APPENDIX B

MAJOR AND TRACE ELEMENT ANALYSES, CATION NORMS, AND SAMPLE LOCALITIES FOR PBOC PERIDOTITES AND OLIVINE NORITES

NOTE:

- (i) Major element analyses are recalculated to original totals on a volatile-free basis. Trace element values are also recalculated on a volatile-free basis.
- (ii) Fe_2O_3/FeO ratios of all analyses in Tables B-2 to B-7 are adjusted to that of the freshest (and coincidentally, the most 'evolved') olivine norite (sample 440, $Fe_2O_3/FeO = 0.07 \pm 0.004$, three determinations). Measured FeO (FeO¹) is listed for most analyses.
- (iii) In all samples, LREE (La, Ce and Nd) abundances, and most probably all other REE abundances (see Section 5.4.4), are below XRF detection limits (< 2 µg/g).</pre>

Fig. B-1: Location of the type area of the PBOC and sample localities referred to in Chapters 3 (3.1 - 3.5) and 5 (1 - 13),

and listed in Tables B-1 to B-7.

NOTE : For geological details see Map 1.

TABLE	8-1

ANALYSIS No.	1	2	3	4	5	6	7	8	9	10	11	12	13
SAMPLE	492	502	495	503	506	504	505	507	498	196	493	497	508*
OLIVINE (Fo)	91.4	n.d.	91.6	n.d.	n.d.	n.d.	n.d.	n.d.	92.3	92.0	91.5	92.2	n.d.
5102	45.78	46.67	46.46	46.56	47.67	45.90	45.84	46.23	45.68	47.10	46.25	46.91	45.35
T102	0.01	0.01	0.01	-	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.01
A1203	1.17	1.13	1.10	1.06	0.87	1.16	0.71	0.36	0.91	1.15	1.20	1.05	1.38
Cr ₂ 03	0.33	0.36	0.39	0.38	0.37	0.41	0.41	0.38	0.37	0.41	0.39	0.39	0.46
EFe0	8.08	7.94	7.84	7.80	7.76	7.86	7.96	7.70	7.30	7.04	7.03	6.37	7.31
NiO	0.35	0.33	0.32	0.34	0.31	0.36	0.35	0.34	0.32	0.31	0.29	0.35	0.29
4n0	0.14	0.13	0.13	0.14	0.12	0.14	0.11	0.14	0.17	0.14	0.11	0.13	0.14
⁴g0	42.68	42.68	43.15	42.85	42.32	43,42	44.41	45.62	44.68	43.40	44.15	43.31	45.17
Ca0	0.06	0.09	0.07	0.09	0.04	0.06	0.04	0.05	0.11	0.33	0.34	0.29	0.25
Na ₂ 0	0.02	0.03	0.03	0.03	0.02	0.03	0.02	0.03	0.03	0.06	0.03	0.03	0.03
к ₂ 0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
P205	0.01	0.01	0.01	0.01	n.d.	n.d.	n.đ.	n.d.	n.d.	n.d.	n.:.	n.d.	n.d
TOTAL	98.64	99.39	99.52	99.27	99.50	99.36	99.88	100.87	99.59	99.96	99.37	99.33	100.40
2Vol ¹	12.58	12.35	12.03	12.14	12.53	12.33	11.30	12.12	12.52	11.93	12.55	11.95	11.03
Fe0 ¹	0.89	0.99	1.10	0.90	2.08	1.07	1.35	0.88	0.99	1.44	1.11	1.23	1.23
4g*	90.3	90.4	90.6	90.6	90.5	90.7	90.8	91.2	91.5	91.5	91.7	91.3	91.6
CATION NORM													
PL	0.8	-	-	-	-	-	-	-	_	-	-	0.1	-
CPX	-	-	-	-	-	-	-	-	0.1	-	0.3	0.5	0.5
DPX	33.8	39	36.7	39	44	34	31	32	n.d.	38.9	33.5	35.4	28
DL	65.0	60	62.2	60	56	65	68	57	69.3	60.5	64.5	53.4	70
SP	0.4	1.0	1.1	1.0	1.0	1.2	0.6	0.5	0.6	0.5	1.1	0.4	1.5
FRACE ELEMENT	5 (µg/g)												
Na -	154	n.d.	n.d.	n.d.	176	n.d.	173	185	200	417	n.d.	218	240
< Contract of the second se	66	n.đ.	n.d.	n.d.	102	n.d.	46	70	58	124	n.đ.	ó5	69
Sr	2	n.d.	n.d.	n.d.	2	n.d.	<1	1	<1	<1	n.d.	2	16
[i	73	83	76	78	84	84	191	73	100	104	119	104	110
li	2789	2597	2574	2683	2419	2820	2725	2639	2534	2438	2317	2712	2243
20	133	n.d.	n.d.	n.d.	102	137	112	114	119	122	n.c.	113	124
1	28	53	43	58	53	60	21	30	34	36	44	30	35
r	2250	2471	2653	2620	2507	2781	2827	2611	2556	2795	2675	2565	3142
Cu	9	n.d.	n.d.	n.d.	19	n.d.	3	2	5	3	n.c.	5	15
Zn	59	n.d.	n.d.	n.d.	44	n.d.	40	41	50	38	n.c.	50	60

¹ See Appendix G Mg* = 100(Mg+Ni)/(Mg+ΣFe+Mn+Ni)

* Antigorite harzburgite, near Nundle, N.S.W. : Not a member of the PBOC

n.d. ≈ not determined

TABLE B-2

	in Schist	ose Serpentin	ite near Local	ities 1, 2,	5, 6 and 7 (F	ig. B-1)	
ANALYSIS No.	1	2	3	4	5	ô	7
SAMPLE	463	466	527	469	459	526	480
LOCALITY	1	2	5	6	5	5	7
OLIVINE(Fo)	84.9	85.1	n.d.	85.5	85.5	n.d.	86.4
Si0,	47.19	50.01	50.96	51.68	46.86	51.89	47.82
Ti02	0.03	0.03	0.02	0.03	0.02	0.03	0.02
A1203	6.16	10.26	16.50	11.08	13.12	12.67	9.32
Cr_20_3	0.62	0.39	0.26	0.42	0.31	0.35	0.48
Fe203	0.63	0.48	0.34	0.43	0.45	0.39	0.45
FeO	8.96	6.80	4.82	6.17	6.40	5.54	6.36
NiO	0.16	0.09	0.03	0.07	0.10	0.05	0.10
Mn0	0.19	0.16	0.12	0.16	0.15	0.15	0.15
MgO	32.06	25.03	16.07	23.15	22.99	21.02	26.98
CaO	3.90	6.63	10.31	5.12	9.52	8.10	7.79
Na ₂ 0	0.17	0.05	0.06	0.03	0.45	0.39	0.04
к ₂ 0	0.05	0.09	0.19	1.28	0.12	0.06	0.19
P2 ⁰ 5	-	0.01	0.02	0.01	0.01	0.01	0.02
TOTAL	100.12	100.03	99.70	99.63	100.50	100.65	99.72
ΣVol. ¹	5.92	2.82	0.72	1.67	5.60	1.23	4.30
Fe0 ¹	6.92	6.97	4.65	4.74	5.60	5.89	5.51
Mg*	85.5	85.8	84.5	86.0	35.5	86.1	87.5
CATION NORM							
PL	13.2	25.1	43.1	26.5	33.9	31.1	21.2
CPX	2.8	4.8	7.5	-	13.0	7.1	12.1
OPX	41.2	51.2	49.3	69.6	19.9	57.4	35.9
OL	41.9	18.7	0.1	3.9	33.1	4.3	30.5
SP	0.9	0.28	-	0.1	0.2	0.1	0.3
TRACE ELEMEN	ITS (µg∕g)						
к	409	746	1595		1016	527	1603
Rb	<1	<1	20	25	3	2	1
Ba	9	<3	6	420	<3	8	<3
Sr	19	5	1	135	6	20	4
Li	-	2.3	-	5.6	1.2	1.1	-
Zr	<1	<1	1	2	<1	<1	1
Y	<2	3	3	3	<2	<2	3
Ti	176	184	223	236	172	239	219
Cu	5	10	10	11	9	5	8
Zn	48	52	40	49	40	43	34
Ni	1286	733	272	538	750	414	794
Co	109	82	64	85	93	64	79
۷	64	62	79	66	77	78	81
Cr	4233	2647	1765	2870	2112	2380	3313

Major and Trace Element Analyses and Normative Mineralogy of Isolated Gabbroic Inclusions

 1 See Appendix G (Fe₂0₃/FeO adjusted to 0.07) Mg* = 100(Mg+Ni)/(Mg+2Fe+Mn+Ni)

n.d. = not determined

TABLE 8-3

Major and Trace Element Analyses and Normative Mineralogy of Olivine Norites from Locality 3 (Fig. 8-1)																	
ANALYSIS NO. SAMPLE	1	2	3 443	4 445	5 448	6 449	7 450	8 452	9 456	10 460	11 467	12 470	13 532	14 530	15 514	16 529	17 531
OLIVINE (Fo)	80.5	80.5	82.0	82.7	83.0	83.0	83.2	83.4	84.0	84.4	85.3	85.5	n.d.	n.d.	n.d.	n.d.	n.d.
Si0 ₂	49.64	49.30	48.34	46.94	46.99	46.59	46.62	46.16	45.88	45.22	43.28	48.44	44.48	47.15	48.65	46.33	47.90
Ti0,	0.05	0.05	0.04	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.04	0.06	0.04	n.d.
A1,0,	13.13	11.10	10.66	10.85	9.96	9.77	9.75	9.22	8.17	7.24	4.86	7.95	6.59	10.67	6.40	9.85	18.44
Cr203	0.28	0.35	0.45	0.48	0.50	0.52	0.52	0.50	0.70	0.78	0.69	0.73	0.66	0.45	0.61	0.51	0.32
Fe ₂ 0 ₃	0.52	0.59	0.55	0.60	0.59	0.59	0.58	0.62	0.65	0.66	0.74	0.54	0.78	0.56	0.66	0.60	0.26
FeO	7.40	8.34	7.93	8.52	8.48	8.48	8.35	8.92	9.31	9.49	10.64	7.78	11.08	8.04	9.44	8.63	3.74
NiO	0.05	0.07	0.10	0.11	0.12	0.12	0.12	0.13	0.15	0.15	0.19	0.13	0.16	0.11	0.11	0.11	0.04
Mn0	0.16	0.19	0.18	0.17	0.18	0.18	0.18	0.19	0.20	0.20	0.21	0.18	0.21	0.17	0.21	0.21	0.11
MgO	19.48	21.88	23.71	25.39	25.98	26.80	26.23	27.43	29.94	31.66	36.60	29.54	31.32	24.39	28.74	26.69	14.62
CaO	8.59	7.57	7.63	6.70	7.01	6.65	6.85	6.38	4.97	4.62	2.72	4.93	4.05	7.44	5.07	6.55	13.70
Na ₂ 0	0.58	0.48	0.40	0.36	0.38	0.35	0.39	0.35	0.25	0.15	0.08	0.42	0.40	0.44	0.32	0.44	0.36
K_0	0.02	0.09	0.04	0.07	0.07	0.04	0.05	0.04	0.04	0.02	0.01	0.02	0.02	0.02	0.03	0.02	0.11
P205	0.01	0.01	-	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.d.	0.02
TOTAL	99.91	100.02	100.03	100.23	100.31	100.14	99.70	99.98	100.30	100.23	100.05	100.69	99.78	99.49	100.31	99.98	99.62
ΣVol ¹	1.20	2.74	3.54	4.83	4.85	4.43	4.32	5.79	5.61	7.55	9.90	5.20	6.80	4.83	3.62	5.18	2.94
Fe0 ¹	7.38	8.29	6.18	6.74	6.98	7.17	7.23	6.31	7.24	6.65	5.48	6.62	6.82	6.48	7.71	7.22	n.d.
Mg*	81.2	81.2	83.1	83.1	83.5	83.9	83.8	83.5	84.1	84.6	85.0	86.2	82.4	83.3	83.4	83.6	86.5
CATION NORM																	
PL	34.5	28.3	26.9	27.7	24.9	24.3	24.5	22.5	19.9	17.2	10.6	18.1	15.7	26.9	14.1	24.8	49.2
CPX	8.2	8.6	9.1	5.5	9.1	7.5	8.6	7.6	3.8	4.6	1.0	3.8	3.9	9.5	8.1	6.9	18.3
OPX	44.6	45.5	38.5	31.5	29.5	28.9	29.8	29.2	29.7	26.2	19.9	44.2	26.1	32.3	46.2	28.3	18.4
0L	12.5	17.1	25.0	34.4	35.7	38.5	36.4	39.9	45.4	50.7	67.2	32.8	53.1	30.6	30.3	39.1	14.0
SP	0.3	0.5	0.6	0.8	0.9	0.8	0.8	0.8	1.2	1.4	1.3	1.1	1.3	0.7	1.0	0.9	0.1
TRACE ELEMENTS	S (µg∕g)															
ĸ	147	769	345	622	574	326	407	298	320	197	109	160	178	132	216	197	910
RЬ	<1	3	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	2
Ba	2	7	4	<3	3	<3	<3	<3	<3	5	<3	<3	<3	< 3	5	3	19
Sr	8	11	5	10	7	5	5	5	6	5	2	1	6	5	5	2	107
L1	1.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	7.1	n.d.	n.d.	n.d.	5.2
Zr	2	1	4	3	2	1	2	<1	<1	1	1	<1	3	1	<1	1	1
Ŷ	4	3	3	<2	4	2	3	4	<2	<2	3	2	<2	<2	3	3	<2
Ti	341	361	294	274	341	278	309	243	226	240	124	167	210	281	387	272	184
Cu	28	31	19	26	43	24	21	21	19	16	7	24	5	19	29	32	21
2n	59	59	55	53	53	52	57	64	42	52	47	55	67	53	65	63	31
N1	430	545	754	903	911	941	930	1051	1144	1162	1529	1056	1292	840	872	876	284
LO V	/5	89	90	87	103	107	98	100	104	128	114	95	135	95	102	95	86
v	96	108	96	82	98	89	93	81	82 	87	54	74	68	90	120	84	56
ur C-	1909	2389	3059	3317	3395	3540	3536	3449	4766	5321	4717	5024	4534	3084	4148	3458	2167
20	32	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

 1 See Appendix G (Fe $_2 0_3/{\rm Fe0}$ adjusted to 0.07)

Mg* = 100(Mg+Ni)/(Mg+ΣFe+Mn+Ni)

n.d. = not determined

TABLE B-4

Major and Trace Element Analyses and Normative Mineralogy of Olivine Norites

AMAL F1S No. 1 2 3 4 5 6 7 8 SAMPLE 453 458 472 473 486 4477 523 479 SAMPLE 453 468 472 473 486 4477 523 479 DLIVINE (Fo) 83.7 84.2 85.7 85.8 88.0 82.9 n.d. 86.5 SiO ₂ 47.98 42.60 43.12 41.41 41.26 47.64 46.24 43.77 TiO ₂ 0.03 0.03 0.03 0.02 0.01 0.05 0.02 0.02 AlgO ₃ 0.13 3.51 4.05 5.32 8.89 10.35 7.65 5.51 Fe203 0.53 0.73 0.77 0.75 0.50 0.57 0.64 Fe0 7.62 12.18 10.21 10.94 7.91 7.17 8.09 M60 0.17 0.22 0.20 0.33 0.1	and Plagioclase-Bearing Peridotites from Localities 4, 5, 6 and 7 (Fig. B-1)												
LOCALITY 5 5 6 4 5 7 7 7 OLIVINE (F0) 83.7 84.2 85.7 85.8 88.0 82.9 n.d. 86.5 SiO2 47.98 42.60 43.12 41.41 41.26 47.64 46.24 43.77 TiO2 0.03 0.03 0.02 0.01 0.05 0.02 0.02 Al203 0.50 0.73 0.79 0.52 0.46 0.42 0.56 0.75 Fe0 7.62 12.18 10.14 7.91 7.17 8.09 9.40 Ni0 0.11 0.22 0.20 0.03 0.16 0.17 0.18 0.19 Mo 0.17 0.22 0.20 0.03 0.16 0.17 0.43 35.4 Mo 0.17 0.22 0.01 0.01 0.01 0.41 0.02 Mo 0.02 0.01 0.01 0.01 0.01 0.02	ANALYSIS No. SAMPLE	1 453	2 458	3 472	4 473	5 486	6 447	7 523	8 479				
DLIVINE (Fo) 83.7 84.2 85.7 85.8 88.0 82.9 n.d. 86.5 SiG2 47.98 42.60 43.12 41.41 41.26 47.64 46.24 43.77 T102 0.03 0.03 0.03 0.02 0.01 0.05 0.02 0.02 Al203 10.13 3.51 4.05 5.32 8.89 10.35 0.65 5.51 Fe0 7.62 12.18 10.21 10.94 7.91 7.17 8.99 9.10 N10 0.11 0.22 0.20 0.03 0.16 0.17 0.18 0.19 M00 0.17 0.22 0.20 0.03 0.16 0.17 0.18 0.19 M00 0.17 0.22 0.20 0.03 0.16 0.17 0.18 0.19 M00 0.17 0.22 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </td <td>LOCALITY</td> <td>5</td> <td>5</td> <td>6</td> <td>4</td> <td>5</td> <td>7</td> <td>7</td> <td>7</td>	LOCALITY	5	5	6	4	5	7	7	7				
SiO2 47.98 42.60 43.12 41.41 41.26 47.64 46.24 43.77 TiO2 0.03 0.03 0.02 0.01 0.05 0.02 0.02 Al203 10.13 3.51 4.05 5.32 8.89 10.35 7.65 5.51 Fe0 7.62 12.18 10.21 0.77 0.55 0.50 0.57 0.64 Fe0 7.62 12.18 10.21 10.94 7.91 7.17 8.09 9.10 N10 0.11 0.22 0.20 0.03 0.16 0.17 0.18 0.19 Mq0 2.49 8.35 37.12 39.12 34.17 23.87 30.047 15.46 Ca0 7.65 1.23 3.38 1.35 5.94 9.01 5.41 4.04 Na20 0.04 0.08 0.07 0.06 0.29 0.14 4.07 Ka0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 TotL 99.77 </td <td>OLIVINE (Fo)</td> <td>83.7</td> <td>84.2</td> <td>85.7</td> <td>85.8</td> <td>88.0</td> <td>82.9</td> <td>n.d.</td> <td>86.5</td>	OLIVINE (Fo)	83.7	84.2	85.7	85.8	88.0	82.9	n.d.	86.5				
Ti02 0.03 0.03 0.02 0.01 0.05 0.02 0.02 Al203 10.13 3.51 4.05 5.32 8.89 10.35 7.05 5.17 Cr203 0.53 0.85 0.71 0.77 0.55 0.50 0.57 0.64 Fe 7.62 12.18 10.21 10.94 7.91 7.17 8.09 9.10 Ni0 0.11 0.22 0.19 0.23 0.19 0.10 0.14 0.19 Mo 0.17 0.22 0.03 0.16 0.17 0.18 0.19 Mo 0.75 1.23 3.33 1.36 5.94 9.01 5.41 4.01 Nag0 0.04 0.08 0.07 0.06 0.29 0.14 4.07 Nag0 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 Nag0 0.62 0.71 0.75 5.55 6.5	SiO ₂	47.98	42.60	43.12	41.41	41.26	47.64	46.24	43.77				
A1203 10.13 3.51 4.05 5.22 8.89 10.35 7.65 5.51 Cr203 0.50 0.73 0.79 0.52 0.46 0.42 0.56 0.75 Fe0 7.62 12.18 10.21 10.94 7.91 7.17 8.09 9.10 N10 0.11 0.22 0.19 0.23 0.19 0.10 0.14 0.19 Mn0 0.17 0.22 0.20 0.03 0.16 0.17 0.18 0.19 Mn0 0.17 0.22 0.20 0.03 0.16 0.17 0.14 0.19 Mn0 0.17 0.22 0.20 0.03 0.16 0.17 0.14 0.19 Mn0 0.47 0.22 0.01 0	Ti0 ₂	0.03	0.03	0.03	0.02	0.01	0.05	0.02	0.02				
Cr ₂ 0 ₃ 0.50 0.73 0.79 0.52 0.46 0.42 0.56 0.75 Fe ₂ 0 ₃ 0.53 0.85 0.71 0.77 0.55 0.50 0.57 0.64 Fe 7.62 12.18 10.21 10.24 0.19 0.10 0.11 0.14 0.19 Mn0 0.17 0.22 0.20 0.03 0.16 0.17 0.18 0.19 Mg0 24.98 36.35 37.12 39.12 34.17 23.87 30.47 35.46 Ca0 7.65 1.23 33.3 1.36 5.94 9.01 5.11 4.01 Mg0 0.02 0.01 0.01 0.01 0.02 0.01 Va0 0.02 0.01 0.01 0.01 0.02 0.01 Va1 4.67 10.01 99.81 99.62 100.05 99.57 99.76 Vy1 4.67 10.44 8.38 11.08 9.57 7.5<	A1203	10.13	3.51	4.05	5.32	8.89	10.35	7.65	5.51				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cr ₂ 0 ₃	0.50	0.73	0.79	0.52	0.46	0.42	0.56	0.75				
Fe0 7.62 12.18 10.21 10.94 7.91 7.17 8.09 9.10 N10 0.11 0.22 0.19 0.23 0.19 0.10 0.14 0.19 Mn0 0.17 0.22 0.02 0.03 0.16 0.17 0.18 0.19 Mn0 24.98 38.35 37.12 33.12 34.17 23.87 30.47 35.46 CaO 7.65 1.23 3.38 1.36 5.94 9.01 5.41 4.04 NagO 0.04 0.08 0.07 0.061 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 NTAL 99.77 100.01 99.91 99.81 99.52 100.05 99.57 99.76 EVol 1 4.67 10.41 8.38 11.08 9.95 4.01 7.11 8.51 FeO 6.32 5.57 5.55 6.50 5.58 5.75 7.64 6.5	Fe ₂ 0 ₃	0.53	0.85	0.71	0.77	0.55	0.50	0.57	0.64				
N10 0.11 0.22 0.19 0.23 0.19 0.10 0.14 0.19 Mn0 0.17 0.22 0.20 0.03 0.16 0.17 0.18 0.19 Mg0 24.98 38.35 37.12 39.12 34.17 23.87 30.47 35.46 Ca0 7.65 1.23 3.38 1.36 65.94 9.01 5.41 4.04 Na20 0.04 0.08 0.07 0.06 0.29 0.14 0.07 K ₀ 0.02 0.01 0.01 0.01 0.01 0.44 0.08 0.01 P ₂ O ₅ 0.01 n.d. 0.01 0.01 0.01 0.01 0.02 0.01 TOTAL 99.77 100.01 99.91 99.82 90.62 0.00.5 99.57 99.57 Evol 1 4.67 10.41 8.38 11.08 9.95 4.01 7.11 8.51 Feo 6.32 5.57 5.	FeO	7.62	12.18	10.21	10.94	7.91	7.17	8.09	9.10				
Mn0 0.17 0.22 0.20 0.03 0.16 0.17 0.18 0.19 Mg0 24.98 38.35 37.12 39.12 34.17 23.87 30.47 55.46 Ca0 7.65 1.23 3.38 1.36 5.94 9.01 5.41 4.04 Na ₂ 0 0.02 0.01 0.02 0.01 0.06 0.29 0.14 0.07 K ₀ 0 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 P205 0.01 n.d. 0.01 9.91 99.81 99.62 100.05 99.57 99.76 Evol 6.32 5.57 5.55 6.50 5.58 5.75 7.64 6.55 Mg* 84.4 83.9 85.7 85.7 87.7 84.6 86.1 86.5 CATION NORM PL 25.3 7.5 8.5 7.5 7.5 5.5 OPX 34.4 18.0	NiO	0.11	0.22	0.19	0.23	0.19	0.10	0.14	0.19				
Mg024.9838.3537.1239.1234.1723.8730.4735.46Ca07.651.233.381.365.949.015.414.04Na200.040.080.070.060.290.140.07P2050.01n.d.0.010.010.010.010.020.01TOTAL99.77100.0199.9199.8199.62100.0599.5799.76Zv014.6710.148.3811.089.954.017.118.51Fe06.325.575.556.505.585.757.646.55Mg*84.483.985.785.787.784.686.186.5CATION NORMPL25.37.58.913.523.525.418.112.8CPX10.4n.d.6.3n.d.5.817.57.55.5OV34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)J11223555K1571171639854n.d.68596Rb1<1	MnO	0.17	0.22	0.20	0.03	0.16	0.17	0.18	0.19				
Ca0 7.65 1.23 3.38 1.36 5.94 9.01 5.41 4.04 Na ₂ 0 0.04 0.08 0.07 0.06 0.29 0.14 0.07 K ₀ 0 0.02 0.01 0.	MgO	24.98	38.35	37.12	39.12	34.17	23.87	30.47	35.46				
Na20 0.04 0.08 0.07 0.06 0.29 0.14 0.07 K ₀ 0 0.02 0.01 0.02 0.01 0.02 0.01 TOTAL 99.77 100.01 99.91 99.81 99.62 100.05 99.57 99.76 TVol 1 4.67 10.14 8.38 11.08 9.95 4.01 7.11 8.51 Fe0 6.32 5.57 5.55 6.50 5.58 5.75 7.64 6.55 Mg* 84.4 83.9 85.7 85.7 87.7 84.6 86.1 86.5 CATION NORM 1.4 1.3 -5.2 27.9 29.1 16.2 OL 29.4 7.2.8 69.2 84.3	CaO	7.65	1.23	3.38	1.36	5.94	9.01	5.41	4.04				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₂ 0	0.04	0.08	0.08	0.07	0.06	0.29	0.14	0.07				
P205 0050.01n.d.0.010.010.010.020.01TOTAL99.77100.0199.9199.8199.62100.0599.5799.76EV0114.6710.148.3811.089.954.017.118.51Fe06.325.575.556.505.585.757.646.55Mg*84.483.985.785.787.784.686.186.5CATION NORMPL25.37.58.913.523.525.418.112.8CPX10.4n.d.6.3n.d.5.817.57.55.5OPX34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	K ₂ 0	0.02	0.01	0.02	0.01	0.01	0.4	0.08	0.01				
TOTAL 99.77 100.01 99.91 99.81 99.62 100.05 99.57 99.76 2Vol 1 4.67 10.14 8.38 11.08 9.95 4.01 7.11 8.51 Fe0 6.32 5.57 5.55 6.50 5.58 5.75 7.64 6.55 Mg* 84.4 83.9 85.7 87.7 84.6 86.1 86.5 CATION NORM PL 25.3 7.5 8.9 13.5 23.5 25.4 18.1 12.8 CPX 10.4 n.d. 6.3 n.d. 5.8 17.5 7.5 5.5 OPX 34.4 18.0 14.4 1.3 -5.2 27.9 29.1 16.2 OL 29.4 72.8 69.2 84.3 74.9 28.6 44.6 64.4 SP 0.6 1.8 1.3 0.9 1.0 0.6 0.7 1.2 TRACE ELEMENTS (µg/g) K <t< td=""><td>P205</td><td>0.01</td><td>n.d.</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.02</td><td>0.01</td></t<>	P205	0.01	n.d.	0.01	0.01	0.01	0.01	0.02	0.01				
zvol 14.6710.148.3811.089.954.017.118.51Fe06.325.575.556.505.585.757.646.55Mg*84.483.985.785.787.784.686.186.5CATION NORMPL25.37.58.913.523.525.418.112.8CPX10.4n.d.6.3n.d.5.817.57.55.5OPX34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4Sp0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	TOTAL	99.77	100.01	99.91	99.81	99.62	100.05	99.57	99.76				
Fe06.325.575.556.505.585.757.646.55Mg*84.483.985.785.787.784.686.186.5CATION NORMPL25.37.58.913.523.525.418.112.8CPX10.4n.d.6.3n.d.5.817.57.55.5OPX34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	Σ Vol ¹	4.67	10.14	8.38	11.08	9.95	4.01	7.11	8.51				
Mg+ 84.4 83.9 85.7 85.7 87.7 84.6 86.1 86.5 CATION NORM PL 25.3 7.5 8.9 13.5 23.5 25.4 18.1 12.8 CPX 10.4 n.d. 6.3 n.d. 5.8 17.5 7.5 5.5 OPX 34.4 18.0 14.4 1.3 -5.2 27.9 29.1 16.2 OL 29.4 72.8 69.2 84.3 74.9 28.6 44.6 64.4 SP 0.6 1.8 1.3 0.9 1.0 0.6 0.7 12 TRACE ELEMENTS (µg/g) V 11 1 1 7 2 <1	Fe0	6.32	5.57	5.55	6.50	5.58	5.75	7.64	6.55				
CATION NORM PL 25.3 7.5 8.9 13.5 23.5 25.4 18.1 12.8 CPX 10.4 n.d. 6.3 n.d. 5.8 17.5 7.5 5.5 OPX 34.4 18.0 14.4 1.3 -5.2 27.9 29.1 16.2 OL 29.4 72.8 69.2 84.3 74.9 28.6 44.6 64.4 SP 0.6 1.8 1.3 0.9 1.0 0.6 0.7 12 TRACE ELEMENTS (µg/g) 11 11 21 7 2 2 1 K 157 117 163 98 54 n.d. 685 96 Rb 1 <1	Mg*	84.4	83.9	85.7	85.7	87.7	84.6	86.1	86.5				
PL25.37.58.913.523.525.418.112.8CPX10.4n.d.6.3n.d.5.817.57.55.5OPX34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	CATION NORM												
CPX10.4n.d.6.3n.d.5.817.57.55.5OPX34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	PL.	25.3	7.5	8.9	13.5	23.5	25.4	18.1	12.8				
OPX34.418.014.41.3-5.227.929.116.2OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	СРХ	10.4	n.d.	6.3	n.d.	5.8	17.5	7.5	5.5				
OL29.472.869.284.374.928.644.664.4SP0.61.81.30.91.00.60.71.2TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1	OPX	34.4	18.0	14.4	1.3	-5.2	27.9	29.1	16.2				
SP 0.6 1.8 1.3 0.9 1.0 0.6 0.7 1.2 TRACE ELEMENTS (µg/g) 117 163 98 54 n.d. 685 96 Rb 1 <1	0L	29.4	72.8	69.2	84.3	74.9	28.6	44.6	64.4				
TRACE ELEMENTS (µg/g)K1571171639854n.d.68596Rb1<1<1<172<1Ba3<3<3<3<3<312<3<3Sr4<11223555Lin.d.n.d.n.d.n.d.6.74.6n.d.1.2Yr<2<24<2<23555Li1.2<1<1<12212Y<2<2<4<2<2<32<2Y<2<2<4<2<2<3<2<2Y<2<2<4<2<2<3<2<2Y<2<2<4<2<2<3<2<2Y<2<2<3<13<3<3<3<3Cu1611205121956Zn<4556495143<4244<42Ni<3315513812513798124112V<89<62<72<30<27106<5555Cr<3391<5383<3557<3149<2865<3848<5150	SP	0.6	1.8	1.3	0.9	1.0	0.6	0.7	1.2				
K1571171639854n.d.68596Rb1<1	TRACE ELEMENTS	(µg/g)											
Rb1 <1 <1 <1 <1 <1 7 2 <1 Ba3 <3 3 <3 <3 <3 12 <3 <3 Sr4 <1 1 2 2 35 5 5 Lin.d.n.d.n.d.n.d. 6.7 4.6 n.d. 1.2 Zr1 2 <1 <1 <1 2 1 2 Y <2 <2 4 <2 <2 3 2 <2 Ti 244 153 219 115 132 357 170 131 Cu16 11 20 5 12 19 5 6 Zn 45 56 49 51 43 42 44 42 Ni 838 1751 1485 1797 1477 753 1074 1480 Co 83 155 138 125 137 98 124 112 V 89 62 72 30 27 106 65 55 Cr 3391 4937 5383 3557 3149 2865 3848 5150	к	157	117	163	98	54	n.d.	685	96				
Ba3<33<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<5<5<5<5<5<5<5<5<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<2<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<	RЬ	1	<1	<1	1	<1	7	2	<1				
Sr4<11223555Lin.d.n.d.n.d.n.d.6.74.6n.d.1.2Zr12<1	Ba	3	<3	3	<3	<3	12	<3	<3				
Lin.d.n.d.n.d.n.d.6.74.6n.d.1.2Zr12<1	Sr	4	<1	1	2	2	35	5	5				
Zr12<1<1<1212Y<2<2<4<2<2<32<2Ti244153219115132357170131 Cu 1611205121956Zn4556495143424442Ni838175114851797147775310741480Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Li	n.d.	n.d.	n.d.	n.d.	6.7	4.6	n.d.	1.2				
Y<2<24<2<232<2Ti244153219115132357170131Cu1611205121956Zn4556495143424442Ni838175114851797147775310741480Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Zr	1	2	<1	<1	<1	2	1	2				
Ti244153219115132357170131Cu1611205121956Zn4556495143424442Ni838175114851797147775310741480Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Y	<2	<2	4	<2	<2	3	2	<2				
Cu1611205121956Zn4556495143424442Ni838175114851797147775310741480Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Ti	244	153	219	115	132	357	170	131				
Zn4556495143424442Ni838175114851797147775310741480Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Cu	16	11	20	5	12	19	5	6				
Ni838175114851797147775310741480Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Zn	45	56	49	51	43	42	44	42				
Co8315513812513798124112V89627230271066555Cr33914937538335573149286538485150	Ni	838	1751	1485	1797	1477	753	1074	1480				
V 89 62 72 30 27 106 65 55 Cr 3391 4937 5383 3557 3149 2865 3848 5150	Со	83	155	138	125	137	98	124	112				
Cr 3391 4937 5383 3557 3149 2865 3848 5150	V	89	62	72	30	27	106	65	55				
	Cr	3391	4937	5383	3557	3149	2865	3848	5150				

¹ See Appendix G.

