## CHAPTER 4

## Experimental Methods

### 4.1 GENERAL EXPERIMENTAL METHODS

All solvents were distilled before use by using standard procedures. ${ }^{1}$ Tetrahydrofuran (THF) was distilled over sodium using benzophenone as an indicator of water content; pyridine was stored over KOH and molecular sieves (type $3 \AA$ ) for a minimum of 6 hrs and then distilled over $\mathrm{LiAlH}_{4}$ and stored over $\mathrm{KOH} /$ molecular sieves (type $3 \AA$ ); triethylamine ( $\mathrm{Et}_{3} \mathrm{~N}$ ) was distilled over $\mathrm{CaH}_{2}$; benzene was dried over sodium wire; $A R$ grade acetonitrile ( MeCN ) and dimethylformamide (DMF) were both dried over type $3 \AA$ molecular sieves. Flash column chromatography on alumina was carried out using Aldrich aluminium oxide, activated, neutral (Brockmann I standard grade) and Flash Column Chromatography on silica was carried out using Aldrich silica gel (grade 9385, 230-400 mesh). All flash column chromatography was performed using nitrogen gas. Preparative TLC was performed on $20 \times 20 \mathrm{~cm}$ glass plates coated with 0.5 mm thick Art. 7731 Kieselgel 60 G Merck silica. Analytical TLC was carried out on Merck Silica Gel 60 G254 precoated aluminium sheets.

NMR spectra were acquired using a 300 MHz Bruker AC-300P FT spectrometer. Chemical shifts ( $\delta$ ) are reported in parts per million ( ppm ) relative to the residual solvent. Coupling constants are reported in hertz $(\mathrm{Hz})$. Deuterated solvents were purchased from Aldrich and stored over type $3 \AA$ molecular sieves after opening. Gradient COSY, one-bond C-H correlation (HMQC), long-range C-H correlation (HMBC), 2D gradient NOESY, 2D ROESY and 2D DOSY experiments utilised standard BRUKER pulse programs and standard BRUKER parameters. UV-Vis spectra were recorded on a Varian Cary IE UV-VIS spectrophotometer. IR spectra were recorded on a either a Perkin-Elmer FT-IR 1600 series or a Perkin-Elmer FT-IR 1725X series spectrophotometer. Melting points were determined using a Reichert microscopic hot-stage apparatus. Irradiations were performed using a 500W (visible) lamp. High Pressure reactions were performed using a HOFER High Pressure Apparatus Model HP14 at room temperature. High-pressure reactions and
high-resolution EI and ES mass spectrometric analyses were carried out at the Centre for Molecular Architecture, Central Queensland University, Rockhampton, Qld.

Molecular Modelling was carried out using the Spartan software package [v4.0 (MM2) or 5.0 (MMFF94 and AM1, Wavefunction Inc.] on a Silicon Graphics $\mathrm{O}_{2}$ Computer.

Abbreviations used for reagents and solvents:
$\mathrm{AcOH} \quad$ acetic acid
$\mathrm{Ac}_{2} \mathrm{O} \quad$ acetic anhydride
ADA acetylene dicarboxylic acid
BTA benzenetetramine tetrahydrochloride
DMAD dimethyl acetylenedicarboxylate
EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
$\mathrm{Et}_{3} \mathrm{~N} \quad$ triethylamine
EtOAc ethyl acetate
HOBT 1-hydroxybenzotriazole
MeOH methanol
$\mathrm{NH}_{4} \mathrm{OAc}$ ammonium acetate
THF tetrahydrofuran

### 4.2 SYNTHETIC METHODS

$1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-11,12$-dioxatetracyclo $\left[6.2 .1 .1^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxylic acid (1)


This compound was prepared using the literature method. ${ }^{2}$ Acetylene dicarboxylic acid ( $50 \mathrm{~g}, 0.44 \mathrm{~mol}$ ) and furan ( $69 \mathrm{~g}, 73 \mathrm{~mL}, \sim 1 \mathrm{~mol}$ ) were dissolved in diethyl ether ( 250 mL ) and stirred at room temperature for 3 weeks in darkness. The product gradually crystallised from solution over the reaction period and was separated by filtration, washed with diethyl ether and dried under vacuum to give cream-coloured crystals ( 27.4 g ). Yield $=50 \%$ (lit. $65 \%$ ); m.p. $156-160^{\circ} \mathrm{C}$ (lit. $160-162^{\circ} \mathrm{C}$ ) Note: a further crop was obtained by the introduction of another aliquot of furan to the mother liquor with stirring over several weeks.
$1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-11,12$-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxylic
anhydride ( 2 ) anhydride (2)


This compound was prepared using the two different literature methods outlined below.

