- Plate 2: Spherical (Type 2) glandular trichomes and non-glandular 149
 leaf hairs on Australian biotype sunflower abaxial leaf
 surface (x 4).
- Plate 3: Elongated (Type 1) and spherical (Type 2) glandular trichomes and non-glandular leaf hairs on Suncross 53 150 sunflower abaxial leaf surface (x 4).
- Plate 4: Elongated (Type 1) glandular trichomes on the hybrid parent line OR1 sunflower adaxial leaf surface (x 800).
- Plate 5: Spherical (Type 2) glandular trichome on Suncross 53 sunflower adaxial surface (x 800). 152
- Plate 6: Elongated (Type 1) glandular trichome and non-glandular 153 leaf hair on the hybrid parent line OR1 sunflower adaxial leaf surface (x 470).
- Plate 7: Elongated (Type 1) and spherical (Type 2) glandular 153 trichomes and non-glandular leaf hairs on Suncross 53 sunflower adaxial leaf surface (x 160).