 $Mg^{\star} = 100 (Mg + Ni)/(Mg + \Sigma Fe + Mn + Ni)$

n.d. = not determined

<u>NOTE</u>: Sample 486 contains insufficient SiO₂ to from the required normative minerals (<u>see</u> Appendix A).

	1	·	LOCALITY	^{′ 8}				LOCALITY	19	LO	CALITY	10
SAMPLE	510	511	461	471	522	4	o 55	478	8 482	9 524	10 476	11 477
OLIVINE (Fo) n.d.	n.d.	84.7	85.5	n.d.	8	3.9	86.4	86.8	n.d.	86.2	86.2
si0 ₂	43.24	43.5	0 46.58	48.58	43.56	4	9.02	43.69	42.34	48.18	47.78	47.80
TiO ₂	0.02	0.0	2 0.02	0.02	0.02	(0.03	0.02	0.02	0.02	0.02	0.02
A1203	4.49	4.7	3 6.52	9.04	6.64		7.32	8.12	7.50	10.07	9.02	7.60
Cr ₂ 03	0.59	0.7	5 0.49	0.50	0.79	(0.63	0.50	0.45	0.46	0.67	0.67
Fe203	0.79	0.7	2 0.63	0.53	0.67	(0.61	0.59	0.61	0.53	0.52	0.53
Fe0	11.24	10.3	5 9.02	7.63	9.51	8	3.66	8.42	8.78	7.54	7.46	7.55
NiO	0.21	0.1	7 0.15	0.11	0.20	(0.12	0.15	0.19	0.12	0.15	0.15
Mn0	0.21	0.2	2 0.20	0.18	0.19	(0.20	0.18	0.18	0.17	0.18	0.18
Mg0	36.19	36.5	8 31.64	27.16	34.55	28	3.30	32.37	35.03	26.27	29.17	30.98
Ca0	3.05	2.6	4 4.32	5.71	3.94	!	5.04	5.65	4.85	6.04	5.39	4.63
Na ₂ 0	0.08	0.0	6 0.21	0.03	0.07	(0.20	0.15	0.11	0.02	0.23	0.21
к ₂ 0	0.01	0.0	1 0.04	0.02	0.01	(0.02	0.09	0.05	0.02	0.06	0.04
P205	0.01	0.0	1 0.01	0.02	0.01	(0.01	0.01	0.01	0.02	0.01	0.01
TOTAL	100.13	99.7	6 99.83	99.53	100.16	100	0.16	99.94	100.12	99.46	100.66	100.37
ΣVo] 1	10.06	10.4	4 6.89	4.08	9.02		4.19	8.38	9.72	5.29	5.41	5.94
Fe0 ¹	4.18	4.6	3 6.13	6.67	6.40		7.51	7.07	6.42	6.76	5.73	5.71
Mg*	84.2	85.3	85.2	85.4	85.7	84	4.3	86.4	86.8	85.1	86.5	87.1
CATION NORM												
PL	9.8	10.1	14.9	21.7	15.1	10	5.9	20.4	19.1	24.8	21.4	17.4
СРХ	3.1	0.9	4.1	3.6	2.4		4.9	6.6	4.9	2.7	3.1	3.5
OPX	18.1	22.3	34.8	46.1	18.6	4	9.7	11.1	3.6	43.0	39.2	40.2
OL	67.9	65.3	45.6	28.2	62.4	2	7.7	61.2	71.7	29.1	35.4	38.1
SP	1.0	1.4	0.6	0.5	1.5		0.8	0.7	0.7	0.5	1.0	0.9
TRACE ELEMTS	5 (µg/g)											
к	104	114	324	135	79	14	1	724	379	138	327	477
Rb	<1	1	1	<1	<1	<	1	1	<1	4	<1	<1
Ba	<3	<3	<3	<3	<3	:	3	<3	4	3	<3	<3
Sr	4	3	3	3	4		1	7	13	7	<1	<1
Zr	3	<1	<1	<1	<1		1	1	<1	1	1	1
Y	<2	<2	<2	<2	2		2	<2	<2	2	2	3
Ti	130	134	154	176	128	20	1	176	178	200	174	170
Cu	9	5	5	5	6	1	0	9	8	11	10	12
Zn	59	45	40	40	44	5	2	52	45	46	41	40
Ni	1662	1322	1155	835	1602	94	9	1197	1498	961	1033	1170
Co	138	124	114	90	122	9	2	99	118	73	101	92
۷	51	45	62	81	53	9	3	42	38	93	79	68
Cr	4046	5144	3314	3445	5345	431	0	3427	3085	3152	4493	4597

 TABLE B-5

 Major and Trace Element Analyses and Normative Mineralogy of Olivine Norites

 from Localities 8, 9 and 10 (Fig. B-1)

¹ See Appendix G

 $Mg^* \approx 100(Mg+Ni)/(Mg+\SigmaFe+Mn+Ni)$

n.d. = not determined

TABLE B-6

Major an	nd Trace	Elemen	t Analy	ses and	Normati	ve Miner	ralogy of	Olivine	Norites and	1 Plagioc	lase-Bearing Har	zburgites f	on Loca	lities 11	and 12 (Fig. B-1)
ANALYSIS No.	1	2	3	4	5	6 517	/	8	9	10	11	12	13	14 512	500
SAMPLE	510	521	451	444	515	517	405	515	520	510	501	402	515		500
OLIVINE (Fo)	n.d.	n.d.	83.2	82.5	n.d.	n.d.	85.0	n.d.	n.d.	n.d.	n.d.	84.8	n.d.	n.d.	n.d.
sio ₂	49.26	48.38	47.75	48.73	48.62	48.93	46.59	47.67	48.28	48.02	42.72	45.41	44.92	44.63	42.92
Ti0 ₂	0.04	0.04	0.04	0.04	0.05	0.04	0.03	0.04	0.03	0.03	0.02	0.09	0.08	0.08	0.02
A1203	8.05	9.88	9.38	10.35	6.80	9.19	9.24	9.26	17.67	17.48	3.02	7.45	7.04	6.32	2.94
Cr203	0.47	0.42	0.42	0.42	0.49	0.44	0.50	0.47	0.33	0.32	0.62	0.69	0.69	0.26	0.66
Fe203	0.61	0.56	0.58	0.55	0.63	0.58	0.60	0.59	0.29	0.29	*	0.67	0.67	0.68	*
Fe0	8.72	8.01	8.34	7.80	9.05	8.23	8.58	8.42	4.18	4.13	11.64	9.56	9.61	9.75	12.22
NiO	0.10	0.08	0.10	0.08	0.10	0.09	0.11	0.10	0.03	0.03	0.24	0.16	0.15	0.14	0.28
Mn0	0.18	0.18	0.19	0.18	0.21	0.18	0.19	0.19	0.11	0.12	0.26	0.20	0.19	0.20	0.18
Mg0	26.56	24.87	26.10	24.48	28.44	25.84	27.18	26.73	14.64	14.84	41.25	29.36	30.66	31.74	40.79
CaO	5.80	6.78	6.35	7.07	5.26	6.37	6.27	6.23	12.85	13.32	0.05	6.09	5.66	5.19	0.07
Na ₂ 0	0.34	0.05	0.39	0.46	0.30	0.20	0.35	0.37	0.23	0.20	0.04	0.41	0.24	0.46	0.04
K-0	0.01	0.02	0.02	0.02	0.02	0.05	0.03	0.02	1.27	0.98	0.01	0.03	0.02	0.02	0.01
P205	0.02	0.02	0.02	0.02	0.01	-	0.02	0.01	0.02	0.02	-	0.03	0.02	0.02	0.01
TOTAL	100.16	99.29	99.68	100.20	99.98	100.14	99.69	100.10	99.93	99.78	99.87	100.15	99.95	99.49	100.14
Σ¥0] ¹	2.94	3.05	4.58	3.13	2.60	3.14	5.42	4.59	3.86	4.02	13.14	7.11	6.70	5.13	12.06
Fe0 ¹	7.66	7.25	7.61	7.08	3.77	7.42	7.26	7.24	3.98	4.16	1.66	6.87	7.00	7.45	2.35
Mg*	83.4	83.6	83.7	83.8	83.8	83.8	83.9	83.9	85.2	85.4	86.1	83.5	84.0	84.3	85.5
CATION NORM															
PL.	18.9	24.6	23.3	25.7	15.4	22.3	23.0	22.8	48.8	48.0	6.5	18.0	17.5	16.2	6.1
CPX	8.0	8.5	7.7	8.2	8.4	7.8	7.6	7.4	16.7	19.1	*	11.2	10.9	9.9	*
OPX	48.1	40.5	37.7	41.1	45.2	43.7	30.5	36.3	5.9	4.9	12.5	22.4	17.2	16.2	14.7
OL.	24.4	25.8	30.9	24.3	30.1	25.5	38.1	32.8	28.1	27.6	79.9	47.1	53.1	57.4	78.0
SP	0.8	0.5	0.5	0.7	0.8	0.7	0.8	0.6	0.5	0.4	1.1	1.3	1.3	0.4	1.2
TOACE ELEMENT	TS (ug/g														
v	06	121	162	140	140						109	260	165	142	70
n.	90 - 1	101	102	140	149	387	231	1	n.d.	15	100	209	102	143	/0
ко 8-	<1	<1	<1	<1	<1	<1	<1	i	21	15	<1		<1	<1	<1
D4	د	4	4	<3	5	4	<3	i	633	808	<3	1 3	<3	4	<3
5r 7	4	5	5	5	3	5	4		156	138	<1	د د	3	4	<1
2r	4	3	2	<1	2	4	1	į	3	2	<2	<1	1	1	<2
Y .	3	4	3	2	2	3	<2		4	4	<2	5	5	4	<2
11	342	324	286	326	340	342	233	1	336	321	109	517	523	555	114
Cu	23	24	15	26	21	5	12	í	45	38	6	41	32	38	35
2n	59	52	59	50	59	41	50		31	29	50	54	54	53	58
Ni	773	664	766	655	769	786	844	i	218	227	1859	1294	1191	1120	2220
Co	114	86	107	90	97	90			66	62	156	119	118	104	127
v	109	99	86	100	108	104	83	1	84	87	31	123	122	123	38
Cr :	3192	2873	3197	2883	3370	3002	3243	I I	2227	2211	4219	4733	4698	1803	4487
													_		

¹ See Appendix G (Fe₂O₃/FeO adjusted to 0.07) Mg* = 100 Mg+NiJ(Mg+2Fe+Mn+Ni) # Total Iron as FeO # Corrected for apparent Ca loss

n.d. = not determined

Locality 11 ---- Locality 12

ANALYSIS	No. 1	2	3	4	5	6	7	8	9	10	11 200 ³	12
SAMPLE	326-	325-	323-	457-	324	322	327	330	321-	328	329	420
LOCALITY	3	3	3	3	3	3	3	5	/	2	3	13
SiO,	49.39	48.56	50.92	44.86	49.66	50.30	46.03	51.43	43.80	43.23	43.11	40.78
Ti0,	0.05	0.04	0.03	0.03	0.10	0.10	0.11	0.12	0,02	0.04	-	0.04
A1,0,	12.89	10.73	9.40	7.17	9.83	9.24	13.36	10.84	5.57	18.03	30.11	29.10
Cr ₂ 03	0.28	0.38	0.36	0.77	0.35	0.19	0.28	0.16	0.71	0.17	0.06	0.01
Feo	0.51	0.56	0.43	0.66	0.45	0.43	0.39	0.35	Q.64	0.33	0.05	0.10
Fe0	7.30	8.01	6.07	9.41	6.36	6.09	5.51	4.99	9.14	4.73	0.70	1.49
NiO	0.06	0.08	0.05	0.15	0.08	0.07	0.07	0.05	0.19	0.10	0.01	-
Mn0	0.18	0.19	0.17	0.21	0.16	0.19	0.24	0.14	0.19	0.09	0.03	0.05
Mg0	19.38	23.24	20.36	30.72	18.90	18.53	18.51	19.09	35.22	22.77	2.53	3.33
Ca0	8.79	7.25	11.63	4.46	12.58	12.73	13.44	11.97	3.70	9.94	22.21	24.81
Na ₂ 0	0.31	0.48	0.56	0.31	1.40	1.31	1.19	0.21	0.09	0.03	0.59	0.26
K20	0.15	0.08	0.03	0.02	0.04	0.04	0.04	0.08	0.01	0.32	0.40	0.04
P205	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.03	0.05
TOTAL	99.30	99.61	100.02	98.78	99.93	99.24	99.19	99.45	99.29	99.79	99.83	100.08
ΣVol. ¹	2.07	2.44	4.81	6.36	2.86	1.91	2.09	2.89	8.71	7.24	5.60	4.90
Fe0 ¹	7.06	7.45	5.49	6.99	5.11	5.26	4.84	4.26	5.08	3.10	0.53	1.40
Mg*	81.3	82.7	84.6	84.3	83.0	83.2	84.4	86.2	86.4	88.8	85.4	78.4
CATION N	0 RM											
PL	33.8	27.5	22.3	17.3	24.3	22.8	35.7	27.9	13.1	49.1	86.5	
CPX	9.9	7.8	31.1	4.0	34.1	36.2	29.7	27.4	3.9	3.00	30.2	
OPX	43.8	41.7	37.3	28.3	30.2	33.6	5.5	40.6	18.9	-4.9	-40.9	
0L	12.2	22.5	9.3	49.0	11.2	7.4	29.0	5.1	63.0	52.5	24.4	
SP	0.3	0.6	0.1	1.4	0.2	-	0.2	-	1.1	0.3	-0.3	
TRACE EL	EMENTS (1	ıg/g)										
ĸ	-	-	229	155	330	317	371	701	92	-	-	-
RЬ	3	<1	1	<1	<1	<1	1	<1	<1	10	8	344
Ba	21	6	3	5	8	10	<3	7	<3	13	61	57
Sr	53	10	23	5	3	1	4	24	1	395	191	744
Li	0.6	1.1	-	-	1.7	-	-	-	1.2	11.9	9.3	40
Zr	1	<1	2	1	5	7	3	5	2	5	3	10
Y	5	4	2	<2	7	11	5	10	<2	2	<2	<2
Ti	368	320	323	237	804	721	933	872	129	337	190	221
Cu	29	21	8	14	16	8	8	4	6	4	19	9
Zn	63	59	53	75	22	18	18	26	44	36	16	21
Ni	454	616	372	1147	629	581	587	402	1503	784	59	38
Ca	n.d.	n.d.	n.d.	113	65	76	n.d.	53	n.d.	90	n.d.	58
۷	102	97	84	85	243	196	198	220	53	20	14	42
Cr	1938	2591	2495	5253	2421	1304	1932	1089	4865	1142	435	99

TABLE B-7 Major and Trace Element Analyses and Normative Mineralogy of Amphibolitized and Saussuritized Gabbroic Rocks

¹ See Appendix G Mg* = 100(Mg+Ni)/(Mg+ΣFe+Mn+Ni)

NOTE: Samples 328, 329 and 420 contain insufficient SiO₂ to form the required normative minerals.

 $^{\rm 2}$ Numerous thin amphibolitized shears 3 Amphibolitized plagioclase-rich horizon

⁴ Amphibolite

5 Completely saussuritized plagioclase-rich horizon Sample 325 contains 200 µg/g F, <10 µg/g 8 Sample 324 contains 190 µg/g F, <10 µg/g 8</p>

APPENDIX C

ANALYSES OF PRIMARY AND SECONDARY PHASES IN PBOC INTRUSIVES

- NOTE: (i) For comparative purposes, analyses which represent average compositions of a particular anhydrous phase (Tables C2-C4, C-7, C-10, and some analyses in Table C-9) are normalized to totals of 100.0%. Analyses whose original totals were < 99% or > 101% were rejected.
 - (ii) In all pyroxene analyses, total Fe is listed as FeO. Calculation of Fe_2O_3 (Papike *et al.*, 1974) for many of these pyroxenes results in unreasonably high Fe_2O_3 /FeO ratios.
 - (iii) In Table C-2 cation proportions are listed adjacent to their respective oxides.

TABLE C-1

Variation of	Selected Mineral	Compositional	Parameters fro	om Olivine Norites an	d
	Peridotites	from the Pigna	Barney Ophiol	itic Complex	

	HOST	0L	01.	OPX	CPX		5	SPINEL			PLAG
SAMPLE	Mg*	Mg*	Mg [*]	mg	mg	М	Cr/Cr+Al	Fe ^{3#}	Cr [‡]	A1 [#]	An
440	81.2	80. 3	81.4	81.2	86.J	15.7	0.624	0.297	0.438	0.264	85.5
441	81.1	80.4	81.4	81.5	86.3	16.3	0.569	0.288	0.405	0.307	86.6
442	-	80.9	-	82.3	86.5	25.5	0.558	0.269	0.408	0.323	86.0
443	83.1	81.9	83.6	83.2	86.8	29.2	0.571	0.170	0.474	0.356	86.0
444	83.7	82.5	84.7	83.6	87.4	27.7	0.525	0.191	0.424	0.385	86.4
445	83.1	82.7	83.6	83.7	86.9	24.8	0.555	0.194	0.448	0.359	86.2
446	-	82.5	-	83.7	87.0	24.1	0.555	0.200	0.444	0.356	86.7
447	84.5	82. 8	85.4	83.6	87.5	32.8	0.545	0.124	0.477	0.399	86.2
448	83.4	82.9	84.0	83.6	86.8	33.9	0.548	0.155	0.464	0.382	85.5
449	83.9	82.9	84.3	84.2	88.3	32.2	0.561	0.174	0.464	0.362	86.4
450	83.8	83.1	84.6	83.7	87.4	27.6	0.559	0.187	0.455	0.358	86.3
451	83.7	83.1	83.7	84.1	87.9	32.3	0.557	0.137	0.481	0.382	85.5
452	83.5	83.3	83.7	84.2	87.3	27.6	0.558	0.159	0.469	0.372	86.1
453	84.3	83.6	85.4	84.4	89.5	35.2	0.556	0.142	0.478	0.381	86.2
454	-	83.7	-	84.2	88.5	31.2	0.615	0.163	0.514	0.323	87.5
455	84.3	83.8	85.0	84.3	-	34.5	0.611	0.145	0.523	0.333	88.7
450	84.1	83.8	84.8	84./	87.9	31.2	0.55/	0.123	0.488	0.389	87.1
457	84.3 93.9	84.0	85.0	85.1	-	33.0	0.564	0.120	0.497	0.383	-
400	03.0	04.1	04.2	05.0	00.4	34.1	0.537	0.119	0.4/3	0.408	-
455	84.6	94.2	05.7 05.7	84.0	07.0	33.2	0.571	0.155	0.405	0.302	96.7
400	85.2	84 6	85.4	85.5	88.6	42 5	0.501	0.100	0.454	0.358	87 A
461	83.5	84.8	83.6	85.2	87.2	38.3	0.501	0.002	0.400	0.400	84.9
462	85.5	84.9	86.3	85 6	87.6	28.6	0.574	0 134	0.497	0.369	86.9
464	-	85.0	-	85.7	88.6	34.7	0.597	0.145	0.510	0.345	-
465	-	84.9	-	84.1	87.6	28.1	0.539	0.226	0.417	0.357	89.0
466	85.8	85.0	86.8	85.4	89.1	33.4	0.595	0.140	0.511	0.348	88.2
467	85.0	85.2	85.4	85.7	89.3	41.9	0.510	0.083	0.468	0.449	90.4
468	-	85.3	-	85.5	-	25.7	0.494	0.068	0.461	0.472	88.4
469	-	85.4	93.6	85.5	88.1	39.9	0.593	0.157	0.500	0.343	-
470	-	85.5	-	86.1	89.2	42.6	0.543	0.099	0.489	0.411	88.7
471	85.4	85.5	85.1	86.0	89.2	39.3	0.532	0.104	0.477	0.419	88.7
472	85.7	85.6	86.2	86.3	88.4	38.4	0.544	0.103	0.488	0.409	-
473	85.5	85.7	86.1	-	89.4	38.2	0.615	0.108	0.549	0.343	85.3
474	-	85.9	-	86.5	89.0	38.5	0.553	0.101	0.497	0.402	87.4
475	-	86.1	-	86.6	88.1	40.9	0.559	0.104	0.501	0.395	88.2
476	86.5	86.3	87.4	86.8	89.0	44.4	0.553	0.095	0.500	0.405	-
477	87.1	86.1	88.2	86.3	-	44.8	0.544	0.093	0.493	0.414	89.4
478	86.3	86.5	86.7	86.4	88.8	35.7	0.634	0.121	0.557	0.322	87.2
479	86.5	86.4	87.4	86 8	90.1	40.3	0.533	0.096	0.482	0.422	-
480	87.4	86.4	87.8	87.1	89.5	35.2	0.520	0.126	0.455	0.419	89.4
481	-	86.7	-	-	89.0	42.5	0.607	0.101	0.546	0.353	87.0
482	80.8	80.7	87.1	80.9 97.0	89.1	38.7	0.623	0.121	0.547	0.331	84.9
403	-	87.0	-	07.9 98 1	90.7	59.5	0.585	0.050	0.317	0.559	-
404	-	97.9	80.0	00.1	51.5	23 3	0.412	0.000	0.547	0.351	87 5
486	877	88.0	05.0 a	88 4	90.6	41 4	0.563	0.102	0.397	0 381	-
487	-	88 1	-	88 4	-	48.1	0.465	0.041	0.446	0.513	-
488	-	89.3	-	89.3	-	59.2	0.265	0.046	0.253	0.701	-
489	90.7	90.4	91.5	90.9	-	33.5	0.838	0.090	0.763	0.147	-
490	-	91.0	-	91.5	95.0	-	-	_	-	-	-
491	-	91.2	-	91.3	94.2	64.0	0.270	0.011	0.267	0.722	-
492	90.2	91.5	89.9	91.4	95.3	65.3	0.425	0.004	0.424	0.573	-
493	91.6	91.6	91.8	91.7	95.3	65.5	0.369	0.012	0.365	0.623	-
494	-	91.6	-	91.3	94.3	61.0	0.381	0.020	0.374	0.606	-
495	90.6	91.6	90.3	92.0	95.2	72.8	0.326	0.007	0.324	0.669	-
496	91.5	92.1	91.4	92.0	95.0	66.8	0.395	0.019	0.388	0.594	-
497	91.8	92.2	91.6	92.4	-	69.9	0.406	0.020	0.398	0.582	-
498	91.4	92.3	91.2	92.4	95.1	74.2	0.356	0.016	0.351	0.634	-

 $M = 100Mg/(Mg+Fe^{2*})$ $mg = 100Mg/(Mg+\SigmaFe+Mn)$ $Mg^* = 100(Mg+Ni)/(Mg+Ni+\SigmaFe+Mn)$

OL' = Normative olivine composition (see Appendix A) # = $R^{3+}/\Sigma R^{3+}$ (V³⁺ omitted from ΣR^{3+}) a = Insufficient SiO₂ to form normative olivine (see Appendix A) An = 100 Ca/(Ca+Na)

For sample lithologies see Table C-2

TABLE C-2 (page 1 of 9)

Analyses of Ferromagnesian Phases in Olivine Norites and Peridotites from the Pigna Barney Ophiolitic Complex

SAMPLE	4	40	41	+1	4	42	ų.	43 	4	44	ч	45	4	46 +
HOST	0	imN	O	πN	0	mN [']	0	mei	(JIMN	(JmN	i.	JmN
£'0	8	0.5	80	0.5	8	1.0	8.	2.0	8	2.5	8	2.7	8	2.7
OLIVINE														
Si02	39.10	0,998	39.15	0.998	39.23	0.999	39.39	0.99 9	39.57	1.001	39.35	0.995	39,26	0.994
FeO	18.29	0.390	18.20	0.388	17.77	0.378	16.90	0.358	16.41	0.347	16.31	0.345	16.37	0.347
NiO	0.22	0.005	0.25	0.005	0.23	0.005	0.24	0.005	0.27	0.005	0.35	0.007	0.29	0.006
MnO	0.21	0.005	0.20	0.004	0.22	0.005	0.19	0.004	0.16	0.003	0.15	0.003	0.22	0.005
MgO	42.17	1.605	42.26	1.606	42.56	1.615	43.28	1.636	43.50	1.641	43.85	1.654	43.85	1.655
Σ Cation: (4 0)	6	3.003		3.002		3.001		3.001		2.999		3.005		3.006
ORTHOPYROXE	NE													
Si02	55.22	1.958	55.13	1.954	54.87	1.947	55.30	1.953	55.50	1,955	55.50	1.955	55.30	1.949
A1203	1.74	0.073	1.69	0.071	1.87	0.078	1.74	0.072	1.76	0.073	1.73	0.072	1.36	0.077
Cr_03	0.24	0.007	0.26	0.007	0,41	0.012	0.30	0.008	0.23	0.006	0.27	0.008	0.38	0.011
FeO	11.96	0.355	11.98	0.355	10.98	0.326	10.77	0.318	10.63	0.313	10.54	0.310	10.42	0.307
MnO	0.24	0.007	0.18	0.005	0.19	0.006	0.16	0.005	0.17	0.005	0.20	0.006	0.27	0.008
MgO	29.67	1.568	29.96	1.583	29,24	1.547	30.36	1.598	30.92	1.623	30.92	1.623	30.34	1.620
Ca0	0.93	0.035	0.81	0.031	2.45	0.093	1.39	0.053	0.80	0.030	0.84	0.032	0.93	0.035
Σ Cation (6 0)	3	4.003		4.007		4.008		4.007		4.006		4.006		4.007
ng CLINOPYROXEI	VE	81.2		81.5		32.3		33.2		83.0		93.7		33.7
SiQ.	52.38	1.952	52.77	1.936	52.57	1.931	52.55	1.928	52.30	1.918	52.70	1.933	52.58	1.931
A1.0.	2.51	0.109	2.32	0.100	2.31	0.100	2.42	0.105	2.30	0.125	2.38	0.103	2.52	0.108
Cr 0.	0.68	0.020	0.61	0.018	0.85	0.025	0.72	0.021	0.32	0.024	0.74	0.021	0.79	0.023
FeO	4.71	0.145	4.58	0.141	4.54	0.139	4.46	0.137	4.13	0.127	4.41	0.135	4.30	0.132
MgO	16.26	0.891	16.26	0.889	16.20	0.387	16.39	0.897	16.07	0.879	16.39	0.896	16.21	0.386
CaO	23.23	0.914	23,21	0.912	23.28	0.916	23.29	0.916	23.51	0.924	23.21	0.921	23.27	0.914
Na_O	0.24	0.017	0.23	0.016	0.25	0.018	0.18	0.011	0.29	0.021	0.15	0.011	0.23	0.016
Σ Cation	3	4.020		4.013		4.016		4.015		4.017		4.011		4.011
(6 0)		c 2.2.4			47.0.4									
SPINEL	40.9:4	5.7:7.4	47.0.3	10.0:7.4	47.3:4	ə./:/	47.0:40	.0:7.5	47.9:4	ə.ə:6.0 	47.2:4	5.9:6.9	47.5:45	
TiO	0.82	0.171	0.78	0.161	0.57	0.117	0.55	0.109	0.58	0.115	0.63	0.126	0.52	0.104
Al 0	12.52	4.093	14.73	4.762	15.76	5.056	17.93	5.585	19.44	6.032	17.83	5.598	17.76	5.581
v_0_	0.74	0.165	0.69	0.152	0.55	0.120	0.54	0.114	0.43	0.091	0.63	0.135	0.55	0.118
Cr_0,	30.98	6.794	29.01	6.291	29.67	6.385	35.54	7.426	31.97	6.655	33.21	6.993	32.98	6.952
¥Fe,0,	22.08	4.609	21.68	4.475	20.54	4.207	13.36	2.657	15.11	2.394	15.08	3.023	15.00	3.142
FeO	29.04	6.736	29.09	6.672	28.69	6.531	25.53	5.642	26.15	5.758	26.79	5.968	27.33	6.094
NiO	0.29	0.065	0.19	0.042	-	-	0.26	0.055	0.10	0.021	0.32	0.069	-	-
MnO	0.39	0.092	0.41	0.095	0.37	0.085	0.39	0.087	0.49	0.109	0.33	0.074	0.33	0.075
MgO	3.04	1.252	3.19	1.304	3.55	1.440	5.90	2.324	5.51	2.202	4.96	1.970	4.37	1.936
2n0	0.10	0.020	0.23	0.047	0.29	0.058	-	-	0.12	0.023	0.23	0.045	-	-
Σ Cations (32 0)	3	24.000		24.001		24.000		24.001		24.000		24.001		24.001
м		15.7		16.3		25.5		29.2		27.7		24.3		24.1
Cr		62.4		56.9		55.3		57.1		52.5		55.5		55.5
Fo = 100	Mg/(Mg+)	EFe) olivi	ne								_			
<i>mq</i> = 100	Mg/(Mg+)	EFe+Mn)				NC	TE: Each	n analysis	represent	s the mear	n of betw	een 3 and	10	
<i>H</i> = 100	H=/(H=·	-2+)					grai	ins from ea	ch sample	, recalcul	ated to	100.0% (s	ee Append	ix G)

M = 100 Mg/(Mg+Fe²⁺)

Cr = 100 Cr/(Cr+A1)

Ca:Mg:Fe = cation proportions (atomic %)

Fe0 = all Fe as Fe0 \star = Spinel Fe₂0₃ calculated assuming stoichiometry <u>HOST</u> See next page for key to host rock nomenclature.