Method $1^{3}$ : A solution of (1) in thionyl chloride ( 20 mL ) was heated at $80^{\circ} \mathrm{C}$ for 2 hrs under $\mathrm{N}_{2(\mathrm{~g})}$. Excess thionyl chloride was evaporated off under reduced pressure giving an oil, which was taken up in a minimum of ethyl acetate, and the product crystallised as a fine, light cream coloured solid (lit. light yellow needles). Yield $=58 \%$; m.p. 185$187^{\circ} \mathrm{C}$ (lit. $\left.184-185^{\circ} \mathrm{C}\right) ; \mathrm{IR}=\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1}\right) 1779,1850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.78(4 \mathrm{H}, \mathrm{m})$, $5.29(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.3,139.9,81.5,78.0 ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{d}_{6}$-acetone) 171.7, 141.0, 82.1, 73.5 .
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$ NMR spectra were both in agreement with literature.
Method 2 (translated from literature; German) ${ }^{4}$ :
To a solution of bis-oxa-norbornene_diacylchloride (11) ( $800 \mathrm{mg}, 2.79 \mathrm{mmol}$ ) in $\mathrm{CCl}_{4}$ ( 50 mL ) was added 50 mL of a buffer solution ( $1.00 \mathrm{~g} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $1.18 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ ). This mixture was stirred for 6 hrs at room temperature. The organic layer was separated and concentrated. The aqueous layer was extracted with ether ( $5 \times 20 \mathrm{~mL}$ ) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The organic residues were dried further under vacuum for 1 hr at room temperature. The crude product was
recrystallised from ethyl acetate giving a fine off-white solid ( 356 mg ) yield $=55 \%$. The analysis of the product by ${ }^{1} \mathrm{H}$ NMR spectroscopy was consistent with data obtained from method 1 above.

## tetracyclo[6.2.2.1 ${ }^{3,6} . \mathrm{O}^{2,7}$ ]trideca-4,11-dien-9,10-dione (7)



Iodobenzene diacetate (PiDA, $1.9 \mathrm{~g}, 5.9 \mathrm{mmol}$ ) was added all at once to a solution of catechol ( $0.50 \mathrm{~g}, 4.5 \mathrm{mmol}$ ) and 2,5 -norbornadiene ( 70 mL ) in acetonitrile $(300 \mathrm{~mL})$. The solution was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ in darkness at room temperature changing from yellow to red after 10 mins. Stirring under the same conditions was continued for 2 days. A further 0.5 g of catechol and 1.9 g of PiDA were then added and stirring was continued under $\mathrm{N}_{2(\mathrm{~g})}$ in darkness for another 2 days. After a third and final addition of catechol ( 0.5 g ) and PiDA ( 1.9 g ) and 2 day stirring period ( $\mathrm{N}_{2(\mathrm{~g})}$, R.T., darkness) the solvent and NBD were removed under reduced pressure using a rotary evaporator. The residue was rapidly filtered through a wet $\left(\mathrm{CHCl}_{3}\right)$ silica plug washing thoroughly afterwards with $\mathrm{CHCl}_{3}$. The solvent was removed from the filtrate under reduced pressure and the product recrystallised from Pet.Spirit/EtOAc giving an orange/yellow crystalline product ( 1.5 g ) with a distinct aroma. Yield $=54 \%$; m.p. $=140-142^{\circ} \mathrm{C}\left(\text { lit. } 142^{\circ} \mathrm{C}\right)^{5} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.36(2 \mathrm{H}, \mathrm{t}, J=3.9 \mathrm{~Hz}), 6.28(2 \mathrm{H}, \mathrm{t}, J$ $=1.8 \mathrm{~Hz}), 3.52(2 \mathrm{H}, \mathrm{t}, J=3.5 \mathrm{~Hz}), 2.95(2 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 2.55(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 2.13(2 \mathrm{H}, \mathrm{s})$, $1.18(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 189.25,140.77,131.31,52.02,47.96,43.27,40.65$. Both spectra were in agreement with literature. ${ }^{5}$

## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-11,12$-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-diacyl chloride (11)



Method translated from literature (German) ${ }^{4}$ : Furan ( $1.54 \mathrm{~g}, 22.7 \mathrm{mmol}$, 1.13 eqv.) was added, under $\mathrm{N}_{2}$, to a stirred suspension of ADA ( $1.14 \mathrm{~g}, 10.0$ $\mathrm{mmol})$ and $\mathrm{PCl}_{5}(4.16 \mathrm{~g}, 20.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(100 \mathrm{~mL})$. This mixture was stirred under $\mathrm{N}_{2}$ in darkness at R.T. for 6 hrs and then a further 1.54 g of furan was added. Stirring under the same conditions was continued for 6 days. Solids were filtered off and washed with $\mathrm{CCl}_{4}(20 \mathrm{~mL})$. The solvent was removed from the filtrate under reduced pressure at R.T. and the residue dried overnight under vacuum leaving a dark brown crystalline solid.

Yield $=1.91 \mathrm{~g}, 67 \%$ (lit. $81 \%$ ); m.p. $=113-116^{\circ} \mathrm{C}\left(\right.$ lit. $\left.115^{\circ} \mathrm{C}\right) ; \mathrm{IR}=\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1}\right) 1760,1800 \mathrm{~cm}$ ${ }^{1}$ (lit. $\left.1760,1800 \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.80(4 \mathrm{H}, \mathrm{m}), 5.32(4 \mathrm{H}, \mathrm{m})[$ lit. $6.81(4 \mathrm{H}, \mathrm{s}) 5.33(4 \mathrm{H}$, s) $]^{4}$.
$1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-tert-butylphenyl)-11,12-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-
dien-2,7-dicarboxamic acid (12)