★ - zoned orthopyroxene - see table C-3

♣ - zoned clinopyroxene - see table C-4

n.d. = not determined or not found

NOTE: Hosts 440 - 498 are listed consecutively. Sample numbers increase regularly with increasing Fo content of their respective olivines. See Table C-l for a summary.

TABLE C-2 (continued - page 2 of 9)

SAMPLE	44	7	41	48	41	+9	4:	50	4 :	51	4	52	4	53
HOST	OmG	SN	Or	nN	On	nN	01	nN	O	nN	0	mN	Om	GN
Fo	82	2.9	8.	3.0	8	3.0	8.	3.2	8.	3.2	8.	3.4	8	3.7
OLIVINE														
sio2	39.45	0.997	39.57	0.999	39.67	1.001	39.58	0.999	39.53	0.997	39.58	0.998	39.66	0.999
FeO	16.19	0.342	16.04	0.339	16.02	0.338	15.89	0.335	15.94	0.336	15.75	0.332	15.38	0.324
NIO	0.32	0.007	0.27	0.005	0.28	0.006	0.24	0.005	0.23	0.005	0.25	0.005	0.33	0.007
MnO	0.18	0.004	0.13	0.003	0.21	0.004	0.20	0.004	0.12	0.003	0.16	0.003	0.21	0.004
MgO	43.86	1.653	43.99	1.655	43.83	1.649	44.08	1.658	44.18	1.662	44.26	1.664	44.44	1.668
Σ Cations (4 0)		3.003		3.001		2.999		3.001		3.003		3.002		3.001
ORTHOPYROXENE -	·													
Si0 ₂	55.15	1.944	55.22	1.957	55.69	1.958	55.45	1.953	55.43	1.950	55.65	1.956	55.47	1.952
A1203	2.08	0.086	1.68	0.070	1.73	0.072	1.77	0.073	1.83	0.076	1.74	0.072	1.79	0.074
Cr203	0.30	0.008	0.15	0.004	0.33	0.009	0.33	0.009	0.35	0.010	0.27	0.008	0.43	0.012
FeO	10.66	0.314	10.57	0.313	10.18	0.299	10.46	0.308	10.32	0.304	10.21	0.300	9.99	0.294
MnO	0.16	0.005	0.15	0.004	0.15	0.004	0.23	0.007	0.16	0.005	0.21	0.006	0.21	0.006
MgO	30.94	1.625	30.69	1,621	30.74	1.611	30.84	1.619	31.17	1.635	31.18	1.634	30.93	1.622
CaO	0.70	0.026	0.96	0.036	1.24	0.049	0.93	0.035	0.73	0.028	0.76	0.029	1.19	0.045
Σ <i>Cations</i> (6 0)		4.009		4.005		4.001		4.005		4.007		4.004		4.005
mg CLINOPYROXENE ~		83.6		83.6		84.2		83.7		84.1		34.2		54.4
SiO	52.36	1.923	52.38	1.922	52.74	1.928	52.81	1.935	52.77	1.932	52.92	1.936	53.05	1.939
A1_0_	2.76	0.119	2.71	0.117	2,43	0.105	2.29	0.099	2.49	0.107	2.53	0.109	2.25	0.097
Cr ₂ 0 ₃	0.80	0.023	0.87	0.025	0.86	0.025	0.77	0.022	0.70	0.020	0.72	0.021	0.76	0.022
FeO	4.17	0.128	4.40	0.135	4.03	0.123	4.22	0.129	4.05	0.124	4.25	0.130	3.44	0.105
MgO	16.39	0.897	16.18	0.885	17.08	0.931	16.38	0.895	16.46	0.898	16.35	0.892	16.86	0.891
CaO	23.06	0.907	23.19	0.911	22.64	0.887	23.38	0.918	23.29	0.913	23.04	0.903	23.86	0.935
Na ₂ 0	0.24	0.017	0.17	0.012	0.18	0.013	0.11	0.008	0.19	0.013	0.27	0.019	0.29	0.021
Σ Cations		4.015		4.010		4.013		4.007		4.010		4.009		4.011
(5 0) Ca:Mg:Fe	47.0:46	.4:6.6	47.2:4:	5.8:7.0	45.7:48	8.0:6.3	47.3:4	5.1:6.6	47.2:40	5.4:6.4	46.9:40	5.3:6.3	48.4:4	6.1:5.5
SPINEL														
Ti02	0.62	0.119	0.78	0.153	0.47	0.093	0.62	0.123	0.57	0.112	0.48	0.095	0.36	0.070
A1203	24.77	7.434	19.36	5.945	18.37	5.686	17.97	5.609	19.50	5.997	18.77	5.839	19.63	6.010
v203	0.40	0.082	0.57	0.119	0.56	0.118	0.49	0.104	0.42	0.088	0.46	0.097	0.39	0.081
^{Cr} 2 ⁰ 3	30.35	6.111	35.05	7,220	35.04	7.276	33.99	7.120	36.60	7.550	35.32	7.370	36.68	7.534
*Fe203	11.16	2.139	12.30	2.412	13.84	2.735	14.66	2.922	10.91	2.142	12.61	2.504	11.43	2.234
FeO	25.20	5.367	24.46	5.330	24.62	5.407	26.27	5.818	24.79	5.409	25.91	5.719	23.70	5.149
NiO	0.21	0.043	-	-	0.27	0.057	-	-	0.23	0.048	0.22	0.047	0.05	0.010
MnO	0.40	0.086	0.30	0.066	0.27	0.060	0.38	0.085	0.36	0.080	0.45	0.101	0.42	0.092
MgO	6.90	2.619	7.04	2.734	6.56	2.568	5.62	2.219	6.62	2.575	5.55	2.184	7.22	2.796
ZnO	-	-	0.11	0.021	-	-	-	-	-	-	0.23	0.044	0.12	0.025
Σ Cations (32 0)		24.000		24.000		24.000		24.000		24.001		24.000		24.001
М		32.8		33.9		32.2		26.7		32.3		27.6		35.2
Cr		54.5		54.8		56.1		55.9		55.7		55.8		55.0

Host rock nomenclature after Streckeisen (1976). The nomenclature of most samples is based on their cation normative mineralogy (see Appendix A, and Tables 5.1, B-1 to B-7). Samples marked † have been classified according to their estimated modal compositions.

 N = norite
 OG = olivine gabbro

 mN = mela-norite
 T = troctolite

 ON = olivine norite
 mT = mela-troctolite

 OMN = olivine mela-norite
 P = peridotite

 OGN = olivine gabbronorite
 PlP = plagioclase-bearing peridotite (Pl<10)</td>

 OmGN = olivine mela-gabbronorite
 O0 = olivine-bearing orthopyroxenite (ol<10)</td>

H = harzburgite PČH = plagioclase-bearing harzburgite (P(<10) AH = amonibole-bearing harzburgite (A<10) D = dunite PČD = plagioclase-bearing dunite (PČ<10)

TABLE C-2 (continued - page 3 of 9)

HOST Omn Omn Fen Ock Fen Ock Ock </th <th>6.997 0.312 0.007 0.004 1.684 3.003</th>	6.997 0.312 0.007 0.004 1.684 3.003
Fo 83.8 83.9 84.0 84.0 84.2 84.3 OLIVINE Si02 39.68 0.999 39.93 1.000 39.67 0.997 39.86 1.001 39.95 1.002 39.81 0.999 39.68 FeO 15.30 0.322 15.33 0.321 15.20 0.320 15.18 0.319 15.06 0.316 14.90 0.313 14.33	0.997 0.312 0.007 0.004 1.684 3.003
<u>OLIVINE</u> SiO ₂ 39.68 0.999 39.93 1.000 39.67 0.997 39.86 1.001 39.95 1.002 39.81 0.999 39.68 FeO 15.30 0.322 15.33 0.321 15.20 0.320 15.18 0.319 15.06 0.316 14.90 0.313 14.33	0.997 0.312 0.007 0.004 1.684 3.003
Si02 39.68 0.999 39.93 1.000 39.67 0.997 39.86 1.001 39.95 1.002 39.81 0.999 39.68 Fe0 15.30 0.322 15.33 0.321 15.20 0.320 15.18 0.319 15.06 0.316 14.90 0.313 14.33	0.997 0.312 0.007 0.004 1.684 3.003
Fe0 15.30 0.322 15.33 0.321 15.20 0.320 15.18 0.319 15.06 0.316 14.90 0.313 14.33	0.312 0.007 0.004 1.684 3.003
	0.007 0.004 1.684 3.003
NiO 0.35 0.007 0.36 0.007 0.20 0.004 0.24 0.005 0.22 0.004 0.34	0.004 1.684 3.003
Mn0 0.18 0.004 0.14 0.003 0.17 0.004 0.05 0.001 0.16 0.003 0.19	1.684 3.003
MgO 44.49 1.669 44.66 1.668 44.77 1.678 44.72 1.674 44.94 1.680 44.92 1.681 44.97	3.003
E Cations 3.001 2.999 3.003 2.999 2.998 3.001 (4 0)	·····
ORTHOPYROXENE	
Si02 55.37 1.951 55.35 1.951 55.71 1.957 55.84 1.959 55.56	1.951
Al ₂ 0 ₄ 1.89 0.079 1.74 0.072 1.70 0.070 1.69 0.070 1.80 1.80	0.075
$\frac{2}{Cr_{00_2}}$ 0.46 0.013 0.43 0.012 0.35 0.010 0.36 0.010 0.37	0.010
FeO 9.94 0.293 10.04 0.296 9.90 0.291 9.69 0.284 . 9.76	0.287
Mn0 0.20 0.006 0.16 0.005 0.18 0.005 0.11 0.003 * * * 0.17	0.005
Mg0 30.42 1.597 30.85 1.621 31.24 1.636 31.35 1.639 31.49	1.648
Cao 1.71 0.065 1.33 0.050 0.92 0.035 0.97 0.036 0.34	0.031
Σ Cations 4.004 4.007 4.003 4.002	4.007
mg 84.2 84.3 84.7 85.1	
CLINOPYROXENE	
Si0 ₂ S2.81 1.931 S2.58 1.925 S2.45 1.930 S2.42	1.936
Al ₂₀₃ 2.40 0.103 2.55 0.110 2.58 0.111 2.29	0.099
$Cr_{2}O_{3} = 0.94 = 0.027 = 0.89 = 0.026 = 0.86 = 0.025 = 0.78$	0.023
Fe0 3.90 0.119 4.10 0.126 4.11 0.125 # 3.68	0.113
MgO 16.85 0.918 16.75 0.914 17.61 0.957 16.47	0.898
CaO 22.98 0.900 22.90 0.898 21.57 0.843 23.70	0.929
Na ₂ 0 0.14 0.010 0.16 0.011 0.21 0.015 0.16	0.011
Σ Cations 4.009 4.012 4.008	
(6.6) (6.7) Ca:Mg:Fe 46.5:47.4:6.1 46.3:47.2:6.5 43.8:49.7:6.5 47.3: SPINEL	6.3:5.3
Tio_ 0.34 0.068 0.33 0.065 0.45 0.088 0.42 0.082 0.36 0.070 0.34 0.067 0.40	0.078
Al.O. 16.27 5.090 16.92 5.249 19.90 6.115 19.58 6.040 21.17 6.441 18.57 5.714 20.59	6.275
-2-3	0.087
2 ⁻³ Cr.0. 38.68 <i>8.117</i> 39.64 <i>8.249</i> 37.26 7.681 38.02 7.828 36.55 7.460 36.91 7.619 38.06	7.781
¥Fe.0. 12.87 2.571 11.53 2.284 9.89 1.940 9.62 1.885 9.68 1.880 12.43 2.442 8.75	1.702
Fe0 24.72 5.487 23.74 5.225 25.28 5.512 24.44 5.322 24.32 5.250 23.66 5.166 24.11	5.213
NiO 0.10 0.021 0.20 0.042 0.10 0.021 -	-
ино ощ 0.092 0.32 0.071 0.36 0.079 0.34 0.075 0.42 0.092 0.26 0.057 0.37	0.081
March 6 5 9 2 489 7.00 2.747 5.42 2.495 5.74 2.616 7.06 2.717 7.22 2.810 7.15	2.756
7_{70} = 0.14 0.027 0.06 0.012 0.77 0.013 0.15	0.028
E Catione 24.001 24.001 24.001 24.001 24.001 24.001	24.001
(32 0) N 71 9 34 5 31 2 33 0 34 1 35 2	34.6
m 61.5 61.1 55.7 56.4 53.7 57.1	\$5.4

TABLE C-2 (continued - 4 of 9)

SAMPLE	40	51	46	52	4	63	4	54 _	46	55	40	56	4	67
HOST	O	πN	00	SN	0	mN	P	ℓн ′	UI UI	114	0.		0	ma
Fo	84	4.7	84	1.8	8	4.9	8	1.9	8	5.0	8	5.1	8	5.3
OLIVINE														
si0 ₂	39.93	1.000	39.73	0.998	39.92	1.000	39.84	0.998	40.10	1.004	40.01	1.001	40.09	1.002
FeO	14.54	0.305	14.49	0.304	14.33	0.300	14.37	0.301	14.25	0.298	14.18	0.297	13.99	0.292
NiO	0.25	0.005	0.26	0.005	0.33	0.007	0.33	0.007	0.23	0.005	0.26	0.005	0.23	0.005
MnO	0.11	0.002	-	-	0.13	0.003	-	-	0.14	0.003	0.12	0.003	0.14	0.003
MgO	45.18	1.687	45.21	1.694	45.30	1.691	45.46	1.697	45.19	1.686	45.44	1.694	45.55	1.697
Σ Cations (4 0)		2.999		3.002		3.000		3.002		2.996		2.999		2,998
ORTHOPYROXENE														
\$10 ₂			55.68	1.952	55.34	1.942	55.91	1.959	55.43	1.950	55.45	1.947		
A1 0.			1.74	0.072	2.39	0.099	1.60	0.066	1.74	0.072	1.89	0.078		
Cr.0			0.34	0.009	0.41	0.011	0.44	0.012	0.38	0.011	0.45	0.012		
2~3 Fe0		<u>v</u>	9.67	0,283	9.16	0.269	9.20	0.270	10.32	0.304	9.36	0.275		e .
MnO		π	0.17	0.005	0.11	0.003	0.16	0.005	0.18	0.005	0.15	0.004	-	~
MgO			31.75	1.659	30.84	1.613	31.50	1.645	31,19	1.636	31.30	1.638		
CaO			0.71	0.027	1.75	0.066	1.20	0.045	0.79	0.030	1.40	0.053		
Σ Cations (5.0)				4.008		4.003		4.002		4.008		4.008		
"g CLINOPYROXENE		·		85.2		85.0		35. 7		34.1	<u> </u>	35.4		
Si0,	\$2.59	1.921	52.38	1.920	51.63	1.891	52.23	1.900	52.93	1.936	52.74	1.929		
A1_0_	2.77	0.119	2.69	0.116	3.73	0.161	2.47	0,106	2.33	0,101	2.36	0.102		
Cr ₂ 0 ₃	1.02	0.029	0.68	0.020	1.10	0.032	1.00	0.029	0.34	0.024	0.33	0.324		
FeO	3.89	0.119	4.38	0.134	4.22	0.129	4.31	0.131	4.07	0.125	3.72	0.114	-	¥
MgO	17.05	0.929	16.71	0.913	16.69	0.911	18.86	1.023	16.18	0.384	17.38	0.931		
CaO	22.41	0.877	22.63	0.889	22.47	0.882	21.45	0.836	23.61	0.927	23.06	0.903		
Nago	0.26	0.018	0.30	0.021	0.17	0.012	0.22	0.016	0.15	0.011	0.17	0.012		
Σ Cations		4.013		4.018		4.018		4.041		4.007		4.015		
(6 0) Ca:Ma:Fe	45.6:4	8.2:6.2	45.9:4	7.2:6.9	45.9:4	7.4:6.7	42.0:5	1.4:6.6	47.3:4	5.7:6.4	46.4:4	7.3:5.3		
SPINEL		· · ·					2.52	0.110	0.00	0.080	0.20	0.000		
110 ₂	0.21	0.040	0.93	0.180	10.2/	5 944	17 15	5 400	17 97	5 617	17 70	5 504	24.03	7 120
A1203	24.54	7.262	19.98	6.076	18.54	0.070	17.43	0.000	0.116	0.000	0.20	0.000	.4.05	0.057
v ₂ o ₃	0.36	0.072	0.55	0.114	0.33	7.000	20.47	7 004	21 20	6 561	20.30	0.080	37 20	7 121
^{Cr} 2 ⁰ 3	36.69	/.283	34.21	6.9/9	37.78	2.110	11 50	7.274	31.29	3 547	10.92	2 2 2 2 2	37.30 2.30	1 376
*fe203	6.90	1.304	12.73	2.472	10.70	2,119	11.50	5 200	1/.3/	5.200	U 	5 204	0,94	1.515
f'e0	21.68	4.552	23.14	4.993	25.62	5.639	23./1	0.007	23.83	0.024	7TO	5.504	21.34	4.019
NiO	0.08	0.016	-	-	0.12	0.025	0.13	0.027	0.10	0.034	-		0.04	0.008
MnO	0.29	0.062	0.38	0.083	0.47	0.105	0.32	0.071	0.37	0.083	0.42 4 at	0.093	00	0.0.3
MgO ZmO	9.98	3.361	8.07	3.104	5.75	2.256	7.07 0.2u	2.767	- co.c	-	•.31 ~	-	8.88 0.9	3.332
4n0	0.27	0.049	-	-	0.13	24 000	0.24	24 001		2.1 001	-	24 001		24.003
Σ Cations (32 0)		24.001		24.001		24.000		24.001		24.001		27.001		24.001
м		42.5		38.3		28.0		34.7		28.1		33. F		41.8
Cr		50.1		53.5		57.4		59.7		53.J		53.5		ə1.J

TABLE C-2 (continued - page 5 of 9)

SAMPLE	46	8	46	9	4	70	4'	71	47	2	47	3	4	74
HOST	PA	2н [†]	1	nN	0	mN	0	mN	P	lн	PℓI)	Ρť	P
Fo	85	.4	85	.5	8	5.5	8	5.5	85	.7	35	.8	8	5.8
OLIVINE														
Si02	40.17	1.003	40.14	1.002	40.01	0.999	40.16	1.003	40.08	1.000	40.36	1.006	40.21	1.002
FeO	13.91	0.291	13.85	0.289	13.86	0.290	13.80	0.288	13.62	0.284	13.48	0.231	13.51	0.282
NiO	0.23	0.005	0.25	0.005	0.29	0.006	0.36	0.007	0.32	0.006	0.23	0.005	0.26	0.005
MnO	0.13	0.003	0.08	0.002	-	-	0.07	0.001	0.13	0.003	0.15	0.003	-	-
MgO	45.56	1.696	45.68	1.700	45.84	1.706	45.61	1.698	45.86	1.706	45.78	1.700	46.02	1.709
Σ Cations (4 0)		2.998		2,998		3.001		2.997		2.399		2.995		2.998
ORTHOPYROXENE														
Si0,			55.48	1.946	56.00	1.955	55.65	1.951	55.66	1.949			55.95	1.955
A1,0,			2.08	0.086	1.92	0.079	1.89	0.078	2.05	0.085			1.95	0.076
Cr_0_			0.55	0.015	0.44	0.012	0.50	0.014	0.40	0.011			0.42	0.012
FeO	-	÷	9.26	0.272	9.02	0.263	8.85	0.259	8.77	0.257	nd		8.70	0.254
MnO		-	0.13	0.004	0.10	0.003	0.21	0.006	0.10	0.003	.1.4.		0.11	0.003
MgO			31.25	1.634	31.58	1.643	31.23	1.632	31.39	1.638			31.71	1.652
CaO			1.25	0.047	1.18	0.044	1.67	0.063	1.64	0.062			1.28	0.048
Σ Cations (6 0)				4.003		3.999		4.003		4.004				4.001
Ma CLINOPYPOYENE				85.5		86.1		36.0		36.3				36.5
Sin			52.68	1.928			52.76	1.926	52.43	1.916	52.79	1.930	52.77	1.922
A1 0			2.59	0.122			2.67	0.115	2.93	0.126	2.37	0.102	2.63	0.113
Cr 0.			0.95	0.027			0.98	0.028	1.04	0.030	1.04	0.030	0.98	0.028
Fe0			4.01	0.123		¥	3.64	0.111	3.99	0.122	3.55	0.209	3.89	0.119
MgO	I	n.d.	16.67	0.909		T	16.93	0.921	17.12	0.933	16.82	0.917	17.77	0.965
CaO			23.05	0.904			22.84	0.893	22.23	0.870	23.28	0.912	21.70	0.847
Na_0			-	-			0.19	0.013	0.26	0.018	0.16	0.011	0.27	0.019
Σ Cations				4.003				4.009		4.015		4.010		4.017
Ca:Mg:Fe			46.7:43	7.0:6.3			46.4:4	7.3:5.8	45.2:40	3.5:8.3	47.1:47	.3:5.2	43.3:5	0.0:5.2
SPINEL			0.21	0.000	0.23	0.011	0.23	0 044	0 47	0.091	0.40	0.078	0.25	0 048
1102	0.21	7.176	17.06	5 417	21 75	6 519	22 05	6.632	21.29	6.431	17.63	5.414	21.08	6.371
A12 ⁰ 3	25.27	7.476	11.20	0.001	0.33	0.067	0.39	0.080	0.47	0.097	0.38	0.079	0.31	0.064
² 2 ³ 3	0.34	7 205	27 54	7 904	38 55	7.751	37.44	7.554	37.36	7.672	41.99	8.650	38.30	7.866
CF203	36.81	1.072	10.04	2 475	0.00	1 575	a 58	1.648	8.40	1.620	8.67	1.700	9.31	1.603
*re203	3.08	1.075	12.33	5.000	21.26	4 521	22 47	4 795	22 32	4.912	22.63	4.937	22.39	4.908
FeO	22.76	4.///	26.49	5.899	21.20	4.521	0.12	0.025		-	-	-	_	-
NiO	0.03	0.006	0.14	0.030	0.12	0.025	0.12	0.025		0 089	0.37	0 082	0.33	0.067
MnO	0.25	0.053	0.40	0.090	0.57	0.123	0.3/	3 200	9.91 9.00	3,056	7.86	3 153	6 OF	3 073
MgO	8.47	3.169	5.14	2.041	8.84	3.351	0.1/ A 10	0.035	0.00	0.034	0.07	0.013	J.V4	-
Zn0	0.18	0.034	-	04 000	0.13	0.025	0.13	24 001	0.10	24 001	0.07	24 001	-	24 001
2 Cations (32 0)		24.001		24.000		24.001		24.001		20 4		24.001		23 :
М		25.7		39.9		42.6		59.5		58.4 1		05 		30.0 25 7
Cr		43.4		59.3		54.3		53.2		34.4		01.5		00.0

TABLE C-2 (continued - page 6 of 9)

SAMPLE	47	5	47	6	45	7	47	'8	41	79	48	50	48	31
HOST Fo	بو 86	ep [†] 	0) 86	mN 5 . 2	01 86	mN 5.2	01 86	mN 5.4	0 8 (mN 5 .4	0) 86	3N 5.4	m 8 c	T 5.8
OLIVINE														
Si0,	40.35	1.005	40.26	1.002	39.99	0.997	40.20	1.000	40.31	1.003	40.38	1.002	40,46	1.004
FeO	13.13	0.279	13.16	0.274	13.28	0.277	13.02	0.271	12.98	0.270	12.39	0.270	12.57	0.261
NiO	0.14	0.003	0.30	0.006	0.19	0.004	0.21	0.004	0,27	0.005	0.25	0.005	C.32	0.006
MnO	-	-	-	-	0.08	0.002	-	-	0.08	0.002	0.15	0.002	0.13	0.003
MgO	46.37	1.718	46.28	1.716	46.35	1.723	46.57	1.726	46.37	1.717	46.34	1.719	46.52	1.721
Σ Cations (4 0)		3.005		2.998		3.003		3.001		2.997		2.998		2.995
ORTHOPYROXENE														
SiO,	55.60	1.946	55.88	1.950	55.70	1.950	55.66	1.949	55.75	1.948				
A1203	2.08	0.086	2.06	0.085	1.89	0.078	1.78	0.073	2.04	0.084				
Cr203	0.49	0.014	0.42	0.012	0.48	0.013	0.59	0.016	0.42	0.012				
FeO	8.59	0.251	8.59	0.251	8.76	0.256	8.73	0.256	8.50	0.248	2	¥-		
MnO	0.13	0.004	0.04	0.001	0.17	0.005	0.18	0.005	0.15	0.004		~		n.d.
MgO	31.62	1.650	31.99	1.664	31.55	1.647	31.79	1.659	31.95	1.659				
CaO	1.40	0.053	1.03	0.039	1.45	0.054	1.27	0.047	1.29	0.048				
E Cations (60)		4.004		4.002		4.004		4.005		4.004				
CLINOPYROXENE		86.6		86.8		86.3		86.4		36.3				
Si0,	52.37	1.921			52.94	1.929	52.52	1.919	52.61	1.922	52.44	1.915	52.34	1.912
A1,0,	2.73	0.117			2.32	0.100	2.75	0.118	2.73	0.118	2.95	0.127	2.52	0.113
Cr ₂ 03	0.89	0.026			0.96	0.028	1.00	0.029	1.07	0.031	1.09	0.031	1.37	0.031
FeO	4.58	0.139		_ ,	3.97	0.121	3.85	0.118	3.28	0.100	3.54	0.108	4.00	0.122
MgO	19.03	1.031		n.d.	18.08	0.982	17.12	0.932	16.78	0.914	17.15	0.934	13.11	0.986
CaO	19.77	0.770			21.75	0.849	22.78	0.892	23.41	0.916	22.57	0.883	21.63	0.347
Na ₂ 0	0.12	0.009			-	-	-	-	0.07	0.005	0.23	0.016	9.17	0.012
Σ Cations (6 0)	10 0 0	4.013				4.008		4.008		4.006		4.014		4.022
SPINEL	39.7:5	3.1:7.2			43.5:50	0.3:6.2	45.9:48	0.0:6.1	47.5:47	2.3:5.2	45.9:48	.5:5.8	43.3:50	.4:5.3
TiO	0.22	0.042	0.21	0.040	0.25	0.048	0.48	0.095	0.23	0.044	0.25	0.048	0.41	0.080
A1,0,	20.72	6.257	22.01	6.559	21.44	6.412	16.35	5.070	22.32	6.691	21.93	6.640	18.26	5.559
v203	0.35	0.072	0.31	0.063	0.32	0.065	0.26	0.055	0.29	0.059	0.34	0.070	0.51	0.106
Cr_03	39.16	7.933	39.10	7.817	39.47	7.918	42.21	8.780	37.97	7.636	35.46	7.203	42.09	8.596
*Fe203	8.58	1.654	7.79	1.482	7.91	1.510	9.63	1.907	7.98	1.527	10.30	1,991	9.14	1.582
FeO	21.69	4.648	20.90	4.419	20.84	4.422	23.37	5.142	22.32	4.747	24.07	5.171	21.09	4.556
NIO	0.27	0.056	-	-	0.13	0.027	-	-	0.08	0.016	-	-	2.13	0.027
MnO	0.39	0.085	0.17	0.036	0.29	0.062	0.42	0.094	0.30	0.065	0.32	0.070	3.44	0.096
MgO	8.41	3.212	9.51	3.585	9.35	3.537	7.29	2.859	8.45	3.204	7.33	2.807	3.73	3.381
ZnO	0.22	0.042	-	-	-	-	-	-	0.06	0.012	-	-	0.20	0.038
Σ Cations (32 0)		24.001		24.001		24.001		24.001		24.001		24.001		24.000
.4		40.9		44.4		44.8		35.7		40.3		35. "		4 P
Cr		55.9		55.3		54.4		63.4		53.3		52.0		40.0
								-				00.0		00.7

SAMPLE	48	2	48	3	48	14	4.8	5	48	6	48	37	48	8
HOST	P(D	P.	'H [†]	P	'P [†]	т(2) [†]	p,	۶r.		5+	. 1	,÷
Ec	86	.3	87	.1	87	.4	87	.8	88	8.0	88	8.1	89	.2
OLIVINE		0.000	110 22	0.000	10.55	1 003	10 92	1 000	40.59	1 007	10 75	1 005	LO 77	1 002
5102	40.22	0.999	40.23	0.999	10.00	0.251	11 60	0.241	11 50	0.220	11 45	0.226	10.03	0.214
reu	12.64	0.263	12.43	0.258	0.10	0.251	0.20	0.241	11.00	0.239	11.45	0.230	0.00	0.214
NLO	0.23	0.005	0.28	0.003	0.10	0.003	0.20	-	0.22	0.004	0.25	-	-	-
Mno	0.15	0.004	0.14	1 7 77	0.07	1 7 7 0	17 29	1 7 2 9	17 57	1 751		1 749	110 36	1 772
MgO	46.73	1.731	46.93	1./3/	4/.11	2.007	47.20	2.002	47.37	2 000	47.55	2.005	40.00	2 000
E Cations (4 0)		3.001		3.001		2.997		2.992		2.998		2.995		2.990
ORTHOPYROXENE														
SiO ₂	56.03	1.957	56.19	1.956					55.88	1.950	56.31	1.954	56.32	1.963
AL ₂ 03	1.69	0.070	1.75	0.072					1.79	0.074	2.03	0.083	1.78	0.072
cr ₂ 0 ₃	0.40	0.011	0.37	0.010					0.45	0.012	0.44	0.012	0.15	0.004
FeO	8.44	0.247	8.05	0.234				A	7.34	0.214	7.63	0.221	7.20	0.208
MnO	0.10	0.003	-	-	-	*	-11	.u.	0.15	0.004	0.10	0.003	-	-
MgO	31,96	1.664	32.60	1.692					31.90	1.659	32.99	1.706	33.86	1.744
CaO	1.39	0.052	1.04	0.039					2.50	0.093	0.53	0.020	0.20	0.007
E Cations		4.003		4.003						4.007		3.999		3.999
(60) "		56.J		87.9						38.4		33.4		39.3
CLINOPYROXENE														
S102	52.99	1.928	52.93	1.930	52.82	1,926			53.02	1.934				
A1203	2.40	0.103	2.43	0.104	2.78	0.119			2.36	0.101				
^{Cr} 2 ⁰ 3	1.04	0.030	0.94	0.027	1.03	0.030			0.80	0.023				
FeO	3.98	0.121	3.14	0.096	2.82	0.086	n.	d.	3.12	0.095	n.d.		n.d.	
MgO	18.28	0.992	17.21	0.935	16.70	0.908			10.91	0.920				
CaO	21.15	0.825	23.29	0.910	23.60	0.922			23.81	0.931				
Na ₂ 0	0.18	0.013	-	-	0.26	0.018			-	-				
Σ Cations		4.012		4.004		4.009				4.004				
Ca:Mg:Fe	42.6:51	.2:6.2	46.9:4à	3.2:4.9	48.1:43	7.4:4.5			47.8:43	7.3:4.3				
TiQ.	0.38	0.075	0.19	0.037	0.14	0.025	0.77	0.154	0.47	0.091	0.14	0.026	0.08	0.014
A1_0_	16.95	5.222	20.94	6.324	31.41	8.891	17.45	5.478	19.34	6.010	28.31	8.158	41.67	11.180
23 V.Q.	0.41	0.086	0.29	0.060	0.25	0.048	0.36	0.077	0.31	0.064	0.24	0.047	0.16	0.029
2-3 Cr.0.	41.76	8.630	40.51	8.208	32.77	6.222	40.54	8.538	38.17	7.757	36.70	7.094	22.42	4.035
2-3 ₩Fe 0.	9.73	1.914	6.93	1.336	4.37	0.790	7.98	1.600	10.28	1.988	3.54	0.651	4.26	0.730
Fe0	22.34	4.883	22.25	4.768	18.99	3.814	27.63	6.155	21.71	4.000	20,13	4,116	16.83	3.204
NIO	_	_	0.11	0.023		-	-	-	-	-	-	-	0.32	0.059
Mn O	0.38	0.084	0.38	0.082	0.26	0.053	0.55	0.124	0.52	0.113	0.31	0.064	0.25	0.048
MgO	7,90	3.078	8.15	3.113	11.46	4.088	4.72	1.874	8.59	3,291	10,46	3.812	13.70	4.649
ZnO	0.15	0.029	0.26	0.05	0.39	0.069	-	-	0.11	0.021	0.18	0.032	0.32	0.054
Σ Cations (32 0)		24,001		24.001		24.000		24.000		24.001		24.000		24.001
. с.		38 7		39.5		51 2		93 3		.11 .1		10 1		60.0
Cr.		82 7		58 6		41 9		20.0		58.2		40.1		59.2
		00.0		00.0		41.0		00.9		00.0		40.5		26.5

TABLE C-2 (continued - page 7 of 9)

TABLE C-2 (continued - page 8 of 9)

SAMPLE	48	9	49	0	49	91	49	92	49	3	49	4	4	€
HOST	C	00	ł	ŧ+	:	н†	1	н	1	ł	,	+ 1		н
Fo	90	.4	91	.0	92	1.1	91	.4	91	.5	91	.6	9.	1.6
OLIVINE														
S102	41.19	1.006	41.13	1.002	41.40	1.008	41.26	1.003	41.31	1.004	41.26	1.003	41.21	1.003
FeO	9,37	0.191	8.77	0.179	8.60	0.175	8.38	0.170	8,25	0.168	8.21	0.167	9.20	0.167
NiO	0.21	0.004	0.30	0.006	0.33	0.007	0.30	0.006	0.28	0.006	0.23	0.004	0.39	0.008
MnO	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MgO	49.23	1.792	49.84	1.811	49.67	1.802	50.11	1.817	50.15	1.818	50.31	1.823	50.19	1.820
Σ Cations (4 0)		2.994		2.998		2.992		2.997		2,996		2,997		2.997
ORTHOPYROXENE	·				<u>.</u>									
SiO	57.68	1.985	56.68	1.949	56.55	1.945	56.39	1.955	56.78	1.949	56.53	1.946	56.06	1.926
Al_0_	0.54	0.022	2.27	0.092	2.76	0.112	2.19	0.089	2.38	0.096	2.46	0.100	3.17	0.128
Cr_0_	0.19	0.005	0.58	0.016	0.38	0.010	0.46	0.012	0,23	0.006	0.46	0.013	0.63	0.017
Z 3 FeO	6.29	0.181	5.70	0.164	5.72	0.165	5.73	0.165	5.56	0.160	5.84	0.168	5.31	0.153
MnO	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MgO	35.08	1.800	34.43	1.765	33.72	1.729	34.43	1.763	34.62	1.772	34.15	1.752	34.47	1.765
CaO	0.20	0.007	0.33	0.012	0.88	0.032	0.30	0.011	0.43	0.016	0.53	0.020	0.35	0.013
Σ Cations (6 0)		4.001		3.997		3.994		3.995		3.999		3.998		4.002
mg CLINOPYROXENE		90.9		91.5		91.3		91.4		91.7		91.3		92.0
Si0.			53.48	1.943	52.43	1,907	54.12	1.962	53.37	1.952	52.93	1.924	54.05	1.959
A1_0			1.91	0.082	3.31	0,142	1.13	0.048	1.38	0.080	2.70	0.116	1.52	0.065
23 Cr.0			0.65	0.019	1.05	0.030	0.46	0.013	0.56	0.016	1.00	0.029	0.36	0.010
Z 3 FeO			1.64	0.050	1.38	0.057	1.58	0.048	1.55	0.047	1.84	0.056	1.62	0.049
MgO	n.a.		17.45	0.945	17.04	0.924	18.09	0.978	17.70	0.956	17.17	0.930	18.03	0.974
CaO			24.88	0,968	24.30	0.947	24.64	0.957	24.46	0.949	24.38	0.949	24.16	0.938
Na ₂ 0			-	-	-	-	-	-	-	-	-	-	0.26	0.018
Σ Cations (6 0)				4.007		4.007		4.007		4.000		4.004		4.013
Ca:Mg:Fe			49.3:4	8.1:2.5	49.1:4	7.9:3.0	48.3:4	9.3:2.4	48.6:49	0:2.4	49.0:48	.1:2.9	47.3:4	9.7:2.5
SPINEL TIO	0.15	0.031			_	_	_	-	_	-	0.09	0.016	-	_
A1.0.	7.22	2.342			43.65	11,530	33.33	9.141	36.74	9.942	35.24	9.655	40.67	10.691
V_0_	0.19	0.042			0.13	0.023	0.21	0.039	0.27	0.050	0.22	0.041	0.14	0.025
2-3 Cr.0.	55.74	12.130			24.12	4.274	36.76	6.764	32.05	5.819	32.37	5.950	29.38	5.181
2-3 ★Fe₂0₂	6.88	1.425			1.03	0.174	0.32	0.056	1.10	0.190	1.34	0.322	0.62	0.104
Fe0	22.88	5.266	n.d.		14,99	2,809	14.23	2.769	14.24	2.734	15.99	3.109	11.68	2.178
NiO	-	_			0,24	0.043	-	-	-	-	-	-	-	-
MnO	0.47	0.110			0.27	0.051	0.16	0.032	0.29	0.056	-	-	-	-
MgO	6.47	2.655			14.95	4.995	14.99	5.200	15.15	5.185	14.06	4.873	17.51	5.822
ZnO	_	-			0.61	0.101	-	-	0.14	0.024	0.20	0.034	-	-
Σ Cations (32 0)		24.001			_	24.001		24.001		24.000		24.001		24.001
м		33.5				64.0		65.3		65.5		61.0		72.3
Cr		83.8				37.0		42.5		36.9		38.1		32.6

TABLE C-2 (continued - page 9 of 9)

SAMPLE	49	96	чč	97	4	98	4	199	5	25
HOST	ł	ł	Н		H	ł	I	ν£D		ч
Fo	92	2.0	92	2.2	9.	2.3		-		-
OLIVINE										
Si0 ₂	41.38	1.004	41,36	1.013	41.61	1.008				
FeO	7.78	0.158	7.57	0.153	7.53	0.153				
NIO	0.31	0.006	0,25	0.005	0.34	0.007				
MnO	-	-	-	-	-	-				
MgO	50.53	1.828	50.32	1.815	50.52	1.825				
Σ Cations (4 0)		2.996		2.987		2.992				
ORTHOPYROXENE										
SiO	56.36	1.940	56.48	1.938	56.38	1.934				
Al_O	2.41	0.098	2.39	0.097	2.75	0.111				
Cr ₂ O ₂	0,54	0.015	0.57	0.016	0.52	0.014				
Z J FeO	5,13	0.148	5.14	0.147	5.12	0.147				
MnO	0.14	0.004	-	-	-	-				
MgO	34.29	1,759	35.11	1.796	34.95	1.787				
CaO	1.14	0.042	0.30	0.011	0.28	0.010				
Σ Cations		4.006		4.005		4.003				
		92.0		92.4		92.4				
CLINOPYROXENE	_				50.07					
5102	54.05	1.957			53.97	1.954				
AL 203	1.87	0.080			1.65	0.070				
	0.67	0.019			0.44	0.013				
te0	1.66	0.050	n	.d.	1.6/	0.051				
MgO	17.68	0.954			18.29	0.987				
CaO	24.08	0.934			23.98	0.930				
Na ₂ 0	-	-			-	-				
E Cations (6 0)		3,994				4.005				
Ca:Mg:Fe SPINEL	48.2:4	9.2:2.6			47.3:50	0.1:2.6			Massive Podiform Chromite	
Ti02	0.07	0.012	-	-	-	-	0.10	0.019	0.20	0.036
Al ₂ 0 ₃	34.76	9.459	34.33	9.311	36.88	9.835	22.38	6.734	21.38	6.093
v ₂ 03	0.24	0.044	-	-	0.19	0.034	0.24	0.049	0.07	0.014
Cr203	33.84	6.178	35.00	6.368	32.75	5.859	37.55	7.579	48.85	9.340
* Fe ₂ 0 ₃	1.70	0.295	1.86	0.322	1.60	0.272	8.35	1.604	2.66	0.484
FeO	13.71	2.647	12.50	2.405	11.07	2.095	23.18	4.956	9.73	1.970
NiO	0.10	0.019	-	-	-	-	-	-	0.10	0.019
MnO	0.13	0.025	-	~	-	-	0.41	0.089	0.64	0.131
MgO	15.46	5.321	16.31	5.595	17.51	5.906	7.80	2.970	16.40	5.913
ZnO	-	-	-	-	-	-	-	-	-	-
Σ Cations (32 0)		24.001		24.001		24.001		24.000		24.000
М		66.8		69.9		74.2		37.5		75.0
Cr		39.5		40.6		35.6		53.9		- 30.5

T	ABL	E	C -	3
-	-	_		

Analyses of Zoned Orthopyroxenes in Olivine Norites and Peridotites from the PBOC

SAMPLE HOST	45 P <i>l</i>	.8 Н	45 06	9 N	46 Om	1 N	46 0#	57 IN	468 ₽ℓH	3 1 ⁺	480 0G1	1	484 P{P [†]	L.
	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM
Si0 ₂	55.39	55.73	55.65	55.57	55.63	55.03	55.22	56,21	55.47	56.11	55,30	55.65	55.95	56.21
A1203	2.05	1.94	2.02	1.66	2.10	1.89	2.18	1.61	2.09	1.68	2.44	2.01	2.24	1.76
Cr_2O_3	0.49	0.52	0.43	0.48	0.59	0.33	0.46	0.14	0.44	0.36	0,60	0.41	0.48	0.23
Fe0	9.52	9.66	9.67	10.07	9.16	9.52	9.09	9,29	9.32	8.91	8.14	8.42	7.65	8.37
Mn0	0.20	0.15	-	0.30	0.16	0.14	0.17	0.18	0.19	0.18	0.18	0.17	0.15	-
MgO	31.01	31.43	31.15	31.42	30.87	32.52	31.01	32.13	31.57	31.87	31.32	32.33	32.25	33.06
Ca0	1.34	0.57	1.08	0.50	1.49	0.57	1.87	0.44	0.93	0.90	2.02	1.01	1.28	0.37
Numbers of	cations	on the	basis of	⁻ 6 oxyge	ens:									
Si	1.946	1.954	1.952	1.953	1.951	1.931	1.940	1.964	1.944	1.961	1.935	1.944	1.947	1.955
AIIV	0.054	0.046	0.048	0.047	0.049	0.069	0.060	0.036	0.056	0.039	0.065	0.056	0.053	0.045
Al ^{VI}	0.031	0.034	0.036	0.022	0.038	0.009	0.030	0.030	0.030	0.030	0.036	0.027	0.039	0.027
Cr	0.014	0.014	0.012	0.013	0.016	0.009	0.013	0.004	0.012	0.010	0.017	0.011	0.013	0.006
ΣFe	0.280	0.283	0.284	0.296	0.269	0.280	0.267	0.271	0.273	0.260	0.238	0.246	0.223	0.243
Mn	0.006	0.005	-	0.009	0.005	0.004	0.005	0.005	0.006	0.005	0.005	0.005	0.004	-
Mg	1.624	1.642	1.628	1.646	1.614	1.701	1,624	1.673	1.650	1.660	1.634	1.683	1.673	1.714
Ca	0.050	0.021	0.040	0.019	0.056	0.021	0.070	0.016	0.035	0.034	0.076	0.038	0.048	0.014
Σ Cations	4.005	3.999	4.000	4.005	3.998	4.024	4.009	3.999	4.006	3.999	4.006	4.010	4.000	4.004
mg	85.0	85.1	85.1	84.4	85.5	85.7	85.7	85.8	85,5	86.2	87.1	87.0	88.1	87.6
Ca	2.6	1.1	2.0	1.0	2.9	1.0	3.6	0.8	1.8	1.7	3.9	1.9	2.5	0.7
Mg at %	82.8	84.1	83.5	83.6	83.0	84.8	82.6	85.1	84.0	84.8	83.7	85.4	85.9	87.0
Fe'	14.6	14.8	14.5	15.4	14.1	14.2	13.8	14.1	14.2	13.5	12.4	12.7	11.6	12.3

mg = 100 Mg/(Mg+ΣFe+Mn)

Note: For key to host rock nomenclature see Table C-2.

TABLE C-4

•						
SAMPLE	459	9	46	7	470)
HOST	OGI	N	Oml	N	OmN	I
	CORE	RIM	CORE	RIM	CORE	RIM
SiO ₂	52.60	53.67	52.44	53.07	52.50	52.59
Al ₂ 0 ₃	2.72	1.37	2.74	2.10	2.81	2.43
Cr ₂ 0 ₃	1.06	0.31	1.05	0.84	1.02	0.85
FeO	4.24	3.31	3.57	3.19	3,55	3.76
MgO	17.11	16.99	16.63	16.92	16,33	16.92
CaO	22.26	24.35	23.33	23.60	23,69	23.35
Na ₂ 0	-	-	0.24	0.28	0.10	0.10
Numbers	of cation	ns on the	basis of (6 oxygens:		
Si	1.922	1.960	1.919	1.938	1,921	1.924
Al ^{IV}	0.078	0.040	0.081	0.062	0.079	0.076
Al ^{VI}	0.039	0.019	0.037	0.028	0.042	0.029
Cr	0.031	0.009	0.030	0,024	0.030	0.025
ΣFe	0.130	0.101	0.109	0.098	0.108	0.115
Mg	0.932	0.925	0.907	0.921	0.891	0.923
Ca	0.872	0.953	0.914	0.924	0.928	0.916
Na	-	-	0.017	0.020	0.007	0.007
Σ	4.004	4.007	4.014	4.015	4.006	4.015
mg	87.8	90.2	89.3	90.4	89.2	88.9
Ca	45.1	48.2	47.4	47.6	48.2	46.9
Mg at.9	& 48.2	46.7	47.0	47.4	46.2	47.2
Fe'	6.7	5.1	5.6	5.0	5.6	5.9

Analyses of Zoned Clinopyroxenes in Olivine Norites from the Pigna Barney Ophiolitic Complex

 $mg = 100 \text{ Mg/(Mg+}\Sigma\text{Fe+}Mn)$

Note: For key to host rock nomenclature see Table C-2.

TABLE C-5

Representative Analyses of Plagioclases in Gabbroic and Ultramafic Rocks from the Pigna Barney Ophiolitic Complex

ANALYSIS No.	l	2	3	4	5	6	7
SAMPLE	028	026	440	443	456	460	474
si0 ₂	47.47	45.31	46.43	46.05	45.97	45.92	46.10
Al ₂ 0 ₃	32.46	33.61	33.91	34.08	34.63	33.93	34.35
ΣFeO	0.88	0.69	0.23	0.19	0.24	0.19	0.26
MgO	0.09	0.09	-	-	-	-	-
CaO	17.30	17.69	17.93	17.81	17,99	18.17	17.76
Na ₂ 0	2.04	1.47	1.60	1.60	1.47	1.40	1.45
κ ₂ ο	-	-	-	_	-	-	-
TOTAL	100.24	98.86	100.10	99.73	100.30	99.61	99.92

Numbers of cations on the basis of 32 oxygens:

Si	8.745	8.473	8.551	8.511	8.451	8.503	8.499
Al	7.048	7.408	7,360	7.424	7.504	7.405	7.464
ΣFe	0.136	0.108	0.035	0.029	0.037	0.029	0.040
Mg	0.025	0.025	-	-	-	-	-
Ca	3.415	3.544	3.538	3.527	3.544	3.605	3.508
Na	0.729	0.533	0.571	0.573	0.524	0.503	0.518
Σ	20.096	20.091	20.055	20.064	20.060	20.046	20,029
 An	82.4	86.9	86.1	86.0	87.1	87.8	87.1

An = 100 Ca/(Ca+Na)

Analyses 1,2 from gabbro

Analyses 3-6 from olivine mela-norites

Analysis 7 from plagioclase-bearing peridotite.

ANALYSIS No.	1	2	3	4	5	6	7	8	9	10	11
HOST	AH	Т	T	OmN	OmN	OmN	OmN	OmN	G	G	D
SAMPLE	488	485	485	457	325	324	324	439	026	028	032
SiO ₂	46.35	53.16	49.84	50.00	48.94	48.46	52.75	46.09	52.77	52.64	48.65
Ti02	-	-	-	-	-	-	-	-	0.17	0.29	0.61
A1203	12.97	5.89	9.81	8.67	9.73	10.09	5.28	12.01	3.08	2.30	4.24
Cr203	1.12	-	-	-	-	0.28	0.20	0.38	0.08	-	-
ΣFeO	4.54	3.56	4.70	5,14	6.40	7.05	5.16	7.47	13.18	15.43	21.12
Mn0	-	-	-	-	-	-	-	-	0.37	0.26	0.31
Mg0	18.59	21.59	19.70	20.18	19.31	18.57	20.19	17.49	16.60	14.87	11.10
Ca0	12.38	12.98	12.38	11.85	11.37	12.27	12.81	12.01	10.66	11.70	9.92
Na ₂ 0	1.51	0.28	0.81	1.06	1.27	1.76	0.57	2.02	0.17	0.20	1.45
к ₂ 0	-	-	-	-	-	-	-	-	-	-	0.34
TOTAL	97.46	97.46	97.24	96.90	97.02	98.48	96.96	97.47	97.08	.97.69	97.74
Fe ₂ 03	3.06	3.73	4.17	4.30	4.90	4.95	2.98	5.22	2.19	2.74	2.34
Fe0	1.79	0.20	0.95	1.27	1.99	2.08	2.48	2.79	11.21	12.96	18.96
New Total	97.77	97.83	97.66	97.33	97.51	98.46	97.26	98.01	97.30	97.96	97.92
Numbers of ca	tions on t	he basis	of 23 (0,	OH)							
Si	6.296	7.301	6.908	6.968	6.844	6.757	7.358	6.504	7.593	7.623	7.299
AIIV	1.704	0.699	1.092	1.032	1.156	1.243	0.642	1.496	0.407	0.377	0.750
A1 ^{VI}	0.516	0.254	0.511	0.392	0.448	0.415	0.226	0.502	0.115	0.015	-
Ti	-	-	-	-	-	-	-	-	0.018	0.032	0.069
Cr	0.129	-	-	-	-	0.031	0.022	0.042	0.009	-	-
Fe ³⁺	0.334	0.386	0.435	0.451	0.516	0.519	0.313	0.554	0.237	0.299	0.264
Fe ²⁺	0.218	0.023	0.110	0.148	0.233	0.243	0.290	0.330	1.351	1.570	2.383
Mn	-	-	-	-	-	-	-	-	0.045	0.032	0.040
Mg	4.025	4.419	4.069	4.191	4.024	3.860	4.198	3.679	3.561	3.209	2.482
Ca	1.927	1.910	1.839	1.769	1.704	1.833	1.914	1.816	1.643	1.815	1.595
Na	0.425	0.075	0.218	0.286	0.344	0.476	0.154	0.533	0.047	0.056	0.422
к	-	-	-	-	-	-	-	-	-	-	0.064
Σ	15.574	15.067	15.182	15.238	15.269	15.377	15.117	15.476	15.026	15.028	15.368
м	0.949	0.995	0.974	0.966	0.945	0.941	0.935	0.918	0.725	0.671	0.510

TABLE	C-6

Representative Analyses of Primary and Secondary Amphiboles in PBOC Intrusives

 Fe^{3+} calculated following the method of Papike *et al.* (1974). HOST: G = gabbro $M = Mg/(Mg + Fe^{2+})$

D = dolerite

For other host rock nomenclature see Table C-2

Analyses:

l = primary tschermakitic hornblende

2,7 = secondary tremolitic hornblende

3,4,5,6,8 = secondary magnesio-hornblende

9,10 = secondary actinolite

ll = secondary actinolitic hornblende

Amphibole nomenclature after Leake (1978).

TABLE C - 7

Average Compositions of Metamorphic Spinels in Amphibolitized Olivine Morites from the Pigna Barney Ophiolitic Complex and in an Olivine Gabbro from the Curricabark Fault Zone

ANALYSIS N	No. 1		2		3		ц	
SAMPLE	328		457		325 & 326		421	
	x	S	x	S	x	S	x	S
A12 ⁰ 3	63.53	<u>+</u> 2.23	62.93	+0.65	61.87	+0.68	62.60	<u>+</u> 0.34
Cr203	1.37	<u>+1.22</u>	2.94	+0.61	2.29	+0.47	-	
Fe203	3.30	+0.14	1.70	+0.23	2.73	<u>+</u> 0.37	4.40	<u>+</u> 0.41
Fe0	11.91	+0.30	13.80	<u>+</u> 0.45	16.04	<u>+</u> 0.58	15.97	<u>+</u> 0.30
NiO	0.27	+0.02	0.34	+0.08	0.33	<u>+</u> 0.07	-	
MnO	-		0.10	+0.09	0.04	+0.07	-	
MgO	19.35	+0.45	18.01	+0.20	16.50	<u>+</u> 0.33	16.77	+0.04
ZnO	0.27	<u>+</u> 0.11	0.18	<u>+</u> 0.03	0.16	+0.17	0.27	<u>+</u> 0.19
М	74.3		69.9		64.7		65.2	

Numbers of cations on the basis of 32 oxygens:

Al	15.273	15.262	15.191	15.313
Cr	0.221	0.478	0.377	-
Fe ³	0.507	0.263	0.428	0.887
Fe ²	2.032	2.375	2.795	2.772
Ni	0.044	0.056	0.055	
Mn	-	0.017	0.007	-
Mg	5.884	5.522	5.123	5.188
Zn	0.040	0.027	0.025	0.041
Σ	24.001	24.000	24.001	24.001
N	8	5	14	ô

$$\begin{split} M &= 100 \text{Mg/(Mg + Fe}^{2+}) \\ \text{Fe}^{3+} & \text{calculated assuming stoichiometry} \\ \text{Olivine gabbro = sample 421} \\ \text{N = number of grains analysed, several analyses each grain} \\ \bar{\text{x}} &= \text{mean} ; \quad \text{s = standard deviation} \end{split}$$

TABLE C-8

Chemical Analyses of Hydrogarnets and Prehnites

ANALYSIS No.	1	2	3	4	5	6	7	8	9	10
SAMPLE	420	329	438	472	472	473	475	475	478	478
SiO ₂	38.79	40.69	37.42	37.30	36.13	29.25	37.78	29.63	32.49	32.72
A1203	27.67	28.41	26.54	23.03	23.40	22.96	22.45	21.25	20.11	24.86
ΣFe ₂ 0 ₃	1.67	0.79	4.46	0.20	1.41	1.16	0.72	16.67	5.20	4.96
MnO	0.05	0.03	0.19	0.12	-	-	0.21	0.30	-	-
Mg0	3.17	2.39	3.53	-	-	0.18	-	4.00	7.25	0.85
CaO	23.59	20.96	20.76	38.18	36.77	38.51	38.12	23.67	27.40	29.33
Na ₂ 0	0.25	0.56	0.40	-	-	-	-	-	-	-
Σνοι.	4.73	5.52	6.63	1.17	2.29	7.89	0.82	4.48	7.55	7.28
TOTAL	100.08*	99.86*	100	100	100	100	100	100	100	100
C1 ⁻	n.d.	n.d.	0.07	-	-	0.06	-	-	-	-
Si)	40.2	42.1	41.1	35.4	35.0	30.0	36.0	37.0	38.0	35.0
Al atom.%	33.7	34.7	34.4	25.8	26.7	27.7	25.2	31.3	27.7	31.4
Caj	26.1	23.2	24.5	38.8	38.2	42.3	38.9	31.7	34.3	33.6
ANALYSIS No.	11	12	13	14	15	16	17	18	19	20
SAMPLE	479	482	482	486	486	035	440	448	460	464
Si0,	34.99	28.32	27.58	35.04	31.17	37.29	42.54	42.44	43.07	42.85
A1203	22.75	22.77	22.03	20.85	22.33	9.55	25.25	26.15	25.22	24.97
ΣFe ₂ 0 ₂	0.78	1.42	6.65	4.61	7.71	17.24	0.43	0.13	-	0.20
MnO	-	-	-	-	-	0.23	-	-	-	-
Mg0	-	0.15	1.83	2.37	5.78	0.51	0.10	-	0.07	-
CaO	38.21	39.09	32.64	31.59	26.25	34.23	27.22	27.00	27.31	27.67
Na ₂ 0	-	-	-	-	-	-	0.14	-	-	-
Σνοι.+	3.27	8.20	9.27	5.54	6.76	0.56	4.24	4.28	4.33	4.31
TOTAL	100	100	100	100	100	100 ⁺	100	100	100	100
C1 ⁻	-	0.05	-	-	-	-	0.08	-	-	-
Si	34.1	29.2	31.2	37.5	36.4	43.8	41.9	41.5	42.2	42.0
Al atom.3	26.1	27.7	29.3	26.3	30.7	13.2	29.3	30.2	29.1	28.9
Ca	39.8	43.2	39.5	36.2	32.9	43.0	28.8	28.3	28.7	29.1

Analyses 1-16 = hydrogarnet, analyses 1 and 2 by XRF and wet chemistry. Analyses 17-20 = prehnite. Analysis 16 from hyaloclastite, remainder from mafic and ultramafic intrusives.