A solution of the bis-acyl chloride (11) ( $3.60 \mathrm{~g}, 12.5 \mathrm{mmol}$ ), 4-tert-butylaniline $(1.40 \mathrm{~g}, 9.4 \mathrm{mmol})$ and pyridine $(2.00 \mathrm{~g}, 25.3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(120 \mathrm{~mL})$ was stirred under $\mathrm{N}_{2}$ for 3 days at room temperature in darkness. The reaction mixture was poured into 200 mL of water and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$ and the combined organic layers washed with water ( $5 \times 100 \mathrm{~mL}$ ). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight giving the crude amic acid as a brown solid $(4.08 \mathrm{~g})$. Yield $=85 \%^{*}$; A sample of the product ( 1.2 g ) was recrystallised from EtOAc/Pet.Spirit and further purified by flash column chromatography [silica, EtOAc/Pet.Spirit (1:1)] to give a white solid ( 160 mg ). m.p. $=200-201^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.96(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.81(2 \mathrm{H}, \mathrm{m}) 6.73(2 \mathrm{H}, \mathrm{m}), 5.39(2 \mathrm{H}, \mathrm{bs}), 5.26(2 \mathrm{H}, \mathrm{bs}), 1.29$ (9H, s).

## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-methoxyphenyl)-11,12-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxamic acid (13)



A solution of the bis-acyl chloride (11) ( $442 \mathrm{mg}, 1.54 \mathrm{mmol}$ ), anisidine ( 190 $\mathrm{mg}, 1.56 \mathrm{mmol}$ ) and pyridine ( $250 \mathrm{mg}, 3.16 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was stirred under $\mathrm{N}_{2}$ for 5 days at room temperature in darkness. The reaction mixture was poured into 20 mL of water and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$ and the combined organic layers washed with water ( $5 \times 20 \mathrm{~mL}$ ). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight giving the crude amic acid as a creamcoloured solid ( 455 mg ). The product was purified by recrystallisation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ giving white needles ( 249 mg ) Yield $=43 \%{ }^{*}$; m.p. $=214-215^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $6.82(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.80(2 \mathrm{H}, \mathrm{m}), 6.73(2 \mathrm{H}, \mathrm{m}), 5.38(2 \mathrm{H}, \mathrm{bs}), 5.26(2 \mathrm{H}, \mathrm{bs}), 3.78(3 \mathrm{H}, \mathrm{s})$.

[^0][^1]
## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-methylphenyl)-11,12-dioxatetracyclo $\left[6.2 .1 .1^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxamic acid (14)



A solution of the bis-acyl chloride (11) ( $442 \mathrm{mg}, 1.54 \mathrm{mmol}$ ), 4-methylaniline ( $165 \mathrm{mg}, 1.54 \mathrm{mmol}$ ) and pyridine ( $250 \mathrm{mg}, 3.16 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was stirred under $\mathrm{N}_{2}$ for 5 days at room temperature in darkness. The reaction mixture was poured into 20 mL of water and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$ and the combined organic layers washed with water ( $5 \times 20 \mathrm{~mL}$ ). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight giving the crude amic acid as a creamcoloured solid ( 450 mg ). Yield $=85 \%$ *; the product was further purified by recrystallisation from $\mathrm{CHCl}_{3}$ giving a fine white powder after drying (203 mg) Yield (pure) $=40 \%$; m.p. $=209-212^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.08(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.75(2 \mathrm{H}, \mathrm{m}), 6.56(2 \mathrm{H}, \mathrm{m}), 5.32(2 \mathrm{H}$, bs), $5.15(2 \mathrm{H}, \mathrm{bs}), 2.29(3 \mathrm{H}, \mathrm{s})$.

* The crude product was almost pure by NMR analysis and a conservative estimate of yield was based on this.


## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-chlorophenyl)-11,12-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxamic acid (15)



A solution of the bis-acyl chloride (11) ( $570 \mathrm{mg}, 1.99 \mathrm{mmol}), 4$-chloroaniline ( $260 \mathrm{mg}, 2.04 \mathrm{mmol}$ ) and pyridine ( $316 \mathrm{mg}, 4.00 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL}$ ) was stirred under $\mathrm{N}_{2}$ for 4 days at room temperature in darkness. The reaction mixture was poured into 30 mL of water and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(4 \times 10 \mathrm{~mL})$ and the combined organic layers washed with water ( $5 \times 40 \mathrm{~mL}$ ). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight giving the crude amic acid as a light brown solid ( $\sim 800 \mathrm{mg}$ ). The product was purified by flash column chromatography (silica, $\mathrm{CHCl}_{3}$ ) and dried overnight under vacuum giving a cream-coloured powder ( 450 mg ). Yield $=63 \%$; m.p. $=$ $210-214^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.73(2 \mathrm{H}, \mathrm{m}), 6.57(2 \mathrm{H}, \mathrm{m})$, $5.31(2 \mathrm{H}, \mathrm{bs}), 5.16(2 \mathrm{H}, \mathrm{bs})$.
$1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha$-N-(4-aminophenyl)-11,12-dioxatetracyclo $\left[6.2 \cdot 1.1^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxamic acid (16)