⁺Total includes TiO_2 , 0.22; V_2O_3 , 0.17.

*Total includes TiO_2 , 0.04; Cr_2O_3 , 0.01; (Fe₂O₃, 0.19; FeO, 1.33); K₂O, 0.04; P₂O₅, 0.05.

**Total includes Cr₂0₃, 0.06; (Fe₂0₃, 0.05; Fe0, 0.66); Ni0, 0.01; K₂0, 0.38; P₂0₅, 0.03.

ΣVol determined by ignition loss for analyses 1 and 2. Remaining analyses by microprobe for which volatiles have been determined by difference.

n.d. = not determined.

TABLE C-9

Representative Analyses of Pyroxenes in Low-Ti Gabbros and Doleritic Rocks from the PBOC

ANALYSIS No.	1 ORT	2 HOPYRO	3 XENES	4	5	6	7	8 CLINO	9 PYROXEN	10 E S	11	12
	CORE	RIM	CORE	RIM		·					CORE	RIM
SAMPLE	025	025	028	028	028	027	025	026	028	028	032	032
Si0,	54.99	54.64	54.24	54.12	52.63	52.62	53.07	52.74	52.41	51.62	51.37	51.14
Ti02	-	-	-	-	-	-	-	-	-	-	-	0.22
A1203	1.42	1.43	1.45	1.00	0.90	2.82	2.00	1.54	1.67	1.53	3.07	2.26
Cr ₂ 03	0.17	0.10	0.35	0.16	-	0.71	0.49	0.44	0.56	-	-	-
ΣFe0	13.14	15.05	14.64	17.06	22.59	6.01	7.11	7.68	7.14	11.55	10.23	11.51
Mn0	0.16	0.27	0.29	0.23	0.34	0.26	0.07	0.16	0.19	0.39	0.19	0.27
Mg0	27.75	26.30	28.61	25.38	21.46	16.83	17.75	15.67	15.35	12.94	15.76	14.06
CaO	2.36	2.20	2.32	2.04	2.08	20.97	19.39	21.77	22.16	21.58	19.38	20.41
Na ₂ 0	-	-	-	-	-	-	0.13	-	-	-	-	-
TOTAL	99.99	99.99	101.90	99.99	100.00	100.22	100.01	100.00	99.98	99.61	100.00	99.87
Numbers of c	ations c	on the b	asis of 6	oxygen	5:							
Si	1.967	1.971	1.958	1.972	1.970	1.92	7 1.946	1.954	1.942	1.956	1.913	1.926
A1 ^{IV}	0.033	0.029	0.042	0.028	0.030	0.07	3 0.054	0.046	0.058	0.044	0.087	0.074
A1 ^{VI}	0.027	0.032	0.020	0.015	0.010	0.04	9 0.032	0.021	0.015	0.024	0.048	0.026
Ti	-	-	-	-	-	-	-	-	-	-	-	0.006
Cr	0.005	0.003	0.010	0.005	-	0.02	1 0.014	0.013	-	-	-	-
∑Fe	0.394	0.455	0.443	0.520	0.708	0.18	4 0.218	0.238	0.222	0.366	0.319	0.363
Mn	0.005	0.008	0.009	0.007	0.011	0.00	8 0.002	0.005	0.006	0.013	0.006	0.009
Mg	1.480	1.414	1.428	1.378	1.198	0.91	9 0.970	0.865	0.875	0.731	0.874	0.789
Ca	0.090	0.085	0.096	0.080	0.083	0.82	3 0.762	0.864	0.880	0.876	0.773	0.824
Na	-	-	-	-	-	-	- 0.009	-	-	-	-	-
Ξ	4.001	3.997	4.006	4.005	4.010	4.00	4 4.007	4.006	3.998	4.010	4.020	4.017
mg	78.8	75.3	76.0	72.3	62.5	82.7	81.5	78.1	79.3	65.9	72.9	68.0
ca	4.6	4.3	4.9	4.0	4.2	47.5	39.0	43.8	44.4	44.1	39.2	41.6
Mg } atom.%	75.1	72.1	72.3	69.4	59.9	42.6	49.7	43.9	44.1	36.8	44.3	39.7
Fe')	20.3	23.6	22.8	26.6	35.9	9.9	11.3	12.3	11.5	19.1	16.5	18.7

 $mg = 100 \text{ Mg/(Mg+}\Sigma\text{Fe+}Mn)$

Note: some analyses recalculated to 100.0% to compensate for slight filament current drift during microprobe analysis of the samples concerned.

Anorthite contents of plagioclases in low-Ti gabrros and doleritic rocks SAMPLE 025 026 027 028 032

 025	020	027	020	0.52
88-77	89-76	87-77	89-51	69-0

Analyses 11,12 from low-Ti doleritic intrusive, remainder from low-Ti gabbros.

						TABLE C-10					
Representative	Analyses	of	Cr-Al	Spinels	in	Watchimbark	Cumulate	Harzburgites	and	Sedimentary	,
						Serpentinites	s				

ANALYSIS No. SAMPLE	1 491	2 429	3 428	4 494	5 427	6 436	7 434	8 261	9 432	10 432	11 432	12 432	13 432
Ti0,	-	-	0.12	0.09	0.27	-	-	-	-	-	-	-	-
A1203	43.65	42.29	36.38	35.4	22.03	12.92	11.12	48.45	44.69	31.74	24.64	10.98	3.50
V203	0.13	0.18	0.16	0.22	0.36	0.29	0.28	0.17	0.17	0.19	0.28	0.32	-
Cr203	24.12	26.71	30.47	32.37	39.91	55.12	59.49	18.78	22.78	35.72	43.87	58.86	ó8.05
*Fe203	1.03	0.30	2.58	1.84	6.29	1.31	0.31	2.03	2.46	2.36	0.93	0.99	0.75
Fe0	14.99	13.27	15.01	15.99	22.18	21.55	18.92	12.64	11.35	16.31	18.96	19.04	18.41
NiO	0.24	-	0.22	-	-	-	-	0.29	0.28	-	-	-	-
Mn0	0.27	-	0.30	-	0.31	0.32	0.39	0.18	0.31	0.27	0.26	0.50	-
MgO	14.95	16.46	14.37	14.06	8.60	7.99	9.49	17.21	17.33	13.31	10.74	9.32	9.29
Zn0	0.61	0.29	0.39	0.20	0.05	-	-	0.25	0.13	0.10	0.32	-	-
	100	100	100	100	100	100	100	100	100	100	100	100	100
Numbers of c	ations or	n the bas	sis of 32	2 oxygens	;:								
Ti	-	-	0.021	0.016	0.052	-	-	-	-	-	-	-	-
Al	11.530	11.122	9.912	9.656	6.600	1.034	3.460	12.413	11.598	8.358	7.188	3.424	1.128
V	0.023	0.032	0.030	0.041	0.073	0.062	0.059	0.030	0.030	0.036	0.056	0.068	-
Cr	4.274	4.712	5.569	5.950	8.021	11.544	12.419	3.228	3.966	6.678	8.585	12.312	14.718
Fe ³⁺	0.174	0.134	0.449	0.322	1.203	0.361	0.062	0.332	0.408	0.421	0.173	0.197	0.154
Fe ²⁺	2.809	2.476	2.902	3.109	4.715	1.774	4.178	2.298	2.182	3.230	3.924	4.212	4.211
Ni	0.043	-	0.041	-	-	-	-	0.051	0.050	-	-	-	-
Mn	0.051	-	0.059	-	0.067	0.072	0.087	0.033	0.058	0.054	0.055	0.112	-
Mg	4.995	5.475	4.952	4.873	3.259	3.155	3.735	5.577	5.689	4.698	3.963	3.676	3.788
Zn	0.101	0.048	0.067	0.034	0.009	-	-	-	0.021	0.017	0.058	-	-
Σ	24.001	24.001	24.001	24.001	24.000	24.001	24.001	24.001	24.000	24.001	24.001	24.001	24.001
М	64.0	68.9	63.1	61.0	40.9	39.8	47.2	70.8	72.3	59.3	50.2	46.6	47.4
Cr	27.0	29.8	36.0	38.1	54.9	74.1	78.2	20.6	25.5	43.0	54.4	78.2	92.9

*Fe ₂ 0 ₃ calculated assuming stoichiometry M = 100 Mg/(Mg+Fe ²⁺)	Summary of variations in <i>H</i> and <i>Or</i> displayed by spinel populations in samples of sedimentary serpentinite.							
Cr = 100 Cr/(Cr+A1)	SAMPLE	м	Cr	(n)				
	260	69-61	33-30	3				
	261	72-54	43-20	16				
Analyses 1.7 from Matchinkauly survited	432	73-44	93-25	14				
handiyses 1-7 from watchimbark cumulate	268	63-39	94-34	6				
harzburgites	269	66-59	42-40	3				
Analyses 8-13 from sedimentary	270	59-19	83-45	6				

TABLE - D

SAMPLE	Fo	1	2	3	4	5	SAMPLE	$F \mathfrak{I}$	1	2	3	4	5	
440	80.5	680	407	445	878	917	470	85,5	1128	697	694	896	982	
441	80.5	649	399	429	889	933	471	85.5	1023	637	651	959	1049	
442	81.0	676	419	446	886	976	472	85.7	1002	621	643	988	930	
443	82.0	967	593	601	891	938	473	85.8	1099	653	681	-		
444	82.5	867	570	566	902	889	474	85.8	1013	€24	649	1022	989	
445	82.7	806	499	526	901	931	475	86.0	1149	708	705	-	-	
446	82.7	789	489	516	-	-	476	86.2	1159	710	708	1063	963	
447	82.9	867	570	566	902	889	477	86.2	1076	659	672	1156	1046	
448	83.0	1029	638	630	899	723	478	86.4	1028	607	649	981	1136	
449	83.0	1001	617	611	962	918	479	86.4	1000	623	645	923	931	
450	83.2	866	536	553	9 00	938	480	86.4	867	546	575	974	976	
451	83.2	983	606	621	901	1030	481	86.8	1151	685	704	-	-	
452	83.4	858	530	561	907	952	482	86.8	1070	634	664	1077	928	
453	83.7	1040	641	641	820	1036	483	87.1	990	605	647	945	925	
454	83.8	1006	602	621	548	984	484	87.4	1037	695	681	874	859	
455	83.9	1093	653	661	-	-	485	87.8	682	404	501	-	-	
456	84.0	919	566	601	938	969	486	88.0	5 90	607	629	913	1034	
457	84.0	974	597	625	-	-	487	88.1	983	636	662	-	-	
458	84.2	958	597	618	1042	1059	488	89.2	875	657	599	-	-	
459	84.3	1038	635	634	923	1121	489	90.4	1025	549	665	-	-	
460	84.4	984	606	634	867	950	490	91.0	-	-	-	787	1057	
461	84.7	1096	693	690	975	971	491	91.1	858	640	608	861	847	
462	84.8	1050	656	635	932	1042	492	91.4	1125	742	747	838	900	
463	84.9	843	515	565	968	940	493	91.5	1149	853	767	866	762	
464	84.9	1026	619	636	1043	1006	494	91.6	930	636	645	856	915	
465	85.0	786	493	504	868	593	495	91.6	1202	850	786	848	1120	
466	85.1	982	593	621	937	1000	496	92.0	1072	724	715	922	994	
467	85.3	106.1	668	676	878	816	497	92.2	1185	791	764	-	-	
468	85.4	979	623	648	-	-	498	92.3	1257	867	802	929	1015	
469	85.5	780	471	531	956	1041								

Geothermometry of PBOC intrusives. Mineral equilibration temperatures in degrees centigrade.

Olivine-Spinel 1. Jackson (1969) Opx.-Cpx. 4. Wells (1977). 2. Roeder et.al. (1979) 5. Mysen (1976) 3. Fabries (1979)

Fo= 100Mg/(Mg+Fe²⁺) OLIVINE in host rock.

For samples with zoned pyroxenes, temperature listed is average of core-core and rim-rim determinations. For rock-types, see Table C-2.

Fig. D-1: Fe:Mg relations of coexisting olivine and spinel in PBOC intrusives

Fig. D-2: Fe:Mg relations of coexisting olivine and pyroxenes in PBOC intrusives and Ol-Cpx-(Plag) cumulates from the Curricabark Fault Zone, Glenrock Station area (see Appendix F)

APPENDIX E

MICROPROBE ANALYSES OF MINERALS IN PBOC LOW-TI BASALTS AND IN BASALTIC AND SEDIMENTARY ROCKS FROM THE MYRA BEDS AND GLEN WARD BEDS

NOTE:

- (i) Analyses in Tables E-1 to E-9 are normalized to 100.0%. Totals include calculated Fe_2O_3 . Analyses whose original totals were < 99% or > 101% were rejected.
- (ii) Analyses of Ca-rich pyroxenes listed in Tables E-1 to E-8 are average compositions of 3-10 grains from each sample, 4-10 analyses each grain. Prior to quantitative analysis, grains were checked for chemical heterogeneities by microprobe scans for selected elements using an audible count-rate meter. Grains with sector- or complex zoning were quickly identified by this method. By this method the more chemically homogeneous and presumably best-equilibrated grains were selected for analyses. Variations in the chemistries of coexisting grains of this type were usually small or negligible.

TABLE	E-1

Analyses of	representative Ca-rich	pyroxenes	and some	relict	plagioclase	compositions	from Low-Ti
	basaltic	rocks in t	the Pigna	Barney	Ophiolitic	Complex.	

	MICR	ODOLERITI	C ROCKS [†]		APHANITIC EXTRUSIVES							
SAMPLE	005 CORE	005 RIM	017 CORE	017 RIM	007	016 CORE	016 RIM	009	015			
	53.07	52.64	52.40	52.07	52.52	51.93	50.53	51.69	50.67			
Ti02	а	0.05	а	а	0.06	0.15	а	а	0.33			
A1203	2.84	3.08	2.67	2.51	2.53	2.91	2.10	2.68	3.71			
Cr ₂ 0 ₃	0.72	0.04	0.23	0.11	0.07	-	-	-	-			
ΣFeO	5.71	11.38	7.26	10.50	9.20	10.56	16.62	10.86	11.46			
Mn0	0.05	0.20	-	-	0.15	0.22	0.34	0.18	0.19			
MgO	19.16	17.20	17.66	15.59	17.34	17.66	14.40	15.80	15.01			
CaO	18.43	15.34	19.64	18.90	18.06	16.45	15.74	18.65	18.50			
Na ₂ 0	-	0.07	-	0.19	-	-	-	-	-			
*Fe ₂ 0 ₃	0.06	-	1.35	1.22	0.59	1.19	2.62	1.43	1.34			
Fe0	5.66	11.38	6.04	9.40	8.67	9.49	14.26	9.57	10.25			
Numbers of cations	on the ba	sis of 6	oxygens									
Si	1.931	1.942	1.920	1.933	1.934	1.915	1.915	1.921	1.890			
AIIV	0.069	0.058	0.080	0.067	0.066	0.085	0.085	0.079	0.110			
AIVI	0.053	0.076	0.035	0.042	0.044	0.042	0.009	0.038	0.053			
Ti	-	0.001	-	-	0.002	0.004	-	-	0.009			
Cr	0.014	0.001	0.007	0.003	0.001	-	-	-	-			
Fe ³⁺	0.002	-	0.037	0.034	0.016	0.033	0.074	0.040	0.038			
Fe ²⁺	0.172	0.351	0.185	0.292	0.267	0.293	0.453	0.298	0.320			
Mn	0.002	0.006	-	-	0.005	0.007	0.011	0.006	0.006			
Mg	1.039	0.946	0.965	0.863	0.952	0.971	0.814	0.875	0.835			
Ca	0.718	0.606	0.771	0.752	0.713	0.650	0.639	0.743	0.739			
Na	-	0.005	-	0.014	-	-	-	-	-			
Σ cations	4.000	3.992	4.000	4.000	4.000	4.000	4.000	4.000	4.000			
М	85.8	72.9	83.9	74.7	78.1	76.8	64.2	74.6	72.3			
mg	85.5	72.6	81.3	72.6	76.8	74.5	60.2	71.8	69.6			
Ca	37.2	31.8	39.4	38.8	36.5	33.3	32.1	37.9	38.2			
Mg (atomic %)	53.7	49.5	49.2	44.4	48.7	49.7	40.9	44.6	43.1			
Fe'	9.1	18.7	11.4	16.8	14.8	17.0	27.0	17.5	18.7			
Plag.(An mol.%)	76	- 72	(2)*	78 - 7	76 8	4 - 83	42 - 3	3 (22-2)*			

 Σ Fe0 = total Fe calculated as Fe0 Fe' = Fe²⁺+Fe³⁺+Mn

M = 100 Mg/(Mg+Fe²⁺) mg = 100 Mg/(Mg+Fe²⁺+Fe³⁺+Mn)

* Fe₂0₃ calculated following the method of Papike et al. (1974)

а

= all determinations < 0+07 wt %

+ possibly intrusives. * albitized plagioclase compositions in parentheses

(<u>see</u> Section 5•7•3)

TABL	Ε	£ -	2
		_	_

Analyses of representative Ca-rich pyroxenes and some plagioclase compositions from basaltic extrusives in the Glen Ward beds.

	077	077	077	077	069	069	070	070	071	071	067	067	072	072	073	073	066	066	084	084
	PHENOC CORE	RYST RIM	MICROPHE CORE	NOCRYST RIM	CORE	RIM														
Si0 ₂	51.63	51.53	52.35	50.70	50.83	50.94	50.66	50.83	51.86	49.39	51.58	51.86	50.13	50.39	49.98	50.24	50,20	49.81	51.61	51.81
Tio	0.45	0.52	0.35	0.72	0.60	0.61	0.85	0.87	0.43	1.08	0.50	0.42	0.81	0.80	1.03	0.83	0.62	0.77	0.25	0.26
A1203	3.71	3.59	2.50	2.99	3.76	3.36	3.85	3.51	2.55	4.31	2.60	2.20	3.96	3.47	3.76	3.51	2.61	3.25	1.93	2.36
Cr_2O_3	0.61	0.16	0.21	-	0.23	0.09	0.10	0.16	0.10	-	0.07	-	0.14	-	-	-	-	-	-	-
ΣFeO	5.59	6.84	6.74	12.36	7.60	7.60	7.96	10.55	9.62	11.87	9.56	9.45	10.00	10.43	10.87	9.56	11.08	11.25	12.16	11.79
MnO	-	0.12	-	0.28	0.04	0.10	0.10	0.13	0.19	0.16	0.25	0.24	0.16	0.16	0.17	0.18	0.42	0.32	0.26	0.13
MgO	16.36	16.06	17.42	16.67	16.12	15.55	15.55	15.44	17.09	13.97	16.24	16.18	14.22	14.30	14.60	14.76	14.92	14.14	15.07	15.50
CaO	21.34	20.84	20.09	15.69	20.43	21.47	20.57	18.51	17.89	18.74	18.93	19.24	20.19	20.05	19.04	20.30	19.49	19.88	18.60	18.10
Na ₂ 0	0.20	0.24	0.19	0.30	0.17	0.08	0.17	-	0.12	0.26	0.11	0.22	0.20	0.20	0.30	0.33	0.29	0.24	-	-
*Fe203	0.94	1.45	1.64	2.84	2.20	2.02	1.75	0.35	1.50	2.33	1.55	2.00	1.81	1.90	2.39	3.03	3.58	3.42	1.27	0.59
FeO	4.74	5.54	5.27	9.81	5.62	5.79	6.39	10.23	8.27	9.78	8.17	7.65	8.37	8.72	8,72	6.83	7.85	8.17	11.02	11.26
Numbers of cations	s on the b	asis of (6 oxygens:																	
Si	1.895	1.896	1.917	1.885	1.873	1.883	1.872	1.892	1.914	1.851	1.910	1.920	1.870	1.881	1.865	1.869	1.882	1.867	1.932	1.932
AT IV	0.105	0.105	0.083	0.115	0.127	0.117	0.128	0.108	0.086	0.149	0.090	0.080	0.130	0.119	0.135	0.131	0.115	0.133	0.068	0.068
AI ^{VI}	0,056	0.050	0.025	0.016	0.036	0.029	0.040	0.046	0.025	0.041	0.024	0.016	0.044	0.034	0.030	0.023	-	0.011	0.017	0.036
Ti	0.012	0.014	0.010	0.020	0.017	0.017	0.024	0.024	0.012	0.030	0.014	0.012	0.023	0.022	0.029	0.023	0.017	0.022	0.007	0.007
Cr	0.019	0.003	0.006	-	0.007	0.003	0.003	0.003	0.003	-	0.002	-	0.004	~	-	-	-	-	-	-
Fe ³⁺	0.026	0.040	0.045	0.080	0.061	0.056	0.049	0.010	0.042	0.066	0.043	0.056	0.051	0.053	0.067	0.085	0.101	0.096	0.036	0.017
Fe ²⁺	0.146	0.170	0.162	0.304	0.173	0.179	0.198	0.319	0.256	0.307	0.253	0.237	0.261	0.274	0.274	0.212	0.246	0.256	0.346	0.351
Mn	-	0.004	-	0.009	0.001	0.003	0.003	0.004	0.006	0.005	0.008	0.008	0.005	0.005	0.005	0.006	0.013	0.010	0.008	0.004
Mg	0.895	0.880	0.951	0.924	0.886	0.857	0.857	0.857	0.941	0.780	0.897	0.893	0.791	0.796	0.812	0.818	0.828	0.790	0.841	0.862
Ca	0.839	0.821	0.788	0.625	0.807	0.850	0.815	0.738	0.708	0.752	0.751	0.763	0.807	0.802	0.761	0.809	0.778	0.798	0.746	0.723
Na	0.014	0.017	0.013	0.022	0.012	0.006	0.012	-	0.009	0.019	0.008	0.016	0.014	0.014	0.022	0.024	0.021	0.017	-	-
Σ cations	4.000	4.000	4.000	4.000	4.000	4.000	4.001	4.000	4.000	4.000	4.000	4.001	4.000	4.000	4.000	4.000	4.001	4.000	4.001	4.000
м	86.0	83.8	85.5	75.2	83.7	82.7	81.3	72.9	78.6	71.8	78.0	79.0	75.2	74.5	74.9	79.4	77.2	75.5	70.9	71.1
тқ	83.9	80.4	82.1	70.2	79.0	78.3	77.4	72.0	75.6	67.4	74.7	74.8	71.4	70.6	70.1	73.0	69.7	68.6	68.3	69.9
Са	44.0	42.9	40.5	32.2	41.8	43.7	42.4	38.3	36.3	39.4	38.5	39.0	42.1	41.6	39.7	41.9	39.6	40.9	37.7	36.9
Mg (atomic %)	47.0	45.9	48.9	47.6	46.0	44.0	44.6	44.5	48.2	40.9	45.9	45.6	41.3	41.3	42.3	42.4	42.2	40.5	42.5	44.1
Fe'	9.0	11.2	10.6	20.2	12.2	12.3	13.0	17.2	15.5	19.7	15.6	15.4	16.6	17.1	18.0	15.7	18.2	18.6	19.8	19.0
Plag.(An mol %)	2		2		20 -	0	65 -	47	3 -	1	0		65	- 62	2	- 1	67 -	33	69	- 0

 $\Sigma Fe0 = total Fe calculated as Feo Fe' = Fe²⁺+Fe³⁺+Mn$

M = 100 Mg/(Mg+Fe²⁺) mg = 100 Mg/(Mg+Fe²⁺+Fe³⁺+Mn)

 Fe_20_3 calculated following the method of Papike *et al.* (1974)