A solution of the bis-acyl chloride (11) ( $430 \mathrm{mg}, 1.50 \mathrm{mmol}$ ), 4phenylenediamine ( $162 \mathrm{mg}, 1.50 \mathrm{mmol}$ ) and pyridine ( $237 \mathrm{mg}, 3.00 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$ [(3:2) 12.5 mL$]$ was stirred under $\mathrm{N}_{2}$ for 5 days at room temperature in darkness. The solvents were removed from the reaction mixture under reduced pressure at R.T. and the residues partitioned between $\mathrm{CHCl}_{3}$ ( 50 mL ) and water ( 50 mL ) and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(4 \times 10 \mathrm{~mL})$ and the combined organic layers washed with water ( $5 \times 10 \mathrm{~mL}$ ). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight giving the crude product as a cream-coloured solid ( 200 mg ). The product was recrystallised from hot $\mathrm{CHCl}_{3}$, collected and dried overnight under vacuum giving a cream-coloured powder ( 122 $\mathrm{mg})$. Yield $=50 \%$; m.p. $=220-224^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.79(2 \mathrm{H}, \mathrm{m}), 6.70(2 \mathrm{H}, \mathrm{m}), 5.35(2 \mathrm{H}, \mathrm{bs}), 5.23(2 \mathrm{H}, \mathrm{bs}), \mathrm{NH}_{2}$ peak not evident.
$\mathrm{N}, \mathrm{N}^{\prime}-1$ ', $\mathbf{4}^{\prime}$-phenylene-bridged ( $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-11,12$ -
dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboxamic acid) dimer* (17)


A solution of the bis-acyl chloride (11) $\left(112 \mathrm{mg}, 3.9 \times 10^{-4} \mathrm{~mol}\right), 4-$ phenylenediamine ( $22 \mathrm{mg}, 2.0 \times 10^{-4} \mathrm{~mol}$ ) and pyridine ( $130 \mathrm{mg}, 1.6 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$ [(3:2) 5 mL$]$ was stirred under $\mathrm{N}_{2}$ for 5 days at room temperature in darkness. The solvents were removed from the reaction mixture under reduced pressure at R.T., the residues partitioned between $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and water ( 5 mL ), and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$ and the combined organic layers washed with water ( $5 \times 10$ mL ). The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight giving the crude product as a brown solid ( 80 mg ). The product was recrystallised from $\mathrm{CHCl}_{3}$ and dried overnight under vacuum giving a fine light brown-coloured solid ( 67 mg ). Yield $=59 \%$; m.p. $>300^{\circ} \mathrm{C}$ (colour darkens at $170^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.95(4 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.80(4 \mathrm{H}, \mathrm{m}), 6.73(4 \mathrm{H}, \mathrm{m}), 5.38(4 \mathrm{H}, \mathrm{bs}), 5.26(4 \mathrm{H}, \mathrm{bs})$.

[^2]
## 3-p-tolylcarbamoyl-7-oxa-bicyclo[2.2.1]hepta-2,5-diene-2-carboxylic acid (18)



The 4-tolylamic acid (14) ( $236 \mathrm{mg}, 6.95 \times 10^{-4} \mathrm{~mol}$ ) was stirred with $\mathrm{NaOAc}(1 \mathrm{~g})$ in $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $120^{\circ} \mathrm{C}$ for 1 hr . The acetic anhydride was distilled off under vacuum and the remaining residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}(4 \times 10 \mathrm{~mL})$. The combined organics were washed with water ( $4 \times 30 \mathrm{~mL}$ ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The crude product was dried overnight under vacuum to give a sticky brown solid. The product was purified by flash column chromatography (silica, $20 \%$ hexane $/ \mathrm{CHCl}_{3}$ ) and obtained as a sticky brown solid ( 160 mg ). Yield $=85 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.99(1 \mathrm{H}$, bs $), 7.55$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.13(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.25(2 \mathrm{H}, \mathrm{m}), 5.94(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz})$, $2.31(3 \mathrm{H}, \mathrm{s})$.

## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-tert-butylphenyl)-11,12-dioxatetracyclo $\left[6.2 \cdot 1.1^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboximide (20)



Method 1: $\quad$ The amic acid (12) ( $1.05 \mathrm{~g}, 2.75 \mathrm{mmol})$ was added to a mixture of $\mathrm{NaOAc}(4 \mathrm{~g})$ in $\mathrm{Ac}_{2} \mathrm{O}(40 \mathrm{~mL})$ and heated to $130^{\circ} \mathrm{C}$ for 12 hrs . A drying tube was attached to the reaction vessel and the mixture was allowed to cool slowly to room temperature. The acetic anhydride was removed under vacuum and the remaining residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(5 \times 50 \mathrm{~mL})$ and the combined organic layers washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 100 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed under reduced pressure. The residues were dried under vacuum overnight. The product was purified by flash column chromatography (silica), eluting with $50 \%$ Pet Spirit/EtOAc to obtain a light cream coloured solid ( 810 mg ) Yield $=81 \%$; m.p. $=232-234^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.94(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.74(4 \mathrm{H}, \mathrm{m}), 5.34(4 \mathrm{H}, \mathrm{m}), 1.29(9 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.4,152.1,139.2,128.4,126.2,125.4,81.6,69.1,34.7,31.2$; HRMS $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4}$ : calculated 363.1471; m/z (EI) M ${ }^{+}$observed 363.1482 .

Method 2: The amic acid (12) ( $15 \mathrm{mg}, 3.9 \times 10^{-5} \mathrm{~mol}$ ) and HOBT ( $8 \mathrm{mg}, 6 \times 10^{-5} \mathrm{~mol}$ ) were dissolved in dry THF ( 1.5 mL ) and stirred for 5 minutes under $\mathrm{N}_{2(\mathrm{~g})}$. EDC ( $11 \mathrm{mg}, 6 \times 10^{-5} \mathrm{~mol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}$ (dry, $50 \mu \mathrm{~L}$ ) were added in quick succession (under $\mathrm{N}_{2(\mathrm{~g})}$ ) and the mixture was stirred at room temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. THF was removed under vacuum and the residues
partitioned between $\mathrm{CHCl}_{3}(\sim 3 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(\sim 2 \mathrm{~mL})$. The aqueous layer was neutralised with $\mathrm{NaHCO}_{3(\text { aq) }}$ (sat.) and extracted with $\mathrm{CHCl}_{3}$. The combined organics were washed with water ( $3 \times 5 \mathrm{~mL}$ ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and concentrated using a rotary evaporator. The residues were dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation of the product was induced by the slow addition of hexane to this solution. The fine white solid was filtered and dried under vacuum to give a white powder ( 12 mg ). Yield $=80 \%$. Both the melting point and ${ }^{1} \mathrm{H}$ NMR data were identical to results obtained from method 1 above.

## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-methoxyphenyl)-11,12-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} . \mathbf{0}^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboximide (21)



Method 1: A mixture of the anhydride (1) ( $526 \mathrm{mg}, 2.27 \mathrm{mmol}$ ) and anisidine ( $286 \mathrm{mg}, 2.32 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ were placed under high pressure ( 13 kbar ) for 3 days. The solvent was removed under reduced pressure and the residues dried under vacuum. The crude residue was treated with $\mathrm{NaOAc}(1 \mathrm{~g})$ in $\mathrm{AC}_{2} \mathrm{O}(5 \mathrm{~mL})$ and this mixture was stirred at room temperature for 2 days and then at $60^{\circ} \mathrm{C}$ for another day. The acetic anhydride was removed under high vacuum and the residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$ and the combined organic layers washed with $\mathrm{H}_{2} \mathrm{O}$ ( $3 \times 100 \mathrm{~mL}$ ). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd) and the solvent removed under reduced pressure. The remaining residue was dried under vacuum overnight. The product was recrystallised from EtOAc/Petroleum Spirit (2:1) giving a fine offwhite solid ( 360 mg ). Yield $=47 \%$ [from (2)]; m.p. $=275-278^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.92(4 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}), 6.74(4 \mathrm{H}, \mathrm{m}), 5.33(4 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s})$.

Method 2: The amic acid (13) ( $50 \mathrm{mg}, 1.41 \times 10^{-4} \mathrm{~mol}$ ) was stirred with NaOAc ( 300 mg ) in $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$ at $130^{\circ} \mathrm{C}$ for 3 hrs . The acetic anhydride was distilled off under vacuum and the remaining residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$. The combined organics were washed with water ( $4 \times 5 \mathrm{~mL}$ ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The residue was dissolved in a minimum of $\mathrm{CHCl}_{3}(\sim 2 \mathrm{~mL})$ and approximately 1 mL of hexane was added down the side of the flask. A fine white precipitate formed and was filtered and dried under vacuum overnight ( 40 mg ). Yield $=84 \%$. Both the melting point and NMR data were identical to results obtained from method 1 above.

Method 3: The amic acid (13) ( $21 \mathrm{mg}, 5.8 \times 10^{-5} \mathrm{~mol}$ ) and HOBT ( $12 \mathrm{mg}, 8.8 \times 10^{-5} \mathrm{~mol}$ ) were dissolved in dry THF ( 2 mL ) and stirred for 5 minutes under $\mathrm{N}_{2(\mathrm{~g})}$. EDC $\left(17 \mathrm{mg}, 8.8 \times 10^{-5}\right.$ mol) and $\mathrm{Et}_{3} \mathrm{~N}$ (dry, $70 \mu \mathrm{~L}$ ) were added in quick succession and the mixture stirred at room temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. THF was removed under vacuum and the residues partitioned between $\mathrm{CHCl}_{3}(\sim 3 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(\sim 2 \mathrm{~mL})$. The aqueous layer was neutralised with $\mathrm{NaHCO}_{3(\text { aq })}$ (sat.) and extracted with $\mathrm{CHCl}_{3}$. The combined organics were washed with water ( 3 x 5 mL ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and concentrated using a rotary evaporator. The residues were dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation of the product was induced by the slow addition of hexane to this solution. A fine white solid was filtered off and dried under vacuum to give a white powder ( 13.7 mg ). Yield $=70 \%$. Both the melting point and ${ }^{1} \mathrm{H}$ NMR data were identical to results obtained from method 1 above.

## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-\mathrm{N}$-(4-methylphenyl)-11,12-dioxatetracyclo $\left[6.2 .1 .1^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboximide (22)