	074 CORE	074 RIM	060 CORE	060 R I M	075 CORE	075 R I M	076 CORE	076 RIM	063 CORE	063 RIM	068 CORE	068 RIM	064 CORE	064 RIM
SiO ₂	51,96	50.67	52.19	51.52	50.77	49.85	50,38	50.86	50.09	50.09	51.64	50.87	49.88	50.26
TiO2	0.26	0.58	0.54	0.77	0.70	0.76	0.88	0.70	0.76	0.75	0.65	0.81	0.77	0.72
A1203	3.09	2.83	2.51	2,28	4.03	4.40	2.93	2.61	3.81	3.40	1,99	2,88	3.14	2.60
Cr_20_3	0.47	0.10	0.40	-	0.36	0.22	0.24	-	-	-	-	-	0.05	-
ΣFe0	5.65	9.95	6.21	8.51	6.45	10.62	8.12	8.91	9.42	10.99	9.96	9.15	10.89	11.68
MnO	-	0.17	0.08	0.17	0.07	0.19	0.13	0.24	0.15	0.35	0.18	0.14	0.20	0.22
MgO	16.75	14.57	16.88	15.94	15.69	14.69	15.42	14.93	14.82	13.97	15.70	14.81	15.43	15.09
Ca0	21.64	20.72	21.14	20.45	21.44	18.81	21.38	21.14	20.55	19.77	19.50	20.88	19.05	19.05
Na ₂ 0	0.06	0.16	-	0.17	0.28	0.25	0.20	0.30	0.14	0.38	0.20	0.24	0.20	0.08
*Fe203	1.24	2.48	0.61	1.97	2.10	2.17	3.17	3.07	2.62	3.03	1.87	2.20	3.86	2.84
Fe0	4.53	7.71	5.66	6.74	4.56	8.67	5.26	6.15	7.06	8.27	8.27	7.17	7.42	9.12
Number of cati	ons on th	e basis c	of 6 oxyg	ens:										
Si	1.904	1.890	1.916	1.907	1.869	1.857	1,868	1.891	1.863	1.874	1.920	1.892	1.860	1.882
41 ^{IV}	0.096	0.110	0.084	0.093	0.131	0.143	0.128	0.109	0.137	0.126	0.080	0.108	0.138	0.115
AI VI	0.037	0.014	0.025	0.006	0.044	0.050	· _	0.005	0.030	0.024	0.007	0.018	-	-
Ti	0.067	0.016	0.015	0.021	0.019	0.021	0.025	0.020	0.021	0.021	0.018	0.023	0.022	0.020
			0.012	-	0.010	0.006	0.007	-	-	-	-	-	0.001	-
Cr	0.014	0.003	0.012		0.000									
Cr Fe ³⁺	0.014 0.034	0.003 0.070	0.012	0.056	0.058	0.061	0.089	0.086	0.073	0,085	0.052	0.062	0.108	0.080
Cr Fe ³⁺ Fe ²⁺	0.014 0.034 0.139	0.003 0.070 0.242	0.012 0.017 0.173	0.056	0.058	0.061 0.271	0.089 0.164	0.086 0.190	0.073 0.220	0.085 0.259	0.052 0.251	0.062 0.223	0.108	0.080 0.286
Cr Fe ³⁺ Fe ²⁺ Mn	0.014 0.034 0.139	0.003 0.070 0.242 0.005	0.012 0.017 0.173 0.002	0.056 0.209 0.005	0.058 0.141 0.002	0.061 0.271 0.006	0.089 0.164 0.004	0.086 0.190 0.008	0.073 0.220 0.005	0.085 0.259 0.011	0.052 0.251 0.006	0.062 0.223 0.004	0.108 0.232 0.006	0.080 0.286 0.007
Cr ² e ³⁺ ² e ²⁺ Mn Mg	0.014 0.034 0.139 - 0.915	0.003 0.070 0.242 0.005 0.810	0.017 0.173 0.002 0.924	0.056 0.209 0.005 0.880	0.058 0.141 0.002 0.861	0.061 0.271 0.006 0.816	0.089 0.164 0.004 0.853	0.086 0.190 0.008 0.827	0.073 0.220 0.005 0.822	0,085 0.259 0.011 0.779	0.052 0.251 0.006 0.866	0.062 0.223 0.004 0.821	0.108 0.232 0.006 0.858	0.080 0.286 0.007 0.842
Cr ² e ³⁺ ² e ²⁺ Mn Mg Ca	0.014 0.034 0.139 - 0.915 0.850	0.003 0.070 0.242 0.005 0.810 0.828	0.017 0.173 0.002 0.924 0.832	0.056 0.209 0.005 0.880 0.811	0.058 0.141 0.002 0.861 0.845	0.061 0.271 0.006 0.816 0.751	0.089 0.164 0.004 0.853 0.850	0.086 0.190 0.008 0.827 0.842	0.073 0.220 0.005 0.822 0.819	0.085 0.259 0.011 0.779 0.793	0.052 0.251 0.006 0.866 0.778	0.062 0.223 0.004 0.821 0.832	0.108 0.232 0.006 0.858 0.761	0.080 0.286 0.007 0.842 0.764
Cr =e ³⁺ 4n 4g Ca Na	0.014 0.034 0.139 - 0.915 0.850 0.004	0.003 0.070 0.242 0.005 0.810 0.828 0.012	0.012 0.173 0.002 0.924 0.832	0.056 0.209 0.005 0.880 0.811 0.012	0.058 0.141 0.002 0.861 0.845 0.020	0.061 0.271 0.006 0.816 0.751 0.018	0.089 0.164 0.004 0.853 0.850 0.014	0.086 0.190 0.008 0.827 0.842 0.022	0.073 0.220 0.005 0.822 0.819 0.010	0.085 0.259 0.011 0.779 0.793 0.028	0.052 0.251 0.006 0.866 0.778 0.014	0.062 0.223 0.004 0.821 0.832 0.017	0.108 0.232 0.006 0.858 0.761 0.014	0.080 0.286 0.007 0.842 0.764 0.006
Cr Fe ³⁺ Mn Mg Ca Na C cations	0.014 0.034 0.139 - 0.915 0.850 0.004 4.000	0.003 0.070 0.242 0.005 0.810 0.828 0.012 4.000	0.012 0.017 0.173 0.002 0.924 0.832 - 4.000	0.056 0.209 0.005 0.880 0.811 0.012 4.000	0.058 0.141 0.002 0.861 0.845 0.020 4.000	0.061 0.271 0.006 0.816 0.751 0.018 4.000	0.089 0.164 0.004 0.853 0.850 0.014 4.002	0.086 0.190 0.008 0.827 0.842 0.022 4.000	0.073 0.220 0.005 0.822 0.819 0.010 4.000	0.085 0.259 0.011 0.779 0.793 0.028 4.000	0.052 0.251 0.006 0.866 0.778 0.014 4.000	0.062 0.223 0.004 0.821 0.832 0.017 4.000	0.108 0.232 0.006 0.858 0.761 0.014 4.000	0.080 0.286 0.007 0.842 0.764 0.006 4.002
Cr Te ³⁺ Se ²⁺ Mn Mg Ca Ca E cations	0.014 0.034 0.139 - 0.915 0.850 0.004 4.000 86.8	0.003 0.070 0.242 0.005 0.810 0.828 0.012 4.000 77.0	0.012 0.017 0.173 0.002 0.924 0.832 - 4.000 84.2	0.056 0.209 0.005 0.880 0.811 0.012 4.000 80.8	0.058 0.141 0.002 0.861 0.845 0.020 4.000 85.9	0.061 0.271 0.006 0.816 0.751 0.018 4.000 75.1	0.089 0.164 0.004 0.853 0.850 0.014 4.002 83.9	0.086 0.190 0.008 0.827 0.842 0.022 4.000 81.3	0.073 0.220 0.005 0.822 0.819 0.010 4.000 78.9	0.085 0.259 0.011 0.779 0.793 0.028 4.000 75.0	0.052 0.251 0.006 0.866 0.778 0.014 4.000 77.5	0.062 0.223 0.004 0.821 0.832 0.017 4.000 78.6	0.108 0.232 0.006 0.858 0.761 0.014 4.000 78.7	0.080 0.286 0.007 0.842 0.764 0.006 4.002 74.6
Cr Fe ³⁺ Mn 1g Ca Va č cations <i>1</i> V4	0.014 0.034 0.139 - 0.915 0.850 0.004 4.000 86.8 84.1	0.003 0.070 0.242 0.005 0.810 0.828 0.012 4.000 77.0 71.9	0.012 0.017 0.173 0.002 0.924 0.832 - 4.000 84.2 82.8	0.056 0.209 0.005 0.880 0.811 0.012 4.000 80.8 76.5	0.058 0.141 0.002 0.861 0.845 0.020 4.000 85.9 81.1	0.061 0.271 0.006 0.816 0.751 0.018 4.000 75.1 70.7	0.089 0.164 0.004 0.853 0.850 0.014 4.002 83.9 76.8	0.086 0.190 0.008 0.827 0.842 0.022 4.000 81.3 74.4	0.073 0.220 0.005 0.822 0.819 0.010 4.000 78.9 73.4	0.085 0.259 0.011 0.779 0.793 0.028 4.000 75.0 68.7	0.052 0.251 0.006 0.866 0.778 0.014 4.000 77.5 73.7	0.062 0.223 0.004 0.821 0.832 0.017 4.000 78.6 74.0	0.108 0.232 0.006 0.858 0.761 0.014 4.000 78.7 71.3	0.080 0.286 0.007 0.842 0.764 0.006 4.002 74.6 69.3
Cr Fe ³⁺ Mn Mg Ca Ca Σ cations Y <i>Y</i> <i>Ca</i>	0.014 0.034 0.139 - 0.915 0.850 0.004 4.000 86.8 84.1 : 43.9	0.003 0.070 0.242 0.005 0.810 0.828 0.012 4.000 77.0 71.9 42.4	0.012 0.017 0.173 0.002 0.924 0.832 - 4.000 84.2 82.8 42.7	0.056 0.209 0.005 0.880 0.811 0.012 4.000 80.8 76.5 41.4	0.058 0.141 0.002 0.861 0.845 0.020 4.000 85.9 81.1 44.3	0.061 0.271 0.006 0.816 0.751 0.018 4.000 75.1 70.7 39.4	0.089 0.164 0.004 0.853 0.850 0.014 4.002 83.9 76.8 43.4	0.086 0.190 0.008 0.827 0.842 0.022 4.000 81.3 74.4	0.073 0.220 0.005 0.822 0.819 0.010 4.000 78.9 73.4 42.2	0.085 0.259 0.011 0.779 0.793 0.028 4.000 75.0 68.7 41.2	0.052 0.251 0.006 0.866 0.778 0.014 4.000 77.5 73.7 39.6	0.062 0.223 0.004 0.821 0.832 0.017 4.000 78.6 74.0 42.8	0.108 0.232 0.006 0.858 0.761 0.014 4.000 78.7 71.3 38.7	0.080 0.286 0.007 0.842 0.764 0.006 4.002 74.6 69.3 38.6
Cr Fe ³⁺ Mn Mg Ca Ca Ca Ca Cations M M M M M M M M M M M M M M M M M M M	0.014 0.034 0.139 - 0.915 0.850 0.004 4.000 86.8 84.1 : 43.9 : 47.2	0.003 0.070 0.242 0.005 0.810 0.828 0.012 4.000 77.0 71.9 42.4 41.5	0.012 0.017 0.173 0.002 0.924 0.832 - 4.000 84.2 82.8 42.7 47.4	0.056 0.209 0.005 0.880 0.811 0.012 4.000 80.8 76.5 41.4 44.9	0.058 0.141 0.002 0.861 0.845 0.020 4.000 85.9 81.1 44.3 45.2	0.061 0.271 0.006 0.816 0.751 0.018 4.000 75.1 70.7 39.4 42.9	0.089 0.164 0.004 0.853 0.850 0.014 4.002 83.9 76.8 43.4 43.5	0.086 0.190 0.008 0.827 0.842 0.022 4.000 81.3 74.4 43.1 42.3	0.073 0.220 0.005 0.822 0.819 0.010 4.000 78.9 73.4 42.2 42.4	0.085 0.259 0.011 0.779 0.793 0.028 4.000 75.0 68.7 41.2 40.4	0.052 0.251 0.006 0.866 0.778 0.014 4.000 77.5 73.7 39.6 44.3	0.062 0.223 0.004 0.821 0.832 0.017 4.000 78.6 74.0 42.8 42.3	0.108 0.232 0.006 0.858 0.761 0.014 4.000 78.7 71.3 38.7 43.7	0.080 0.286 0.007 0.842 0.764 0.006 4.002 74.6 69.3 38.6 42.5
Cr Fe ³⁺ Se ²⁺ Mn Mg Ca Ca Ca Ca Ca Mg (atomic %) Sa Mg (atomic %)	0.014 0.034 0.139 - 0.915 0.850 0.004 4.000 86.8 84.1 : 43.9 : 47.2 : 8.9	0.003 0.070 0.242 0.005 0.810 0.828 0.012 4.000 77.0 71.9 42.4 41.5 16.1	0.012 0.017 0.173 0.002 0.924 0.832 - 4.000 84.2 82.8 42.7 47.4 9.9	0.056 0.209 0.005 0.880 0.811 0.012 4.000 80.8 76.5 41.4 44.9 13.7	0.058 0.141 0.002 0.861 0.845 0.020 4.000 85.9 81.1 44.3 45.2 10.5	0.061 0.271 0.006 0.816 0.751 0.018 4.000 75.1 70.7 39.4 42.9 17.7	0.089 0.164 0.004 0.853 0.850 0.014 4.002 83.9 76.8 43.4 43.5 13.1	0.086 0.190 0.008 0.827 0.842 0.022 4.000 81.3 74.4 43.1 42.3 14.6	0.073 0.220 0.005 0.822 0.819 0.010 4.000 78.9 73.4 42.2 42.4 15.4	0.085 0.259 0.011 0.779 0.793 0.028 4.000 75.0 68.7 41.2 40.4 18.4	0.052 0.251 0.006 0.866 0.778 0.014 4.000 77.5 73.7 39.6 44.3 16.1	0.062 0.223 0.004 0.821 0.832 0.017 4.000 78.6 74.0 42.8 42.3 14.9	0.108 0.232 0.006 0.858 0.761 0.014 4.000 78.7 71.3 38.7 43.7 17.6	0.080 0.286 0.007 0.842 0.764 0.006 4.002 74.6 69.3 38.6 42.5 18.9

Analyses of representative Ca-rich pyroxenes and some plagioclase compositions from doleritic intrusives in the Glen Ward beds.

TABLE E-3

 $Fe' = Fe^{2+} + Fe^{3+} + Mn$

m = 100 mg/(Mg+Fe) $mg = 100 \text{ Mg/(Mg+Fe}^{2+}\text{+Fe}^{3+}\text{+Mn})$ Fe_2O_3 calculated following the method o Papike *et al.* (1974)

TAB	L	Ε	E -	4
		_	_	

Analyses of representative detrital Ca-rich pyroxenes and some plagioclase compositions from volcaniclastic sedimentary rocks in the Glen Ward beds.

SAMPLE	400	400	400	400	402	402	403	403	403	401	401	404	404	405
	CORE	RIM	CORE	RIM				CORE	RIM	CORE	RIM	CORE	жIМ	
Si0,	54.21	52.11	51.62	51.68	51.46	51.03	51.74	51.16	51.60	50.67	50.02	50.80	50,75	52.34
Ti02	-	0.12	0.44	0.40	0.32	0.55	0.27	0.41	0.25	0.32	0.38	0.11	0.22	0.11
A1203	1.20	3.16	2.71	2.12	2.98	2.65	2.69	2.38	1.32	4.43	4.24	2.79	2.56	1.50
Cr203	0.63	-	-	-	0.14	-	0.17	-	-	0.12	-	-	-	-
ΣFeO	3.42	8.23	9.87	10.99	8.59	9.80	9.36	11.35	15.01	10.29	12.63	10.94	13.00	10.35
Mn0	-	0.22	0.25	0.27	-	0.24	-	0.25	0.41	0.16	0.12	0.28	0.37	0.37
MgO	18.08	16.36	16.07	15.90	15.34	14.76	15.62	14.23	12.19	14.38	13,53	14.52	14.16	13.79
CaO	22.46	19.51	18.65	18.00	20.77	20.61	19.88	19.66	18.98	19.32	18.44	20.11	18.56	21.18
Na ₂ 0	-	0.18	0.21	0.39	0.21	0.15	0.13	0.33	0.19	0.20	0.40	0.16	0.14	0.24
*Fe ₂ 0 ₂	-	1.10	1.68	2.54	1.88	2.12	1.26	2.54	0.48	0.97	2.40	3.03	2.37	0.97
Fe0	3.42	7.24	8.36	8.70	6.90	7.89	8.23	9.06	14.58	9.42	10.47	8.21	10.87	9.48
Numbers of cati	ons on the	basis of	6 oxygen:	s :										
Si	1.972	1.919	1.913	1.920	1.905	1.902	1.918	1.914	1.963	1.885	1.876	1.897	1.908	1.959
AIIV	0.028	0.081	0.087	0.080	0.095	0.098	0.082	0.086	0.037	0.115	0.124	0.103	0.092	0.041
AI ^{VI}	0.024	0.056	0.031	0.013	0.035	0.018	0.036	0.019	0.022	0.079	0.063	0.020	0.021	0.025
Ti	-	0.003	0.012	0.011	0.009	0.015	0.008	0.012	0.007	0.009	0.011	0.003	0.006	0.003
Cr	0.012	-	-	-	0.004	-	0.005	-	-	0.004	-	-	-	-
Fe ³⁺	-	0.030	0.047	0.071	0.052	0.059	0.035	0.071	0.014	0.027	0.068	0.085	0.067	0.027
Fe2 ⁺	0.104	0.223	0.259	0.271	0.214	0.246	0.255	0.284	0.465	0.294	0.329	0.257	0.342	0.298
Mn	-	0.007	0.008	0.008	-	0.008	-	0.008	0.013	0.005	0.004	0.009	0.012	0.012
Mg	0.981	0.898	0.888	0.881	0.847	0.820	0.863	0.794	0.691	0.798	0.756	0.809	0.794	0.769
Ca	0.876	0.770	0.740	0.717	0.824	0.823	0.790	0.788	0.774	0.770	0.741	0.805	0.748	0.849
Na	-	0.013	0.015	0.028	0.015	0.011	0.009	0.024	0.014	0.014	0.029	0.012	0.010	0.017
Z cations	3.997	4.000	4.000	4.000	4.000	4.000	4.001	4.000	4.000	4.000	4.001	4.000	4.000	4.000
м	90.4	80.1	77.4	76.5	79.8	76.9	77.2	73.7	59.8	73.1	69.7	75.9	69.9	72.1
mg	90.4	77.5	73.9	71.6	76.1	72.4	74.8	68.6	58.4	71.0	65.3	69.7	65.3	69.5
Ca	44.7	39.9	38.1	36.8	42.6	42.1	40.6	40.5	39.6	40.7	39.0	41.0	38.1	43.4
Чj	50.0	46.6	45.7	45.2	43.7	41.9	44.5	40.8	35.3	42.1	39.9	41.2	40.5	39.4
F6 '	5.3	13.5	16.2	18.0	13.7	16.0	14.9	18.7	25.1	17.2	21.1	17.8	21.4	17.2
Plag.(An mol.%)	-		-	-	58 -	0				2		0		5 - 1

∑FeO = total Fe calculated as FeO Fe' = Fe²⁺+Fe³⁺+Mn

M = 100 Mg/(Mg+Fe²⁺) *mg* = 100 Mg/(Mg+Fe²⁺+Fe³⁺+Mn)

 ${}^{*}Fe_{2}O_{3}$ calculated following the method of Papike $et \ al.$ (1974)

TABLE E-5

Analyses of representative Ca-rich pyroxenes and some plagioclase compositions from basaltic rocks of the Tamworth Group in the Morrisons Gap area.

		EXTRUSI	IVES						INTRU	SIVES		
SAMPLE	057 CORE	057 RIM	055 CORE	055 RIM	056 CORE	056 R I M	058 CORE	058 RIM	059 CORE	059 RIM	054 CORE	054 R IM
Si0 ₂	51.51	49.66	50.29	49.63	47.16	50.13	51.07	50.92	51.30	51.66	48.71	49.18
Ti02	0.80	1.32	1.08	1.56	1.69	0.92	0.74	0.85	0.78	0.64	1.39	1.36
A1203	2.61	3.97	3.10	2.41	5.49	3.16	2.44	2.52	1.91	1.52	4.18	3.82
Cr203	0.25	0.16	-	-	-	-	-	-	-	-	0.04	0.13
ΣFe0	7.43	10.22	11.23	12.74	12.24	10.60	9.48	9.58	10.17	10.64	11.96	12.01
MnO	-	0.16	0.22	0.28	0.23	-	-	0.20	0.32	0.32	0.20	0.24
MgO	15.45	13.79	14.72	14.28	13.27	14.70	15.36	15.11	15.11	15.19	12.94	12.93
CaO	21.58	20.11	18.98	18.78	18.97	20.10	20.44	20.52	20.02	19.78	19.91	19.72
Na ₂ 0	0.23	0.39	0.18	0.20	0.44	0.13	0.20	0.10	0.20	0.12	0.36	0.37
*Fe203	1.49	2.16	1.91	1.17	5.02	2.62	2.47	2.00	1.95	1.41	3.18	2.47
Fe0	6.09	8.28	9.51	11.70	7.70	8.24	7.26	7.78	8.42	9.37	9.10	9.79
Numbers of cation	is on the bas	is of 6 d	oxygens:			•						
Si	1.904	1.856	1.881	1.875	1.775	1.872	1.898	1.896	1.914	1.930	1.835	1.853
AIIV	0.096	0.144	0.119	0.107	0.225	0.128	0.102	0.104	0.084	0.069	0.165	0.147
A1 ^{VI}	0.018	0.031	0.018	-	0.019	0.011	0.005	0.007	-	-	0.021	0.023
Ti	0.022	0.037	0.030	0.044	0.048	0.026	0.021	0.024	0.022	0.018	0.039	0.039
Cr	0.007	0.005	-	-	-	-	-	-	-	-	0.001	0.004
Fe ³⁺	0.041	0.061	0.054	0.033	0.142	0.074	0.069	0.055	0.055	0.040	0.090	0.070
Fe ²⁺	0.189	0.259	0.297	0.370	0.242	0.258	0.226	0.243	0.263	0.293	0.287	0.308
Mn	-	0.005	0.007	0.009	0.007	-	-	0.006	0.010	0.010	0.006	0.008
Mg	0.852	0.768	0.821	0.804	0.745	0.818	0.851	0.839	0.840	0.846	0.727	0.726
Ca	0.855	0.805	0.760	0.760	0.765	0.804	0.814	0.819	0.800	0.792	0.803	0.796
Na	0.016	0.028	0.013	0.015	0.032	0.009	0.014	0.007	0.014	0.009	0.026	0.027
Σ cations	4.000	4.000	4.000	4.017	4.000	4.000	4.000	4.000	4.002	4.007	4.000	4.001
M mg	81.8 78.7	74.8 70.3	73.4 69.6	68.5 66.1	75.5 65.6	76.0 71.1	79.0 74.3	77.5 73.4	76.2 71.9	74.3 71.2	71.7 65.5	70.2 65.3
Ca	44.1	42.4	39.2	38.5	40.2	41.2	41.5	41.7	40.7	40.0	42.0	41.7
Mg (atomic %)	44.0	40.5	42.3	40.7	39.1	41.9	43.4	42.8	42.7	42.7	38.0	38.1
Fe '	11.9	17.1	18.5	20.8	20.7	16.9	15.1	15.5	16.6	17.3	20.0	20.2
Plag.(An mol.%)	63	- 41	5	- 2	51 -	0	22 -	2	3 -	1	2 -	0

 Σ Fe0 = total Fe calculated as Fe0 Fe' = Fe²⁺+Fe³⁺+Mn

M = 100 Mg/(Mg+Fe²⁺)
mg = 100 Mg/(Mg+Fe²⁺+Fe³⁺+Mn)

*Fe₂0₃ calculated following the method of Papike *et al.* (1974)

TABL	Ε	E-6

Analyses of representative Ca-rich pyroxenes and some plagioclase compositions from basaltic extrusives in the Myra beds.

		Type 1		·····		Type	2		Type 3	Woolom	in beds
SAMPLE	201 CORE	201 RIM	209 CORE	209 RIM	208 CORE	208 RIM	207 CORE	207 RIM	240 CORE	(Cawood x	d, 1982b) s
SiO ₂	50.30	50.86	50.94	49.71	51.48	50.72	51.52	49.39	49.86	51.38	(1.22)
Ti02	1.37	1.51	0.77	1.40	0.78	1.16	0.76	1.22	1.11	0.86	(0.24)
A1203	5.98	4.10	3.92	3.89	4.38	5.19	3.31	2.96	2.93	3.65	(0.80)
Cr ₂ 0 ₃	-	-	0.34	0.11	0.38	0.43	0.12	-	0.34	-	
ΣFeO	6.71	9.94	7.01	11.26	6.19	7.18	9.32	15.06	10.81	7.57	(2.51)
MnO	-	0.20	0.19	0.18	-	0.24	-	0.25	0.32	0.22	(0.06)
MgO	15.36	13.74	15.69	14.37	16.93	15.95	16.32	12.19	14.08	16.35	(0.89)
CaO	19.83	19.09	20.87	18.56	19.56	18.66	18.65	18.37	19,96	19.57	(0.99)
Na ₂ 0	0.44	0.56	0.16	0.33	0.31	0.47	-	0.34	0.31	0.28	(0.06)
*Fe203	0.16	-	1.12	1.85	0.64	0.25	0.01	2.21	2.88	1.17	
Fe0	6.57	9.94	6.00	9.60	5.61	6.96	9.31	13.07	8.22	6.52	
Numbers of cation	s on the ba	sis of 6	oxygens:								
Si	1.846	1.893	1.878	1.859	1.881	1.864	1.905	1.879	1.869	1.890	
AIIV	0.154	0.107	0.122	0.141	0.119	0.136	0.095	0.121	0.129	0.110	
A1 ^{VI}	0.105	0.073	0.048	0.030	0.069	0.089	0.050	0.012	-	0.048	
Ti	0.038	0.042	0.021	0.039	0.021	0.032	0.021	0.035	0.031	0.024	
Cr	-	-	0.010	0.003	0.011	0.008	0.002	-	0.010	-	
Fe ³⁺	0.004	-	0.032	0.052	0.018	0.007	-	0.064	0.081	0.032	
Fe ²⁺	0.202	0.309	0.186	0.301	0.172	0.214	0.288	0.416	0.258	0.201	
Mn	-	0.006	0.006	0.006	-	0.007	-	0.008	0.010	0.007	
Mg	0.840	0.762	0.862	0.801	0.922	0.874	0.900	0.691	0.787	0.897	
Ca	0.780	0.761	0.824	0.744	0.766	0.735	0.739	0.749	0.802	0.771	
Na	0.031	0.040	0.011	0.024	0.022	0.034	-	0.025	0.023	0.020	
Σ cations	4.000	3.993	4.000	4.000	4.001	4.000	4.000	4.000	4.000	4.000	
М	80.6	71.1	82.3	72.7	84.3	80.3	75.8	62.4	75.3	81.7	
mg	80.3	70.8	79.4	69.1	82.9	79.3	75.8	58.6	69.3	78.9	
Ca	42.7	41.4	43.2	39.1	40.8	40.0	38.3	38.8	41.4	40.4	
Mg (atomic %)	46.0	41.5	45.2	42.1	49.1	47.6	46.7	35.9	40.6	47.0	
Fe'	11.3	17.1	11.6	18.8	10.1	12.4	15.0	25.3	18.0	12.6	

 Σ FeO = total Fe calculated as FeO

Plag.(An mol.%)

$$\Sigma Fe0 = total Fe calcula$$

Fe' = Fe²⁺+Fe³⁺+Mn

45 - 32

 $M = 100 \text{ Mg}/(\text{Mg+Fe}^{2+})$

2 - 0

 $mg = 100 \text{ Mg/(Mg+Fe}^{2+}+Fe^{3+}+Mn)$

-

 ${\rm *Fe_20_3}$ calculated following the method of Papike $et \ al.$ (1974)

4

 \bar{x} Mean of Ca-rich pyroxene compositions from 8 basaltic rocks in the Woolomin beds, north of Nundle (Cawood, 1982b)

s = standard deviation

59 - 43

TAB	LE	E-7
	_	_

Analyses of representative Ca-rich pyroxenes and some plagioclase compositions from doleritic intrusives in the Myra beds.

	T_{i}		Type 2									
SAMPLE	215 CORE	215 RIM	216 CORE	216 RIM	210 CORE	210 RIM	211 CORE	211 RIM	212 CORE	212 RIM	213 CORE	213 RIM
Si0 ₂	49.48	49.86	49.77	50.35	51.96	51.03	52.84	52.13	50.27	50.28	49.84	49.08
Ti02	1.30	1.50	1.45	1.06	0.44	0.78	0.57	0.65	1.27	1.36	1.21	1.42
A1203	2.91	2.38	3.42	2.55	2.86	3.25	2.04	2.82	4.88	4.93	4.34	2.66
Cr ₂ 0 ₃	-	-	-	-	0.84	-	-	-	0.33	0.15	0.36	-
ΣFe0	11.69	13.17	12.73	13.42	5.32	8.28	7.06	6.86	7.00	7.19	8.23	15.79
MnO	0.31	0.27	0.26	0.29	-	0.13	-	0.16	-	-	0.13	0.38
MgO	13.49	13.14	12.28	12.14	16.57	15.13	16.80	16.20	15.40	15.28	14.76	10.91
CaO	20.33	19.32	19.65	19.90	21.94	20.93	20,69	21.02	20.54	20.45	20.89	19.23
Na ₂ 0	0.23	0.23	0.34	0.21	-	0.29	-	0.14	0.24	0.30	0.11	0.33
*Fe203	2.56	1.32	0.89	0.72	0.48	1.98	-	0.58	0.66	0.71	1.37	2.02
Fe0	9.39	11.98	11.93	12.77	4.89	6.50	7.06	6.34	6.41	6.55	7.00	13.97
Numbers of catio	ons on the	basis of	⁷ 6 oxyge	ns:								
Si	1.865	1.888	1.882	1.910	1.907	1.890	1.942	1.917	1.853	1.853	1.850	1.882
A1 ^{IV}	0.129	0.106	0.118	0.090	0.093	0.110	0.058	0.083	0.147	0.147	0.150	0.118
A1 ^{VI}	-	-	0.035	0.024	0.031	0.032	0.030	0.039	0.065	0.067	0.040	0.002
Ti	0.037	0.043	0.041	0.030	0.012	0.022	0.016	0.018	0.035	0.038	0.034	0.041
Cr	-	-	-	-	0.024	-	-	-	0.010	0.004	0.011	-
Fe ³⁺	0.073	0.038	0.025	0.021	0.013	0.055	-	0.016	0.018	0.020	0.038	0.058
Fe ²⁺	0.296	0.380	0.378	0.406	0.150	0.202	0.217	0.196	0.198	0.202	0.218	0.448
Mn	0.010	0.009	0.008	0.009	-	0.004	-	0.005	-	-	0.004	0.012
Mg	0.758	0.742	0.692	0.686	0.907	0.835	0.920	0.888	0.846	0.840	0.817	0.624
Ca	0.821	0.784	0.796	0.809	0.863	0.830	0.815	0.828	0.811	0.808	0.831	0.790
Na	0.017	0.017	0.025	0.015	-	0.021	-	0.010	0.017	0.021	0.008	0.025
Σ cations	4.006	4.007	4.000	4.000	4.000	4.001	3.998	4.000	4.000	4.000	4.001	4.000
М	71.9	66.1	64.7	62.8	85.8	80.5	80.9	81.9	81.0	80.6	78.9	58.2
mg	66.7	63.5	62.7	61.1	84.8	76.2	80.9	80.4	79.7	79.1	75.9	54.6
Ca	41.9	40.2	41.9	41.9	44.6	43.1	41.7	42.8	43.3	43.2	43.6	40.9
Mg (atomic %)	38.7	38.0	36.5	35.6	46.9	43.4	47.2	46.0	45.2	44.9	42.8	32.3
Fe'	19.4	21.8	21.6	22.5	8.5	13.5	11.1	11.2	11.5	11.9	13.6	26.8
Plag.(An mol.%)	63 -	- 28	39 -	17	48 -	15	-		53 -	32	13	- 2

 $\Sigma Fe0 = \text{total Fe calculated as Fe0} \qquad M = 100 \text{ Mg/(Mg+Fe}^{2+}) \qquad *Fe_2 O_3 \text{ calculated following the method of}$ Fe' = Fe²⁺+Fe³⁺+Mn $mg = 100 \text{ Mg/(Mg+Fe}^{2+}+Fe^{3+}+Mn) \qquad Papike et al. (1974)$

TABLE E-8

SAMPLE	241 CORE	241 RIM	241 CORE	241 RIM	241 CORE	241 CORE	241 CORE	241 CORE	242 CORE	242 RIM	242 CORE	242 CORE
Si02	52.76	51.04	51.37	50.55	50.53	52.62	48.96	48.01	51.53	51.02	48.95	52.70
Ti0 ₂	0.38	0.56	0.63	0.81	0.78	0.20	1.23	1.86	0.36	0.31	0.25	0.30
A1203	2.23	3.26	2.78	3.00	3.25	0.85	4.44	5.22	3.19	5.08	3.58	2.34
V ₂ 0 ₃	-	-	-	-	-	-	0.15	-	0.16	-	-	0.13
Cr203	0.31	0.13	-	-	-	-	-	0.36	0.50	0.34	-	-
ΣFe0	6.47	7.55	8.81	8.90	9.60	9.63	10.55	11.20	4.94	4.79	17.20	18.63
MnO	-	-	0.23	0.26	0.21	0.30	0.20	0.34	-	-	0.64	0.70
MgO	17.57	15.25	14.68	14.44	15.19	13.75	14.15	15.00	16.32	15.89	11.63	13.06
CaO	19.90	21.77	21.17	21.29	19.78	22.62	19.45	17.29	22.85	22.50	16.85	11.51
Na ₂ 0	0.27	0.21	0.19	0.43	0.32	-	0.47	0.38	-	-	0.50	0.63
*Fe ₂ 0 ₃	1.14	2.25	1.35	3.35	2.88	0.41	3.80	3.41	1.55	0.70	4.15	-
Fe0	5.44	5.52	7.60	5.89	7.01	9.26	7.13	8.13	3.55	4.16	13.46	18.63
Numbers of cati	ons on the	basis of	6 oxygen	s :								
Si	1.930	1.887	1.909	1.880	1.878	1.970	1.829	1.794	1.890	1.867	1.871	1.992
ATIV	0.070	0.113	0.081	0.120	0.122	0.030	0.171	0.206	0.110	0.133	0.129	0.008
AI ^{VI}	0.026	0.029	0.040	0.012	0.020	0.008	0.025	0.025	0.028	0.086	0.032	0.096
Ti	0.010	0.016	0.018	0.023	0.022	0.006	0.035	0.052	0.010	0.009	0.007	0.009
٧	-	-	-	-	-	-	0.004	-	0.005	-	-	0.004
Cr	0.009	0.004	-	-	-	-	-	0.007	0.015	0.010	-	-
Fe ³⁺	0.031	0.062	0.038	0.094	0.081	0.012	0.107	0.096	0.043	0.019	0.119	-
Fe ²⁺	0.167	0.171	0.237	0.183	0.218	0.290	0.223	0.254	0.109	0.127	0.431	0.590
Mn	-	-	0.007	0.008	0.007	0.010	0.006	0.011	-	-	0.021	0.022
Mg	0.958	0.841	0.813	0.801	0.841	0.767	0.788	0.836	0.892	0.867	0.663	0.736
Ca	0.780	0.862	0.843	0.848	0.788	0.907	0.778	0.692	0.898	0.882	0.690	0.466
Na	0.019	0.015	0.014	0.031	0.023	-	0.034	0.027	-	-	0.037	0.046
Σ cations	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	3.969
М	85.2	83.1	77.4	81.4	79.4	72.6	77.9	76.7	89.1	87.2	60.6	55.5
mg	82.9	78.3	74.2	73.8	73.3	71.1	70.1	69.8	85.4	85.6	53.7	54.6
Ca	40.3	44.5	43.5	43.9	40.7	45.7	40.9	36.7	46.3	46.6	35.9	25.7
Mg	49.5	43.4	42.0	41.4	43.5	38.6	41.4	44.2	45.9	45.7	34.4	40.6
Fe'	10.2	12.1	14.5	14.7	15.8	15.7	17.7	19.1	7.8	7.7	29.7	33.7
Plag.(An mol.%)	-		57 -	6			-		-		-	

Analyses of representative detrital Ca-rich pyroxenes and some plagioclase compositions from volcaniclastic sedimentrary rocks in the Myra beds.