The amic acid (14) ( $20 \mathrm{mg}, 5.9 \times 10^{-5} \mathrm{~mol}$ ) and HOBT ( $12 \mathrm{mg}, 8.8 \times 10^{-5} \mathrm{~mol}$ ) were dissolved in dry THF ( 2 mL ) and stirred for 5 minutes under $\mathrm{N}_{2(\mathrm{~g})}$. EDC ( $17 \mathrm{mg}, 8.8 \times 10^{-5} \mathrm{~mol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}($ dry, $70 \mu \mathrm{~L}$ ) were added in quick succession and the mixture stirred at room temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. THF was removed under vacuum and the residues partitioned between $\mathrm{CHCl}_{3}(\sim 3 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(\sim 2 \mathrm{~mL})$. The aqueous layer was neutralised with $\mathrm{NaHCO}_{3(\text { aq })}$ (sat.) and extracted with $\mathrm{CHCl}_{3}$. The combined organics were washed with water ( 3 x 5 mL ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and concentrated using a rotary evaporator. The residues were dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation of the product was induced by the slow addition of hexane to this solution. The fine white solid was filtered and dried under vacuum to give a white powder $(10 \mathrm{mg})$. Yield $=50 \% ;$ m.p. $=270-273^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.21(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.75(4 \mathrm{H}, \mathrm{bs}), 5.34(4 \mathrm{H}, \mathrm{bs}), 2.35(3 \mathrm{H}, \mathrm{s}) ; \mathrm{HRMS}_{19} \mathrm{H}_{15} \mathrm{ClNO}_{4}$ : calculated $321.1001 ; \mathrm{m} / \mathrm{z}$ (EI) M ${ }^{+} 321.1002$.

## $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-N$-(4-chlorophenyl)-11,12-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-2,7-dicarboximide (23)

The amic acid (14) ( $50 \mathrm{mg}, 1.4 \times 10^{-4} \mathrm{~mol}$ ) and HOBT ( $28 \mathrm{mg}, 2.1 \times 10^{-4} \mathrm{~mol}$ ) were dissolved in dry THF ( 4 mL ) and stirred for 5 minutes under $\mathrm{N}_{2(\mathrm{~g})}$. EDC ( $40 \mathrm{mg}, 2.1 \times 10^{-4} \mathrm{~mol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}$ (dry, $160 \mu \mathrm{~L}$ ) were added in quick succession and the mixture stirred at room temperature under


$\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. THF was removed under vacuum and the residues partitioned between $\mathrm{CHCl}_{3}(\sim 5 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{HCl}{ }_{(\mathrm{aq)}}(\sim 5 \mathrm{~mL})$. The aqueous layer was neutralised with $\mathrm{NaHCO}_{3(\text { aq })}$ (sat.) and extracted with $\mathrm{CHCl}_{3}$. The combined organics were washed with water ( $3 \times 10 \mathrm{~mL}$ ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and concentrated using a rotary evaporator. The residues were dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation of the product was induced by the slow addition of hexane to this solution. The white precipitate was filtered and dried under vacuum to give a white powder ( 30 mg ). Yield $=63 \%$; m.p. $=263-266^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.97(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.75(4 \mathrm{H}, \mathrm{s}), 5.34(4 \mathrm{H}, \mathrm{s}) ;$ HRMS $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{4}$ : calculated $341.0455 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) \mathrm{M}^{+}$observed 341.0453 .

## $\mathrm{N}, \mathrm{N}^{\prime}$-( $1^{\prime}, 4^{\prime}$-phenylene)-bridged ( $1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-11,12$-dioxatetracyclo $\left[6.2 .1 .1^{3,6} .0^{2,7}\right]$ -dodeca-4,9-dien-2,7-dicarboximide) dimer ${ }^{*}$ (24)



The amic acid (16) ( $34 \mathrm{mg}, 5.9 \times 10^{-5} \mathrm{~mol}$ ) HOBT ( $12 \mathrm{mg}, 8.8 \times 10^{-5} \mathrm{~mol}$ ) were dissolved in dry THF ( 2 mL ) and stirred for 5 minutes under $\mathrm{N}_{2(\mathrm{~g})}$. EDC ( 17 mg , $8.8 \times 10^{-5} \mathrm{~mol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}($ dry, $70 \mu \mathrm{~L}$ ) were added in quick succession and the mixture stirred at room temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. THF was removed under vacuum and the residues partitioned between $\mathrm{CHCl}_{3}(\sim 3 \mathrm{~mL})$ and 6 M $\mathrm{HCl}_{(\text {(aq) }}(\sim 2 \mathrm{~mL})$. The aqueous layer was neutralised with $\mathrm{NaHCO}_{3(\mathrm{aq})}(\mathrm{sat}$.$) and$ extracted with $\mathrm{CHCl}_{3}$. The combined organics were washed with water (3 x 5 mL ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and concentrated using a rotary evaporator. The residues were dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation of the product was induced by the slow addition of hexane to this solution. The fine white solid was filtered and dried under vacuum to give a white powder ( 9 mg ). Yield $=28 \%$; m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 7.11(4 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.72(8 \mathrm{H}, \mathrm{bs}), 5.33(8 \mathrm{H}, \mathrm{bs})$; HRMS $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NO}_{8}$ : calculated $536.1220 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) \mathrm{M}^{+}$observed 536.1219.
$1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha-N-\left\{2\right.$-(2-acetoxyethoxy)ethyl\}-11,12-dioxatetracyclo[6.2.1.1 $\left.{ }^{3,6} \cdot 0^{2,7} .0^{2,7}\right]-$ dodeca-4,9-dien-2,7-dicarboximide (25)

Step 1: 2-(2-aminoethoxyethanol) ( $500 \mathrm{mg}, 2.15 \mathrm{mmol}$ ) was added to a solution of (2) ( 500 mg , 4.76 mmol ) in $\mathrm{CHCl}_{3}$ and the reaction mixture stirred under $\mathrm{N}_{2}$ at room temperature for 4 days.

[^3]

The solvent was evaporated under reduced pressure leaving a brown oily residue (An aqueous work up was avoided as it had been previously discovered that the amic acid product is very soluble in water).

Step 2: $\mathrm{NaOAc}(\mathrm{lg})$ and $\mathrm{AC}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added to the crude oil (step 1 ; 1.5 g ) and this mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 days. $\mathrm{The}^{\mathrm{AC}_{2} \mathrm{O}}$ was removed under reduced pressure at $40^{\circ} \mathrm{C}$ and the oily residue was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{ml})$ and the combined organic layers washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{ml})$. The organic layers were concentrated and the remaining residue was dried under vacuum overnight giving a dark brown oil ( 230 mg ). The crude product was purified further by column chromatography (silica), eluting with $\mathrm{CHCl}_{3}$ to obtain a light brown oil ( 150 mg ) Yield $=20 \% ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.59(4 \mathrm{H}, \mathrm{s}), 5.23(4 \mathrm{H}, \mathrm{s}), 4.16$ $(2 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 3.57(2 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 3.43(4 \mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s})$.

## $(1 \alpha, 2 \beta, 3 \alpha, 4 \beta, 7 \beta, 8 \alpha, 9 \beta, 10 \alpha, 11 \beta, 14 \beta)-\mathrm{N}$-(4-tert-butylphenyl)-5,6,12,13-tetra-(methoxycarbonyl)-15,16-dioxahexacyclo[8.4.1.1 $\left.{ }^{3,8} .0^{2,9} .0^{4,7} .0^{11,14}\right]$ hexadeca-5,12-diene-2,9dicarboximide (26)



The $\mathrm{Ru}(0)$ catalyst $\left[\mathrm{RuH}_{2} \mathrm{CO}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ was prepared according to literature method. ${ }^{6}$ I.R (benzene) $v(\mathrm{CO}) 1940 \mathrm{~cm}^{-1}, v(\mathrm{RuH}) 1960$ and $1900 \mathrm{~cm}^{-1}$.

To a solution of (20) $\left(85.3 \mathrm{mg}, 2.35 \times 10^{-4} \mathrm{~mol}\right)$ and DMAD (190 $\mathrm{mg}, 1.34 \mathrm{mmol}, 5.7$ eqv.) in benzene ( 5 mL ) was added $\mathrm{RuH}_{2} \mathrm{CO}\left(\mathrm{PPh}_{3}\right)_{3}(10 \mathrm{~mol} \%, 21 \mathrm{mg})$. The solution was heated at reflux temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. The solution was taken to dryness (rotary evaporator) and the residue dissolved in EtOAc. Solids were filtered off and washed well with EtOAc. The filtrate was concentrated and the product recrystallised from $\mathrm{EtOAc} /$ Pet.Spirit to give a white solid ( 84 mg ). Yield $=55 \%$; m.p. $=284-286^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.84(4 \mathrm{H}, \mathrm{s}), 3.79(12 \mathrm{H}, \mathrm{s}), 3.26(4 \mathrm{H}, \mathrm{s}), 1.32(9 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.9,160.0,152.8,140.1,127.9,126.5,125.5,77.2$ (hidden), $70.2,52.2$, 44.8, 34.9, 31.2; HRMS $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{12}$ : calculated 647.2003; m/z (EI) M ${ }^{+}$observed 647.1998.
$(1 \alpha, 2 \beta, 3 \alpha, 4 \beta, 7 \beta, 8 \alpha, 9 \beta, 10 \alpha, 11 \beta, 14 \beta)$-N-(4-methoxyphenyl)-5,6,12,13-tetra-(methoxycarbonyl)-15,16-dioxahexacyclo[8.4.1.1 $\left.{ }^{3,8} .0^{2,9} .0^{4,7} .0^{11,14}\right]$ hexadeca-5,12-diene-2,9dicarboximide (27)


To a solution of ( $\mathbf{2 1}$ ) $\left(200 \mathrm{mg}, 5.93 \times 10^{-4} \mathrm{~mol}\right)$ and DMAD $(211 \mathrm{mg}$, $1.48 \mathrm{mmol}, 2.5$ eqv.) in benzene ( 8 mL ) was added $\mathrm{RuH}_{2} \mathrm{CO}\left(\mathrm{PPh}_{3}\right)_{3}$ ( $2 \mathrm{~mol} \%, 11 \mathrm{mg}$ ). The solution was heated at reflux temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 2 days. The solution was taken to dryness (rotary evaporator) and the residue dissolved in EtOAc. Solids were filtered off and washed well with EtOAc. The filtrate was concentrated and the residue purified by flash column chromatography (silica, $50 \% \mathrm{EtOAc} /$ Pet.Spirit) giving a white solid ( 111 mg ). Yield $=30 \%$; m.p. $=248-250^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.84(4 \mathrm{H}, \mathrm{s}), 3.79(12 \mathrm{H}, \mathrm{s}), 3.26(4 \mathrm{H}, \mathrm{s}), 1.32(9 \mathrm{H}$, s); HRMS $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{13}$ : calculated 621.1482; m/z (EI) M ${ }^{+}$observed 621.1487.