ΣFeO = total Fe calculated as FeO $Fe' = Fe²⁺+Fe³⁺+Mn <math>mg = 100 \text{ Mg}/(\text{Mg}+\text{Fe}^{2+})$ $*Fe_20_3$ calculated following the method of Papike *et al.* (1974)

TAB	LE	E-9

ANALYSIS No.	1	2	3	4	5
SAMPLE	003(5)	001(5)	004(6)	002(5)	006(7)
SiO ₂	-	-	-	-	-
Ti0 ₂	0.25	0.43	0.09	0.08	0.17
A1203	35.54	33.23	23.74	24.36	22.32
V203	0.34	0.23	0.22	0.11	0.28
Cr_2O_3	30.64	32.33	42.13	42.28	42.66
Fe ₂ 0 ₃ *	4.67	4.93	5.80	4.96	6.24
FeO	10.33	12.07	12.82	13.45	14.31
NiO	0.20	0.21	0.13	-	0.07
Mn0	0.30	0.05	0.28	0.23	0.15
Mg0	17.68	16.53	14.79	14.53	13.80
CaO	-	-	-	-	-
Total	100	100	100	100	100
Numbers of ca	tions on th	e basis of 3	32 oxygens:		
Si	-	-	-	-	-
Ti	0.043	0.075	0.016	0.015	0.031
Al	9.530	9.048	6.783	6.952	6.455
V	0.061	0.043	0.043	0.021	0.055
Cr	5.517	5.905	8.076	8.094	8.277
Fe ³⁺	0.800	0.857	1.057	0.904	1.152
Fe ²⁺	1.967	2.332	2.598	2.723	2.937
Ni	0.037	0.039	0.025	-	0.014
Mn	0.058	0.010	0.057	0.047	0.031
Mg	6.002	5.693	5.345	5.245	5.048
Ca	-	-	-	-	-
Σ	24.001	24.000	24.000	24.000	24.000
М	75.3	70.9	67.3	65.8	63.2
.00Cr/(Cr+A1)	36.7	39.5	54.4	53.8	56.2
Cr	34.8	37.4	50.8	50.8	52.1
Fe ³⁺ atom.%)	5.1	5.4	6.6	5.6	7.3
ΔΙ	60 1	57 2	42 6	43 6	10 6

Average analyses of spinels from Low-Ti basaltic extrusives in the Pigna Barney Ophiolitic Complex

 $Fe_20_3^*$ Calculated assuming stoichiometry of normalized totals.

() = No. of grains analysed, several analyses each grain.

- = not detected.

T	A	В	L	Ε	Ε	-	10	С
-	_	-	_	_			_	-

Representative	analyses of	spinels fr	om Type 3	basaltic	extrusives	in the	Myra	beds
and some	from Mid-Atl	antic Ridge	and Hawai	iian basal	tic extrusi	ives.		

ANALYSIS No.	1	2	3	4	5	6	7
	(brown)	(opaque)					
SAMPLE	232	232	Sample 1	Stn. J	Stn. J	Kilauea Iki	Makaopuhi
Si02	-	-	0.92	0.22	-	0.09	n.d.
Ti02	1.49	1.60	2.14	1.75	1.67	2.34	3.18
A1203	31.69	30.42	17.80	21.0	21.3	13.4	12.98
V203	n.d.	n.d.	n.d.	n.d.	n.d.	0.20	n.d.
Cr ₂ 03	28.03	26.61	36.34	38.7	38.6	43.13	38.5
Fe ₂ 03	9.18	11.31	12.70	8.2	7.9	10.76	n.d.
FeO	14.84	15.99	15.88	16.0	16.6	16.32	25.4(∑Fe)
NiO	0.21	0.18	n.d.	n.d.	n.d.	0.16	n.d.
Mn0	0.11	0.11	0.15	0.23	0.21	0.18	n.d.
MgO	14.67	13.92	14.02	13.6	12.9	12.58	10.5
CaO	0.84	0.69	0.36	-	-	0.05	n.d.
Total	101.05	100.83	100.31	99.7	99.2	99.21	
Si	-	-	0.229	0.05	-	0.02	
Ti	0.261	0.284	0.400	0.32	0.31	0.45	
A1	8.703	8.459	5.218	6.13	6.26	4.08	
٧	-	-	-	-	-	0.04	
Cr	5.164	4.964	7.146	7.58	7.63	8.83	
Fe ³⁺	1.610	2.008	2.377	1.53	1.48	2.09	
Fe ²⁺	2.896	3.159	3.303	3.30	3.46	3.53	
Ni	0.039	0.034	-	-	-	0.03	
Mn	0.022	0.022	0.032	0.05	0.04	0.04	
Mg	5.096	4.896	5.199	5.08	4.81	4.86	
Ca	0.210	0.174	0.096	-	-	0.01	
Σ	24.001	24.000	24.000	24.04	23.99	23.98	
М	63.8	60.8	61.2	60.6	58.2	57.9	
100 Cr/(Cr+Al)	37.2	37.0	57.8	55.3	54.7	68.4	
Cr	33.4	32.2	48.5	49.7	49.6	58.9	
Fe ³⁺ (atom.%)	10.4	13.0	16.1	10.0	9.6	13.9	
A1	56.2	54.8	35.4	40.3	40.8	27.2	

 $Fe_2O_3^*$ calculated assuming stoichiometry. n.d. = not determined. - = not detected. $M = 100 \text{ Mg/(Mg+Fe}^{2+})$.

Analyses 1,2 = spinel inclusions in pseudomorphed olivine, Type 3 basaltic extrusives, Myra beds.

Analysis 3 = spinel from MORB sample 1, Mid-Atlantic Ridge $26^{\circ}45$ 'N (O'Donnell and Presnall, 1980).

Analyses 4,5 ≠ spinels from olivine basalt, station J, Mid-Atlantic Ridge 35⁰N (Sigurdsson and Schilling, 1976).

Analysis 6 = average of 4 analyses of spinels from the 1959 Kilauea Iki eruption (Evans and Wright, 1972).

Analysis 7 = average of 2 analyses of spinels from the 1965 Makaopuhi (Kilauea) eruption (Evans and Wright, 1972).

TABLE E-11

SAMPLE	007	007	016	006	005	009
	MPh.	Gm.	Gm.	Gm.	Gm.	Gm.
SiO ₂	45.42	50.55	51.46	51.03	50.84	60.19
A1203	34.37	29.95	26.75	31.34	31.19	25.62
FeO	0.45	1.06	n.d.	n.d.	n.d.	n.d.
MgO	-	-	n.d.	n.d.	n.d.	n.d.
CaO	18.59	15.45	19.48	16.16	14.98	7.57
Na ₂ 0	0.98	2.38	2.22	2.34	2.85	7.17
κ ₂ ο	-	-	-	-	-	-
Total	99.81	99.39	99.91	100.87	99.86	100.55
Numbers of	cations or	the basis	of 32 oxyg	jens.		
Si	8.409	9.308	9.506	9.223	9.263	10.657
Al	7.500	6.499	5.824	6.676	6.698	5.346
Fe	0.070	0.163	-	-	-	-
Mg	-	-	-	-	-	-
Ca	3.687	3.047	3.855	3.129	2,924	1.436
Na	0.352	0.851	0.795	0.820	1.007	2.461
K	-	-	-	-	-	-
Σ	20.018	19.868	19.980	19.848	19.892	19.900
(Ab	8.7	21.8	17.1	20.8	25.6	63.2
%{An	91.3	78.2	82.9	79.2	74.4	36.8
Or	-	-				

Analyses of representative plagioclases from Low-Ti basaltic rocks of the Pigna Barney Ophiolitic Complex

SAMDIE	074	074	060	060	064	064	066	066	068	068	072	072
SAMPLE	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM	CORE	RIM
si0 ₂	55.25	62.34	48.98	54.61	56.85	59.07	51.47	56.57	55.83	65.22	52.34	53.23
A1203	29.06	23.77	32.71	28.67	28.19	26.46	30.31	27.27	28.27	22.29	30.34	29.62
ΣFe0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.81	1.05
Mg0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d,	0,29	0.15
CaO	11.33	5.10	15.86	10.90	10.18	8.09	13.55	9.31	10.35	3.17	13.30	12.57
Na ₂ 0	5.16	8.51	2.69	5.42	5.89	6.92	3.71	5.78	5.79	9.74	3.95	4.24
к ₂ 0	-	0.17	-	0.08	0.09	0.17	0.28	0.45	0.13	0.44	0.11	0.18
Total	100.80	99.89	100.24	99.68	101.20	100.71	99.32	99.38	100.37	100.86	101.14	101.04
Numbers of	cations on	the bas	is of 32	oxygens:								
Si	9.876	11.050	8.937	9.879	10.095	10.478	9.421	10.215	10.013	11.407	9.432	9.590
A1	6.123	4.966	7.034	6.113	5.900	5.532	6.539	5.804	5.976	4.595	6.444	6.290
Fe	-	-	-	-	-	-	-	-	-	-	0.122	0.158
Mg	-	-	-	-	-	-	-	-	-	-	0.078	0.040
Ca	2.170	0.969	3.100	2.113	1.937	1.538	2.657	1.801	1.989	0.594	2.568	2.426
Na	1.788	2.925	0.952	1.901	2.028	2.380	1.317	2.024	2.013	3,303	1.380	1.481
К	-	0.038	-	0.018	0.020	0.038	0.065	0.104	0.030	0.098	0.025	0.041
Σ	19.957	19.948	20.023	20.024	19.980	19.966	19.999	19.948	20.021	19.997	20.049	20.026
Ab	44.9	74.4	23.5	47.2	50.9	60.2	32.6	51.5	49.3	82.6	34.8	37.5
mol.% An	55.1	24.6	76.5	52.4	48.6	38.8	65.7	45.8	50.0	14.9	64.6	61.5
lor	-	1.0	-	0.4	0.5	1.0	1.6	2.7	0.7	2.5	0.6	1.0
Host rock												
mg	62	.8	60	. 4	44	.9	40.	3	39.	.5	n.	d.
K ₂ 0	0	.77	0	.45	1	.06	2.	10	0.	55	n.	d.

Analyses of representative plagioclases from basaltic rocks in the Glen Ward beds.

TABLE E-12

n.d. = not determined.

 Σ FeO = all Fe calculated as FeO.

TABLE E-13

Selected analyses of Fe-Ti oxides from some basaltic rocks in the Myra beds, Glen Ward beds and Tamworth Group.

Myra beds (Type 1)				Glen I	Ward beds			Tamworth Group (Morrisons Gap area)				
ANALYSIS No.	1	2	3	4	5	6	7	8	9	10	11	
SAMPLE	215	216	064	072	066	074	060	053	053	059	055	
SiO ₂	1.71	3.89	-	0.15	2.91	3.56	-	1.41	1.63	0.17	0.41	
Ti02	21.11	26.64	10.19	13.45	14.54	15.17	47.06	1.97	8.65	12.28	15.54	
A1203	4.26	2.19	2.13	4.37	2.91	3.58	0.73	0.81	1.64	2.87	2.18	
V203	1.30	0.77	0.95	n.d.	0.94	0.59	0.47	0.46	0.99	1.01	0.61	
Cr203	-	-	-	-	-	-	-	-	-	-	-	
Fe203*	17.58	6.80	44.79	36.75	31.21	25,95	11.64	61.98	47.50	41.63	36.62	
FeO	52.17	57.45	39.18	42.65	49.25	45.88	38,68	34.47	40.69	43.03	44.66	
Mn0	0.76	0.36	1.02	-	-	0.47	3.22	0.76	0.91	0.61	1.81	
MgO	0.11	0.16	0.12	0.85	0.15	0.62	0.21	-	0.20	-	0.21	
CaO	0.35	3.19	-	-	0.10	2.20	-	0.27	0.33	-	0.27	
Total	99.35	101.45	98.38	98.22	102.01	98.02	102.01	102.13	102.54	101.60	102.31	
Usp.(mol.%)	64.6	85.2	29.3	38.5	50.0	52.5		10.8	29.7	34.6	44.2	
Cations per O	= 4	4	4	4	4	4	6	4	4	4	4	
Si	0.063	0.138	-	0.006	0.105	0.131	-	0.052	0.060	0.006	0.015	
Ti	0.583	0.713	0.293	0.378	0.395	0.426	1.752	0.055	0.238	0.340	0.426	
A1	0.184	0.092	0.096	0.193	0.124	0.156	0.042	0.036	0.071	0.124	0.094	
v	0.038	0.022	0.029	-	0.027	0.017	0.019	0.014	0.029	0.030	0.018	
Cr	-	-	-	-	-	-	-	-	-	-	-	
Fe ³⁺	0.485	0.182	1.288	1.037	0.848	0.721	0.434	1.734	1.306	1.153	1.005	
Fe ²⁺	1.604	1.712	1.254	1.339	1.489	1.418	1.602	1.074	1.244	1.326	1.364	
Mn	0.024	0.011	0.033	-	-	0.015	0,135	0.024	0.028	0.021	0.056	
Mg	0.006	0.008	0.007	0.047	0.008	0.034	0.016	-	0.011	-	0.011	
Ca	0.014	0.122	-	-	0.004	0.087	-	0.011	0.013	-	0.011	
Σ	3.000	3.000	3.000	3.000	3.000	3.000	4.000	3.000	3.000	3.000	3.000	

* Fe_2O_3 calculated following the procedure of Carmichael (1967). Usp. = ulvospinel.

n.d. = not determined.

ANALYSIS No.	1	2	3	4	5	6	7
SAMPLE	077	074	063	073*	053	055	032
Si0 ₂	27.79	27.60	26.18	24.91	26.12	25.58	27.39
A1203	17.72	16.63	18.91	18.06	18.31	18.44	17.67
V ₂ 0 ₃	-	-	0.17	-	0.15	-	-
ΣFeO	25.23	26.66	28.70	35.22	30.76	32.13	26.40
Mn0	0.44	0.39	0.47	0.82	0.50	0.59	0.44
MgO	16.21	15.20	13.87	8.97	12.75	11.64	15.85
CaO	0.30	0.44	0.21	-	-	0.15	0.22
Na ₂ 0	0.40	0.21	0.19	0.33	0.34	0.35	0.37
TOTAL	88.09	87.13	88.70	88.31	88.93	88.88	88.34
C1 ⁻	0.05	-	-	-	0.05	0.05	-
mg (chlor.)	52.9	50.0	45.9	30.7	42.1	38.8	51.3
mg (host)	50.9	62.8	49.2	40.9	35.6	n.d.	49.7
Numbers of cat	ions on th	e basis of	36 (0,OH)				
Si	5.840	5.919	5.572	5.553	5.615	5.552	5.780
A1 ^{IV}	2.160	2.081	2.428	2.447	2.385	2.448	2.220
AI ^{VI}	2.227	2.124	2.315	2.299	2.253	2.270	2.175
V	-	-	0.029	-	0.025	-	-
ΣFe ²⁺	4.434	4.781	5.109	6.568	5.528	5.832	4.657
Mn	0.079	0.071	0.084	0.155	0.092	0.108	0.078
Mg	5.077	4.859	4.399	2.980	4.083	3.766	4.986
Ca	0.068	0.101	0.047	-	-	0.036	0.049
Na	0.162	0.087	0.079	0.141	0.143	0.148	0.153
Σ cations	20.047	20.023	20.062	20.143	20.124	20.160	20.098
C1	0.017	-	-	-	0.019	0.018	-

Representative analyses of chlorites from some Tamworth Belt and PBOC basaltic rocks

* Filling vesicles. n.d. = not determined.

Glen Ward beds: Analyses 1,3 from doleritic intrusives; 2,4 from basaltic extrusives. Tamworth Group (M.Gap): Analyses 5,6 from basaltic extrusives. PBOC.: Analysis 7 from Low Ti doleritic intrusive.

TABLE E-14

TABLE E-15

Some references containing descriptions of pyroxene-rich, olivine-poor or olivine-free basalts recovered from various ocean-floor localities

LOCALITY REFERENCES Bougault and Hekinian (1974), Frey et al. Mid-Atlantic Ridge: (1974a), Bryan and Thompson (1977), Dickey et al. (1977), Flower et al. (1977), Bryan (1979), Le Roex and Dick (1981), Le Roex et al. (1981), Sigurdsson (1981). East Pacific Rise: Johnson (1979), Ludden et al. (1980), Thompson and Humphris (1980), Delaney $et \ al.$ (1981). Galapagos Ridge: Anderson et al. (1975), Byerly (1980). Juan de Fuca Ridge: Dietrick and Lynn (1975). Nazca Plate: Bunch (1974), Bunch and La Borde (1976), Mazzullo and Bence (1976). Panama Fracture Zone: Bass (1972). Hekinian (1974b), Robinson and Whitford (1974), N.E. Indian Ocean: Frey et al. (1980). Hekinian (1974a), Ludden *et al*. (1980). 90-East Ridge Ridley et al. (1974). Caroline Ridge: Stoeser (1975). South Fiji Basin: Minami-Daito Basin: Dick (1982). (Northern Philippine Sea) Dietrich et al. (1977). Tyrrhenian Sea: Ovenshire et al. (1975). Tasman Sea:

APPENDIX F

CLINOPYROXENE-RICH CUMULATES FROM THE CURRICABARK FAULT ZONE, GLENROCK STATION AREA.

These olivine + clinopyroxene ± plagioclase ± 'hornblende cumulates occur as tectonic blocks in schistose serpentinite. Although they possess atypically low abundances of incompatible elements, they differ from PBOC cumulates in that: (i) they are completely devoid of modal orthopyroxene; (ii) they are relatively clinopyroxene-rich, and clinopyroxene crystallized from their parental melts significantly before plagioclase; (iii) for a given mg value they are enriched in Ca (Fig. 5.5), Ti, and Al (Fig. 5.6), and depleted in Cr relative to clinopyroxenes in PBOC cumulates; (iv) their plagioclases are more Ca-rich than any in PBOC cumulates; and (v) the gabbroic variants contain significant primary modal amphibole.

Although few data are available for comparison, these Glenrock cumulates appear to resemble variants most commonly found associated with the Peel Fault System to the northwest of the Pigna Barney-Curricabark area. It is conceivable that cumulates of this type might be related to basaltic rocks in the adjacent stratigraphic associations. However, the latter are too varied and the relevant data are too few to enable this possibility to be evaluated with any confidence at this stage.

the	Glenrock	Station	Area		
ANALYS	IS 1	2	3	4	5
SAMPLE	ц 21	423	424	425	400\$
	12.1	20	. 2	20	20
Si0,	44.60	47.61	47.23	47.34	40,31
TiO	0.11	0.14	0.14	0.13	0.04
Al ₂ 02	8.76	2.09	1.39	1.89	29.10
23 Cr ₂ 02	0.12	0.18	0.17	0.19	0.01
ΣFeO	9.35	9.53	9.36	9.46	1.53
NiO	0.03	0.03	0.04	0.04	-
MnO	0.19	0.18	0.17	0.16	C.05
MgO	23.60	26.34	27.13	27.25	3.33
Ca0	12.88	14.00	13.43	13.22	24.81
Na ₂ 0	0.26	0.18	0.13	0.21	0.26
к,0	0.05	0.01	0.02	0.02	0.34
P205	0.03	0.03	0.03	0.03	0.05
TOTAL	99.98	100.32	99.79	99.94	100.08
ΣVol ^l	5.63	5.23	5.30	6.05	4.90
FeOl	5.96	4.18	3.86	4.14	1.40
mg	81.5	82.9	33.5	83.5	73.4
TRACE I	ELEMENTS	(ug/g)			
К	397	112	165	144	344
Rb	2	<1	<1	< 1	< <u>}</u>
Ba	12	7	8	6	57
Sr	194	12	15	12	744
Li	15.2	1.8	1.2	2.3	40
Zr	4	2	2	2	10
NÞ	<3	<3	<3	<3	<3
Y	3	3	4	<3	<3
Ti	772	973	883	906	221
Ni	284	272	318	309	38
Со	104	88	88	109	58
V	117	126	156	155	42
Cr	824	1196	1173	1304	99
Sc	n.d.	n.d.	n.d.	68	n.d.
La	3	n.d.	n.d.	n.d.	-
Ce	8	n.d.	n.d.	n.d.	8
Nd	2	n.d.	n.d.	n.d.	-
Cu	9	6	6	9	9
Zn	56	51	48	48	21

TABLE F-1

Major and Trace Element Analyses of Olivine Clinopyroxenites and an Olivine Gabbro from the Curricabark Fault Zone in

1 See Appendix G. n.d. = not determined

* Saussuritized plagioclase horizon from 421

 $mg = 100 Mg/(Mg + \Sigma Fe + Mn)$

Major element analyses recalculated to original totals on a volatile-free basis. Trace element analyses also recalculated on a volatile-free basis.

.

TABLE F-2

ANALYSIS No.	1	2	3	4	5	6	7	8
	OLIVI	NE	CLI	NOPYROXEN		AMI	PHIBOLE	·
SAMPLE	421	a	421	b	с	421	421	421
SiO ₂	39.12	39.55	50.94	52.19	52.57	43.92	43.79	45.72
TiO ₂	-	-	0.23	0.10	-	0.65	0.50	0.44
A1203	-	-	4.00	2.84	2.45	14.22	14.37	9.78
Cr ₂ 0 ₃	-	-	0.22	0.18	0.21	0.31	0.25	0.23
Fe203*	n.d.	n.d.	n.d.	n.d.	n.d.	3.86	4.39	8.65
Fe0	18.07	17.13	5.48	4.08	3.83	3.67	3.30	2.49
MnO	0.20	0.18	-	-	-	-	-	-
Mg0	42.30	43.35	15.86	16.30	16.34	16.60	16.40	17.77
Cao	-	-	23.13	24.19	24.49	12.57	12.66	11.00
Na ₂ 0	-	-	-	-	-	2.41	2.18	1.49
K ₂ 0	-	-		-	-	-	-	0.07
TOTAL	99.69	100.21	99.86	99.88	99.89	98.21	97.84	97.64
CATIONS (O=)	4	4	6	6	6	23	23	23
Si	0.999	1.000	1.880	1.916	1.929	6.224	6.222	6.520
AIIV	-	-	0.120	0.084	0.071	1.776	1.778	1.480
AI ^{VI}	-	-	0.054	0.039	0.035	0.599	0.628	0.164
Cr	-	-	0.006	0.005	0.006	0.035	0.028	0.026
Ti	-	-	0.006	0.003	-	0.069	0.053	0.047
Fe ³⁺	-	-	-	-	-	0.412	0.469	0.928
Fe ²⁺	0.387	0.363	0.169	0.125	0.118	0.436	0.393	0.297
Mn	0.004	0.004	-	-	-	-	-	-
Mg	1.611	1.634	0.873	0.892	0.894	3.507	3.472	3.778
Ca	-	-	0.915	0.952	0.963	1.908	1.927	1.681
Na	-	-	-	-	-	0.662	0.601	0.412
К	-	-	-	-	-	-	-	0.013
Σ	3.001	3.001	4.023	4.016	4.016	15.628	15.571	15.346
М	80.6	81.8	83.8	87.7	88.3	88.9	89.8	92.7
Ca			46.8	48.4	48.7			
Mg atom.%			44.6	45.3	45.3			
Fe'			8.6	6.3	6.0			

Representative Analyses of Ferromagnesian Phases in an Olivine Gabbro and Olivine Clinopyroxenites from the Curricabark Fault Zone, Glenrock Station Area

*Fe₂0₃ calculated following the method of Papike et al. (1974). n.d. = not determined. a = mean of 11 olivines from olivine clinopyroxenites (samples 422-425) b = mean of 11 clinopyroxene cores from olivine clinopyroxenites (samples 422-425) c = mean of 10 clinopyroxene rims from olivine clinopyroxeneites (samples 422-425) Analysis 6 = cumulus (?) pargasite; 7 = post-cumulus pargasite; 8 = secondary magensio-hornblende. Sample 421 is an olivine gabbro, plag = An₉₄₋₉₃.

APPENDIX G

ANALYTICAL METHODS

WHOLE-ROCK ANALYSES

Sample Preparation

Prior to initial crushing of all samples any veined portions and weathered surfaces were removed using a diamond saw (lubricated by water). In most cases 0.5-2 kg of each sample remained available for crushing. Using coarse carborundum powder, sawn surfaces were ground free of saw-marks and possible metal contaminants. All samples of basaltic rocks and those of the least-altered PBOC intrusives were sawn into thin slabs, ground clean (as outlined above), broken into -lcm fragments with a tungsten-carbidetipped chisel, and split into two sub-equal portions. The remaining samples were reduced to -lcm in a jaw-crusher with hardened steel plates. These crushes were split until two representative fractions each weighing $\sim 200-500$ g were obtained. Each fraction was inspected with a magnifying glass and any fragments contaminated by the jaw-crusher were discarded. The representative samples prepared by sawing and chiselling, and by jaw-crushing, were finally crushed to -200# using a Siebtechnik ring-grinder - one fraction of each sample in a tungsten-carbide vessel and the other in a chrome-steel vessel (to avoid cobalt contamination derived from the tungsten-carbide vessel). The 'chrome-steel crush' was used for all wet-chemical determinations.

Major Element Analyses

The major oxides, SiO_2 , TiO_2 , $\mathrm{Al}_2\mathrm{O}_3$, total Fe as $\mathrm{Fe}_2\mathrm{O}_3$, MnO, MgO, CaO and $\mathrm{P}_2\mathrm{O}_5$, were determined by X-ray fluorescence spectrometry (XRF) using a Philips PW1540 manual spectrometer at the Geology Department, U.N.E. The method employed was that outlined by Norrish and Hutton (1969) involving linear calibration after sample dilution in a lanthanum oxide-lithium tetraborate glass. Prior to fusion all samples were ignited at 1100°C for 10 hours (see below) to remove all volatiles and oxidize Fe²⁺. Sodium nitrate was added to the fusion mix as an additional oxidant. Measured losses of Na during ignition were invariably $\ll 0.2$ % of the total sample weight (and usually undetectable) and consequent relative enrichment in the remaining elements was insignificant.

MgO was determined by atomic absorption spectrometry (AAS) for samples in which it was found to be at low concentrations (<2 wt% MgO). Also, for a number of critical samples (e.g. PBOC low-Ti basaltic rocks and olivine norite 440), XRF determinations of Fe and Mg were checked (and vindicated) by AAS. Na₂O and K₂O were determined on a Corning Eel flame photometer following dissolution of 1 gram of sample using hydrofluoric and perchloric acids, and subsequent dilutions with appropriate quantities of a standard Li_2SO_4 solution.

Ferrous iron^{*}was determined by titration with a standardized ammonium cerric sulphate solution following dissolution of 0.5 g of sample in a mixture of concentrated hydrofluoric and sulphuric acids. N-phenyl anthranilic acid was used as an indicator.

The total wt% volatiles (ΣVol ; almost entirely $H_{2}O$ + minor CO_{2}) in each sample was determined from the weight-loss following ignition of \sim l g of sample at 1100°C for approximately 10 hours. Under those conditions at least 98% of Fe $^{2+}$ is oxidized to Fe $^{3+}$ (experimentally verified), and corrections were made for any weight-gains due to uptake of oxygen via this reaction. Total H₂O was also determined on a range of PBOC samples and U.S.G.S. standard rocks by weighing the cooled condensate collected in a specially designed apparatus after ignition of the powdered sample at 1050°C for one hour. In every case these results were in close agreement with Σ Vol determinations on the same samples. Thus, Σ Vol values listed in this study provide a significantly more reliable indication of the total wt% volatile species than do the loss-on-ignition (LOI) values quoted in many published studies (i.e. in studies where FeO has not been determined on samples analysed). The presence or absence of 'significant' CO2 (see, for example, Tables 3.6a-3.8a) was crudely assessed by simple close observation to detect any release of bubbles during the initial addition of acids for sample dissolution. H₂O was determined on all samples by measuring the loss in weight after heating \sim l g of sample at 105°C for one hour. However, H_2O^- abundances ($H_2O^- \ll 0.5$ wt%) are of little relevance to the present study and they have not been reported separately in the analyses listed (i.e. ${\rm H_2O}^$ is included in Σ Vol). Fluorine and chlorine (e.g. Table 5.2) were determined by X-ray Assay Laboratories (XRAL) Ltd, Ontario. The methods of analysis for F and Cl are not available.

^{*}The Fe O_3 /FeO ratios of analyses in most tables are adjusted to 0.1, 0.07, or ~ 0.2 In these cases, measured Fe O_3 /FeO is listed beneath Σ Vol.

Trace Element Analyses

Li, Cu, Zn and Co were determined by AAS from perchlorate solutions containing 1.0 g sample/100 ml. Because Cr-Al spinel was not digested following sample dissolution, actual Zn and Co abundances in rocks containing this phase are likely to be slightly higher than those reported.

Trace amounts of Na and K were determined using a Corning Eel flame photometer calibrated using approximately 40 standard solutions falling within the appropriate concentration range (0-5 μ g/ml for l g samples/100 ml of most PBOC ultramafics and related rocks). Results also obtained by addition of various amounts of Na+K standard solutions to a variety of PBOC sample solutions were in excellent agreement with the 'calibration and direct comparison' method more generally employed for these and all other samples.

Scandium was determined by instrumental neutron activation analysis performed by XRAL. Boron abundances in several samples were also determined by XRAL but the method was not disclosed.

Rb, Ba, Sr, Zr, Nb, Y, Ni, V, Cr and (unless stated otherwise) La, Ce, and Nd were analysed by XRF on pelletized powder samples following the general procedures outlined by Norrish and Chappell (1977). Linear calibrations were obtained using a number of USGS and NIM international rock standards. Mass absorption coefficients were calculated from major element analyses and, where necessary, corrections were applied to remove the effects of interfering peaks.

Ti is reported as a trace element in some analyses. However, due to possible masking of Ti by Ca in pressed pellet matrices (Nesbitt and Stanley, 1977*), the accuracy of these Ti determinations relative to TiO_2 determinations on the same samples remains uncertain. Where quoted in this study, "Ti" is calculated from TiO_2 determined on a fused bead.

Isotopes and REE

Isotopic analyses were performed by Dr H.D. Hensel (Rb-Sr, Nd) and D. Kimbrough (U-Pb) using well-established mass-spectrometry techniques and

Nesbitt, R.W. and Stanley, J. (1977). Measurement of TiO₂-explanation of some discrepancies. <u>In</u> R.W. Nesbitt and J. Stanley (eds). Compilation of Analytical Geochemistry Reports 1973-1979, Department of Geology and Mineralogy, University of Adelaide, pp. 133-136.

instruments at the Research School of Earth Sciences, Australian National University, and at the University of California, Santa Barbara, respectively. Rare earth element (REE) abundances in samples 047 and 048 were determined by Dr J.D. Kleeman using instrumental neutron activation facilities at the University of Oregon, and Dr S.R. Taylor (RSES) determined REE abundances in sample 440 by mass spectrometry. Instrumental conditions and experimental uncertainties are not available for these isotopic and REE analyses, but they are very likely to be "routine".

Analytical Precision and Accuracy

Precision of the major element analyses is generally considered to be better than ±1 per cent relative. Precision for the trace elements determined by XRF is better than 5 per cent for most elements. The accuracy of the major and trace element analyses determined at U.N.E. was monitored by concurrent analysis of a number of international rock standards (in particular, U.S.G.S. standard rocks G-2, GSP-1, AGV-1, BCR-1, BHVO-1, PCC-1 and DTS-1) for each element determined. With very rare exceptions, all of these U.S.G.S. standards (using the recommended values of Flanagan, 1973*) fell on linear calibrations for each element following routine matrix correction procedures (c_f^2 . Norrish and Chappell, 1977). Almost all of the data reduction was performed using a hand calculator. Any random human error is believed to be absolutely minimal. Any unusual or unsuspected results were re-examined and, on some occasions, samples were reanalysed. Critical samples for which some trace element abundances approach the detection limits of the equipment used (e.g. low-Ti basaltic rocks - Nb, Rb, Zr, REE) were analysed in triplicate, and extended counting times were employed. These results were averaged.

MINERAL ANALYSES

With very few exceptions, electron probe microanalyses listed in this study were determined at the Research School of Earth Sciences (A.N.U.) using a T.P.D. electron microprobe fitted with a Si(Li) detector and an energy-dispersive spectrometer. Detection limits were: SiO_2 , Al_2O_3 , MgO, Na_2O , NiO = 0.1 wt%; Σ FeO, MnO = 0.09 wt%; TiO_2 , Cr_2O_3 , V_2O_3 = 0.08 wt%;

Flanagan, F.J. (1973). 1972 values for international geochemical reference samples. *Geochim. Cosmochim. Acta*, 37:1189-1200.

CaO = 0.07 wt%; K_2^{O} , Cl = 0.05 wt%. On-line data reduction was achieved using the ZAF correction procedure. The remaining analyses were obtained on instruments at U.N.E. and the University of Wellington, N.Z. These instruments have detection limits comparable to those listed for the RSES microprobe.

X-RAY DIFFRACTION ANALYSES

All X-ray diffraction determinations were performed on pelletized powders using a Philips PW1050/30 scanning goniometer, PW1130 X-ray generator, and cobalt radiation. Semi-quantitative modal determinations followed the general method outlined in Flinter (1975). Plagioclase compositions were estimated following the methods of Smith (1956)* and Smith and Gay (1958)**, which were adapted to Co radiation.

MINERAL SEPARATIONS

Samples selected for isotopic dating were initially crushed to -1cm in a jaw-crusher and then reduced to -60# by repeated passes through a discmill. The final crush was classified by sieving into the following size ranges: 60-80#, 80-100#, 100-140#, 140-200#, 200-250# and -250#. The -250# fraction was discarded and the remainder washed repeatedly to remove fine dust. Relatively ferromagnetic phases were removed following repeated runs through a Franz Isodynamic separator. Zircon, sphene, apatite and muscovite were separated from the appropriate non-magnetic fractions by use of heavy liquids (tetrabromoethane, diodomethane and Clerici's solution) and final separates were hand-picked to 100% purity (not allowing for any undetected 'foreign' inclusions within grains). Pyroxenes and plagioclase in olivine norite sample 440 were separated to >95% purity using a Franz Isodynamic (magnetic) separator. Dr H.D. Hensel kindly completed the purification of these particular separates.

In all, almost 300 kg of rock was processed following the above procedures. Unfortunately, all of the U-Pb and one of the Rb-Sr (sample 440) isotopic "dates" presently available remain somewhat enigmatic. However,

Smith, J.V. and Gay, P. (1958). The powder patterns and lattice parameters of plagioclase feldspars. II. *Mineral. Mag.*, 31:744-762.

Smith, J.V. (1956). The powder patterns and lattice parameters of plagioclase fledspars. I. The soda-rich plagioclases. *Mineral. Mag.*, 31:47-68.

additional U-Pb data (not yet available) on sphene and apatite separates should constrain the age(s) of the Pola Fogal Suite sufficiently to enable a more confident assessment of its geological significance.

TABLE H-1

Isotopic Data on Zircons from Pola Fogal Tonalitic

Intrusives and Zone A Granodiorites

	POLA FC	GAL	В	ARRINGTON TOPS	МЛ	P EPHRAIM
SAMPLE	342	341	a	b		384
206 Pb (ug/g)	13.99	40.82	13.56	14.50	13.25	18.91
238 U (Ug/g)	306.9	874.3	393.3	422.0	384.4	656.4
²⁰⁸ Рb/ ²⁰⁶ Рb	0.17534	0.51194	0.20642	0.19205	0.19121	0.29655
201 Pb/206 Pb	0.062335	0.058220	0.059565	0.05732	0.056993	0.066854
²⁰⁴ Pb/ ²⁰⁶ Pb	0.000464	0.000223	0.000523	0.000373	0.000344	0.001034
207 _{Pb/} 206 _{Pb}	0.055593	0.054974	0.05192	0.0518644	0.051962	0.05174
Calculate	d Ages (m.y.):					
206 _{Pb/238} U	331	339	252	251	252	211
207 Pb/U	344	348	255	254	255	216
207 ₂₀₆ Pb/ Pb	434	409	279	277	281	270
a non-ma	agnetic fracti	on, $\frac{1}{2}^{\circ}$ slope	, 1.65amps.			
b "	n n	l° "	1 1	(minus a).		
с "	и и	2° "	, "	(minus a+b).		

Analyst: Dr. D. Kimbrough, University of California, Santa Barbara

.

TABI	ĿΕ	Η	-2

Miscellaneous	Rb-Sr	Isotopic	Data
---------------	-------	----------	------

		Rb (ug/g)	Sr (ug/g)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ sr/ ⁸⁶ sr	s×10 ⁵ (No.)	AGE m.y.
SA	MPLE						
440	(rock)	0.39	8.73	0.1289	0.70409	(1)	-)
440	(cpx)	0.44	5.14	0.0986	0.70475	18(7)	- +
440	(opx)	0.18	1.39	0.3638	0.705	(1)	- [^
440	(plag)	0.57	25.00	0.6832	0.70476	24(4)	_)
800	(rock)	3.75	91.81	0.1179	0.70481	10(3)	-
009	(rock)	1.69	69.5	0.0702	0.70489	11(5)	-
380	(rock)	54.1	411.45	0.3804	0.70524	1(3)	-
380	(biot)	388.11	9.95	117.715	1.14249	(1)	262
381(rock)	50.1	436.9	0.3317	0.70483	7(4)	-
382	(rock)	66.05	383.65	0.4980	0.70555	9(2)	-
384	(rock)	66.8	722.6	0.2674	0.70493	10(4)	-
301	(rock)	17.35	66.29	0.7561	0.71563	7(7)	-
301	(musc)	165.99	74.37	6.4688	0.74630	8(7)	378

S = standard deviation
(No.) = number of determinations

Analyst: Dr. H.D. Hensel Research School of Earth Sciences, Australian National University.

440 = PBOC olivine (mela-) norite 008 = PBOC Low - Ti microdolerite 009 = PBOC Low - Ti aphanitic pillow basalt 380-2 = Barrington Tops granodiorite 384 = Mount Ephraim granodiorite 301 = PBOC blueschist

* These data do not yield a well-defined isochron.

TABLE I-1

Major and trace element partial analyses of basaltic rocks from the Tamworth Group, Morrisons Gap area (from Cross, 1974)

ANALYSIS No.	1	2	3	4	5	6	7	8	9	10	11	12	13
SAMPLE	R31429	R31421	R31451	R31433	R31430	R31516	R31540	R31549	R31491	R31502	R31539	R31518	R31447
Ti0 ₂	2.40	2.16	2.40	2.26	2.06	1.90	2.16	2.10	2.61	3.00	2.50	2.66	2.76
A1203	14.74	13.98	14.55	13.98	13.60	15.53	14.74	12.83	18.31	14.55	14.57	14.55	14.17
ΣFeO	12.76	10.65	13.33	13.05	11.71	10.16	11.45	13.80	8.22	14.15	11.45	13.09	12.51
MnO	0.19	0.20	0.19	0.20	0.24	0.18	0.17	0.21	0.18	0.20	0.17	0.17	0.25
MgO	5.86	4.53	4.90	4.63	4.14	7.35	5.75	6.17	3,68	6.13	4.79	4.50	4.26
CaO	7.64	7.19	5.31	6.11	9.44	9.80	7.91	8.63	7.82	9.80	9.35	7.01	5.03
Na ₂ 0	4.60	5.32	5.87	5.00	4.95	2.37	2.06	3.22	3.05	6.15	3.50	5.38	5.68
K ₂ 0	0.08	0.03	tr.	tr.	tr.	0.02	0.08	0.05	0.05	0.11	tr.	0.03	0.11
TOTAL	48.3	44.1	46.6	45.2	46.1	47.3	44.3	47.0	43.9	54.0	46.3	47.4	44.8
ΣFeO/MgO	2.18	2.35	2.72	2.82	2.83	1.38	1.99	2.24	2.23	2.31	2.39	2.91	2.94
mg	44.6	42.7	39.2	38.4	38.2	55.9	46.9	44.0	43.8	43.2	42.4	37.7	37.3
						TRACE ELEMENTS	(µg/g)						
Rb*	2	3	n.d.	-	-	n.d.	n.d.	n.d.	n.d.	n.d.	2	4	n.d.
Sr*	127	157	n.d.	139	181	n.d.	n.d.	n.d.	n.d.	n.d.	293	282	n.d.
Zr [*]	78	111	n.d.	74	76	n.d.	n.đ,	n.d.	n.d.	n.d.	130	135	n.d.

n.d. = not determined.

 Σ FeO = total Fe as FeO.

Analyses 1-5 = basaltic extrusives; 6-13 = doleritic intrusives (analysis 12 = albite gabbro).

* The relative error in these determinations might be as high as $\pm 10\%$.

Fig. I-1: Geological sketch map of the Nundle - Hanging Rock area. Grid as for Map 2

APPENDIX J

GRID REFERENCES FOR SAMPLES REFERRED TO IN THE TEXT

Map 1 : Grid references fall in the range : 55..... to 81..... Map 2 : " " " " " : 19..... to 32..... S = sample number (001 \equiv R49001 in UNE collection, 002 \equiv R49002 and so on). GR = grid reference. In most cases grid references cited are believed to be accurate to better than ± 0005 (i.e. $\sim \pm 50$ metres).

A generalized lithological key follows the grid references listed below.

001	6308,8047	031	6386,8109	067	5776,8413	097	6460,8100
002	6307,8045	032	6389 , 8137	068	6630 , 7994	098	5768,8402
003	6308,8046	033	6377,8132	069	5784,8438	099	5653,8494
004	"	034	6385,8128	070	5940,8396	100	6051,8348
005	6318,8054	035	6389,8138	071	5780,8478	101	5582,8543
006	11	036	6373,8102	072	5785,8430	102	5589,8537
007	6332,8071	037	6235,8182	073	5726 , 8355	103	5704,8348
800	6348,8091	038	6435,8042	074	6243,8198	104	6196,7996
009	6357,8100	039	6308 , 8047	075	6431,8181	105	6219,7737
010	6341,8081	040	6351,8094	076	6631,7996	106	6505,8062
011	6325 , 8060	047	2808,0698	077	6040,8038	107	6251,8246
012	6447,8124	048	2855,0690	078	5807,8362	108	5941,8427
013	6346,8088	049	2854,0686	079	5781,8478	109	5930,8470
014	6358,8108	050	2855,0690	080	5646,8484	110	5792,8440
015	6373,8102	051	2950,0598	081	5863,8210	111	"
016	6358,8108	052	2810,0699	082	6013 , 7992	112	5784,8438
017	6346,8056	053	2808,0698	083	5646,8484	113	6033,7980
018	6298,8180	054	3000,0475	084	6445,8107	114	6715,8000
019	6358,8108	055	2810,0698	085	6225 , 8176	115	11
020	6307,8045	056	2811,0699	086	6241,8200	116	6305,8022
021	6308,8046	057	2848,0695	087	6030,8403	117	**
022	6305,8038	058	3010,0425	088	6240,8181	118	6235 , 7984
023	"	059	2982,0352	089	6167 , 7963	119	6121,7964
024	"	060	6218,8200	090	6633,8105	120	6003,8414
025	6429,8113	061	6183,8190	091	6584,8006	161	5770,8314
026	11	062	6427,8048	092	5889,8419	162	11
027	6457,8121	063	5979 , 8097	093	6652 , 8000	163	11
028	6454,8129	064	5787 , 8454	094	5941,8427	164	11
029	6458,8129	065	5776 , 8413	095	5807,8414	165	"
030	6379 , 8141	066	7332,8029	096	6208 , 7896	166	5956 , 8400

	184	7300,8062	226	7958,9130	276	7125,9143	329	6501,8124	
	185	7262,8057	227	6360,8273	277	7126,9144	330	7267,8538	
	186	6060,8330	228	7645,9370	278	7126,9143	331	7267,8540	
	187	5640,8466	229	7618,9356	279	7127,9142	332	8230,8620	
	188	7823,9210	230	6334,9150	280	7125,9143	340	6490,8135	
	189	6230,8297	231	8025 , 9304	281	11	341	6325,8213	
	190	6464,8476	232	6957 , 8340	291	6750,8210	342	6205,8276	
	191	7558 , 9078	233	**	292	11	343		
	192	7768,9208	234	н	293	п	344	6923,8189	
	193	6490,8486	235	11	294	6575,8198	350	7133,8014	
	194	7523 , 9065	236	11	295	6568,8195	351	7049,8166	
	195	6873 , 8564	237	11	296	6996,8316	352	6976,8168 ·	
	196	8042,9350	238	11	297	707,829	353	7209,8318	
	197	6475 , 9036	239	6892,8354	299	6567,8190	354	7092,8238	
	198	5886,8419	240	7160,8341	300	6572 , 8190	355	6751,8097	
	199	6538 , 7998	241	6653,9368	301	6567,8190	356	6773,8012	
	200	7750,9405	242	7589,9375	302	11	357	6742,8079	
	201	7218 , 9360	243	8039,9291	303	6568,8195	358	7103,8171	
	202	11	244	6014,8396	304	11	359	726,832	
	203	8025,9305	245	6427,8196	305	6922,8271	360	11	
	204	11	246	6425,8196	306	6895,8225	370	6538,7998	
	205		247	6770,8241	307	577 , 945	371	7270,8005	
	206	7915,9329	248	8043,9348	308	6876,8204	372	6387,7994	
	207	8029,9298	249	7533,9068	309	6875,8202	380	6050,7075*	
	208	7393,9413	258	6913,8805	311	7011,8260	384	2655,1000	
	209	7473,9368	259	6865,8254	312	6878,8198	388	7660,9116	
	210	8031,9315	260	7125 , 9143	313	6750,8210	389	7750,9176	
	211	8030,9312	261	11	314	707 , 829	390	7750,9189	
	212	8026,9310	262	11	315	6951,8218	391	7660,9116	
	213	8047,9302	263	"	316	6417,8225	392	7506,9068	
	214	7940,9218	264	11	317	6929 , 8239	393	**	
`	215	7250,9370	265	11	318	6205,8267	394	7751,9174	
	216	7255 , 9380	266	n	319	6846,8210	395	7750,9189	
	217	7495,9038	267	7126,9143	320	7064,8305	396	7823,9211	
	218	7305,9365	268	7125 , 9143	321	6490,8135	397	8038,9229	
	219		269	**	322	6500,8127	398	7762,9206	
	220	8075,9305	270	"	323	6519,8103	399	5680,8514	
	221	8066,9323	271	"	324	6501,8127	400	11	
	222	7286,9381	272	**	325	6500,8128	401	6184,7962	
	223	7288,9380	273	11	326	"	402	7513,8422	
	224	7235,9365	274	"	327	6486,8119	403	7323,8027	
	225	7398 , 9381	275	11	328	6720,8160	404	7264,8055	

r

405	6271 , 8028	438	6500 , 8127	471	7354,8571	504	6560,8135
406	7927 , 9338	439	6500,8128	472	6776,8217	505	6264,8226
407	11	440	6500,8127	473	6625 , 8147	506	6516,8514
408	7911,9344	441	"	474	7355,8571	507	6841,8141
409	5774,8405	442	7056,8397	475	6848,8130	508	2743,0747
410	8036,9293	443	6516,8114	476	7120,8658	509	6814;8119
411	5838,8433	444	7139,9198	477	"	510	7350,8554
412	8039,9289	445	6522,8110	478	7192,8692	511	7363,8544
413	2805,0700	446	11	479	6848,8130	512	6475,9061
414	6225,7963	447	6848,8130	480	6841,8171	513	**
415	5844,8415	448	6501,8124	481	7207,8660	514	6447,8168
416	6263,8002	449	6516,8116	482	7182,8702	515	7139,9198
417	5670,8512	450		483	6804,8232	516	17
418	5900,8312	451	7129,9129	484	6543 , 8997	517	"
419	6090,8305	452	6516,8117	485	6720,8160	518	7129,9196
420	5225 , 9825†	453	6722,8148	486	6719,8163	519	7129,9192
421	"	454	8230,8620	487	6510 , 8994	520	7129,9196
422	*1	455	"	488	7212,8693	521	7137,9195
423	**	456	6522,8170	489	7225,8648	522	7362,8560
424		457	"	490	6463,8171	523	6840,8168
425	**	458	6760,8128	491	7101,9203	524	7121,8658
426	7072,9155	459	11	492	6141,8327	525	6764,8195
427	7093,9195	460	6522,8108	493	6516,8154	526	6722,8148
428	7094,9157	461	7364,8543	494	7093,9195	527	6729 , 8165
429	7095,9155	462	6475,9061	495	6156,8514	528	5760,9400
430	7125,9143	463	6205,8266	496	6183,8259	529	6516,8116
431	"	464	7135,9195	497	6205 , 8266	530	11
432	"	465	7129,9196	498	6508,8149	531	6487,8138
433	7087,9190	466	6332,8205	499	6495,8146	532	6519 , 8103
434	7087,9170	467	6487,8138	500	6475 , 9061	534	6156,8514
435	7082,9173	468	6848,8130	501	7135,9195		
436	7087,9165	469	6787,8236	502	6594,8151		
437	6500,8128	470	6487,8138	503	6558,8134		

*Barrington Tops Granodiorite (to the south of Map 1) †420-425 clinopyroxene-rich cumulates, locality 14 (Fig.B-1).

See next page for a generalized key to lithologies.

In addition to those listed above, approximately 1200 other samples were also collected from the Pigna Barney-Curricabark and Morrisons Gap areas during the course of this study. These were examined in varying detail and most are housed in the Geology Department, UNE.

SAMPLES 001-024 : PBOC low-Ti basaltic extrusives and shallow intrusives 025-029 : PBOC low-Ti gabbro(norite)s 030-035 : PBOC low-Ti doleritic intrusives 036-040 : PBOC low-Ti basaltic extrusives and shallow intrusives 047-059 : Tamworth Group basaltic intrusives and extrusives, Morrisons Gap area. 060-120 : Basaltic intrusives and extrusives in the Glen Ward beds 161-166 : Slightly hornfelsed sedimentary rocks from adjacent to Glen Ward doleritic intrusives 184-187 : Glen Ward sedimentary rocks 188-197 : Myra sedimentary rocks 198-199 : Glen Ward sedimentary rocks 200-249 : Basaltic intrusives and extrusives in the Myra beds 258-259 : Carbonated serpentinite 260-265 : Sedimentary serpentinite 266-267 : Manning Group pebbly sandstones 268-276 : Sedimentary serpentinite 277-279 : Manning Group pebbly sandstones and siltstone 280-281 : Sedimentary serpentinite 291-320 : PBOC relatively higher grade metamorphic blocks 321-331 : PBOC significantly amphibolitized and/or saussuritized olivine norites 332 : PBOC olivine norite containing folded layers 340-344 : Pola Fogal Suite (hornblendite-tonalite) intrusives 350-360 : Pitch Creek Volcanics (andesite-?rhyodacite) 370-373 : Glen Ward sedimentary rocks 380 : Barrington Tops Granodiorite 384 : Mount Ephraim Granodiorite 388-419 : Myra and Glen Ward sedimentary rocks 420-425 : Olivine clinopyroxenites and olivine gabbro, Glenrock Station 426-429 : PBOC Watchimbark harzburgites 430-432 : Sedimentary serpentinite 433-436 : PBOC Watchimbark harzburgites 438-534 : PBOC olivine-bearing cumulates and tectonized harzburgites. Samples 492, 493, 495-498, 502-507 and 523 are tectonized harzburgite, and sample 525 is massive chromitite NOTE: lithological classifications of samples 440-498 are listed in Table C-1. All samples (001-534, and others) are individually classified according to rock-type in the relevant catalogues,

Geology Department, UNE.

APPENDIX K

NOTES ON MAPS 1 AND 2

MAP 1

Mines).

- (i) The base map was compiled from the following topographic sheets: Ellerston 1:31,680 (9134-II-N), N.S.W. Department of Lands Pigna Barney 1:31,680 (9234-III-N) " Curricabark 1:25,000 (9234-IV-S) " Glenrock 1:25,000 (9234-I-S) "
 The area is also covered by the Ellerston (9134) and Upper Manning (9234) 1:100,000 topographic sheets, and the Tamworth (SH56-13) and Hastings (SH56-14) 1:250,000 geological sheets (N.S.W. Department of
- (ii) Only the major faults are displayed on the map. Fault nomenclature follows that of Mayer (1972). Minor faults are abundant in the area, especially in the Myra beds.
- (iii) All contacts between serpentinite and adjacent Palaeozoic lithologies, and between the Myra beds and other Palaeozoic lithologies (with the possible exception of Myra-?Manning Group contacts in the McKenzies Creek - Orham Creek area; see pp 27-28) are faulted. However, for reasons of clarity many of these contacts are not shown as faults on the map.
- (iv) The fault block largely lying between McKenzies and Orham creeks is assigned to the Manning Group solely on the basis of lithological comparisons. Consequently, this correlation remains somewhat speculative.
 - (v) The small uncoloured blocks in PBOC serpentinites are predominantly altered basaltic rocks, or fragments of Myra sedimentary rocks.
- (vi) The gross internal structure of the northeastern block of the Myra beds is displayed in Figure 1.3.

MAP 2

- (i) Base map = Crawney Pass 1:25,000 topographic map (9134-IV-N, N.S.W. Department of Lands). The area is also covered by the Ellerston 1:100,000 topographic sheet (9134) and the Tamworth 1:250,000 geological sheet (SH56-13, N.S.W. Department of Mines).
- (ii) Minor faults are abundant in the Morrisons Gap area but only the more clearly-defined examples are shown on the map.

APPENDIX L

GLOSSARY OF ABBREVIATIONS MOST COMMONLY USED THROUCHOUT THE THESIS

1.	PETRO	TO	SICAL RATIOS etc.	2.	GENER	AL MACMA TYLES	
	м	=	$Mq/(Mq + Fe^{2+})$		AB	= alkaline basalts	
			2+,		ALK	= alkaline	
	М	=	100Mg/(Mg + Fe)		BAB	= back-arc basalt(s)	
	Mg*	-	100(Mg + Ni)/(Mg + Ni + ΣFe + Mn)		CAB	<pre>= calc-alkaline basalt(s)</pre>	
	тз	=	100Mg/(Mg + ΣFe + Mn)		CTB	= continental tholeiitic basalt(s)	
					FAB	= fore-arc basalt(s)	
	мŋ	-	100 Mg/(Ca + Mg + 2Fe + Mn)		HT	= Hawaiian tholeiites	
	Са	==	100Ca/(")		IAT	= island-arc tholeiite(s)	
	ŀe'		100Fe'/(")		MORB	= mid-ocean ridge basalt(s)	
	(' m		$10(0\pi/(0\pi + \lambda))$		MORG	= mid-ocean ridge gabbro(s)	
	UP	-	100CF/(CF + AI)		OAB	<pre>= oceanic alkaline basalt(s)</pre>	
	An	=	100Ca/(Ca + Na)		OFA	= ocean-floor alkaline basalt(s)	
	ΣfeO	=	total Fe calculated as FeO		OFB	= ocean-floor basalt(s) { = MORB}	
	Del		2+ 3+		OIA	<pre>= ocean-island alkaline basalt(s)</pre>	
	re.	-	re + re + mn		OIB	<pre>= ocean-island basalt(s)</pre>	
	LOI	=	loss on ignition (see Appendix G)		OIT	= ocean-island tholeiite(s)	
	ΣVol = total volatile content (s)		total volatile content (see Appendix G)		тн	= tholeiitic	
					VAB	<pre>= volcanic arc basalt(s)</pre>	
					WPA	<pre>= within-plate alkaline basalt(s)</pre>	
3.	Nome: (ter:	ncl min	ature for matic and ultramatic intrusives ology largely following Streckeisen, 1976)		WPB	= within-plate basalt(s)	
		D =	dolerite		WPT	= within-plate tholeiite(s)	
		G =	gabbro	NO'P	E: Mar	y of the above abbreviations are	
	G	N =	gabbronorite		use dis	ed only on certain figures which splay reference fields defined by	
	0	G =	olivine gabbro		other workers.		
	OG	N =	olivine qabbronorite				
	OmG	N =	olivine mela-gabbronorite	4.	C.I.E	P.W. normative minerals	
		N =	norite		q u =	• quartz	
	IU	N ==	mela-norite		0 r =	= orthoclase	
	U	H	olivine norite		ab =	= albite	
	On	11 =	olivine mela-norite		an =	= anorthite	
		T =	troctolite		c =	= corundum	
	10	r =	mela-troctolite		di =	= diopside	
	P1	р =	plagioclase-bearing peridotite (Pl<10)		h y =	= hypersthene (en = enstatite)	
	Pl	.H ≃	= " " harzburgite(")		ol =	= olivine $\{ (Fo = forsterite) \\ (Fa = fayalite) \}$	
	P1	D =	- " dunite (")		mt =	= magnetite	
	Ŀ	- H	amphibole-bearing harzburgite (P1<20)		chr :	= chromite	
	С	ю =	olivine orthopyroxenite		il -	= ilmenite	
		H =	- harzburgite		ap -	= apatite	
		р =	- dunite				
		Р =	⁼ peridotite				