## $(1 \alpha, 2 \beta, 3 \alpha, 4 \beta, 7 \beta, 8 \alpha, 9 \beta, 10 \alpha, 11 \beta, 14 \beta)-\mathrm{N}-\{2$-(2-acetoxyethoxy)ethyl $\}-5,6,12,13$-tetra-

 (methoxycarbonyl)-15,16-dioxahexacyclo[8.4.1.1 $\left.{ }^{3,8} .0^{2,9} .0^{4,7} .0^{11,14}\right]$ hexadeca-5,12-diene-2,9dicarboximide (28)

To a solution of (25) ( $\left.150 \mathrm{mg}, 4.11 \times 10^{-4} \mathrm{~mol}\right)$ and DMAD ( 146 mg , $1.02 \mathrm{mmol}, 2.5$ eqv.) in benzene ( 6 mL ) was added $\mathrm{RuH}_{2} \mathrm{CO}\left(\mathrm{PPh}_{3}\right)_{3}$ ( $2 \mathrm{~mol} \%, 8 \mathrm{mg}$ ). The solution was heated at reflux temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 2 days. The solution was taken to dryness (rotary evaporator) and the residue dissolved in EtOAc. Solids were filtered off and washed well with EtOAc. The filtrate was concentrated and the residue purified by flash column chromatography (silica, $50 \%$ EtOAc/Pet.Spirit) giving a brown oil ( 53 mg ). Yield $=20 \% ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}\right) \delta 4.74(4 \mathrm{H}, \mathrm{s}), 4.11(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}), 3.78(12 \mathrm{H}, \mathrm{s})$, $3.66(4 \mathrm{H}, \mathrm{bs}), 3.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}), 3.12(4 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}) ;$ HRMS C $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{15}$ : calculated 645.1694; m/z (EI) M ${ }^{+}$observed 645.1693.
$(1 \alpha, 2 \beta, 3 \alpha, 4 \beta, 5 \alpha, 7 \alpha, 8 \beta, 9 \alpha, 10 \beta, 11 \alpha, 12 \beta, 13 \alpha, 15 \alpha, 16 \beta)$-N-(4-tert-butylphenyl)-5,7,13,15-tetra-(methoxycarbonyl)-6,14,17,18-tetraoxaoctacyclo $\left[9.5 .1 .1^{3,9} .0^{2,10} .0^{4,8} .0^{5,7} .0^{12,16} .0^{13,15}\right]$ octadeca-2,9-dicarboximide (29)


The bis-cyclobutenediester (26) ( $88 \mathrm{mg}, 1.30 \times 10^{-4} \mathrm{~mol}$ ) was dissolved in dry THF ( 7 mL ) and cooled to $-8^{\circ} \mathrm{C}$. ${ }^{\mathrm{t}} \mathrm{BuOOH}^{*}(3.8 \mathrm{M}$ in toluene, $89 \mu \mathrm{~L}, 3.4 \times 10^{-4} \mathrm{~mol}, \sim 1.3 \mathrm{eqv}$. per 'ene' group) was added and the solution stirred at $-5^{\circ} \mathrm{C}$ for 10 mins. ${ }^{\mathrm{t}} \mathrm{BuOK}$ ( 14.6 $\mathrm{mg}, 1.30 \times 10^{-4} \mathrm{~mol}, 0.5$ eqv. per 'ene' group) was added under $\mathrm{N}_{2(\mathrm{~g})}$ and the reaction mixture was stirred and allowed to rise gradually to $+25^{\circ} \mathrm{C}$ over several hours. Stirring under $\mathrm{N}_{2(\mathrm{~g})}$ at $\sim 25^{\circ} \mathrm{C}$ was continued overnight. An aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(10 \% \mathrm{w} / \mathrm{v}, 7 \mathrm{~mL})$ was added along with 7 mL of chloroform and the mixture stirred for 5 mins. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}(3 \times 7 \mathrm{~mL})$. The combined organics were washed with water ( $3 \times 20 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvents removed using a rotary evaporator. The residue was dried under vacuum giving an off-white solid. The product was purified by flash column chromatography (silica, $\mathrm{CHCl}_{3}$ ) and obtained as a white solid ( 68 mg ). Yield $=74 \%$; m.p. $>300^{\circ} \mathrm{C}$ (sample changes colour and gradually liquifies at $\mathrm{T}>150^{\circ} \mathrm{C}$ possibly due to partial conversion to the 1,3 -dipole); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.99(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.58(4 \mathrm{H}$, s), $3.83(12 \mathrm{H}, \mathrm{s}), 2.90(4 \mathrm{H}, \mathrm{s}), 1.31(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.4,163.2,152.9,127.6$, 126.6, 125.4, 80.6, 70.4, 62.7, 53.1, 48.7, 34.8, 31.2; HRMS $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{14}$ : calculated 679.1901; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) \mathrm{M}^{+}$observed 679.1889.
${ }^{*}$ The 3.8 M solution of ${ }^{\mathrm{t}} \mathrm{BuOOH}$ in toluene was prepared according to literature methods. ${ }^{7}$
$(1 \alpha, 2 \beta, 3 \alpha, 4 \beta, 5 \alpha, 7 \alpha, 8 \beta, 9 \alpha, 10 \beta, 11 \alpha, 12 \beta, 13 \alpha, 15 \alpha, 16 \beta)-\mathrm{N}$-(4-methoxyphenyl)-5,7,13,15-tetra-(methoxycarbonyl)-6,14,17,18-tetraoxaoctacyclo $\left[9.5 .1 .1^{3,9} .0^{2,10} .0^{4,8} .0^{5,7} .0^{12,16} .0^{13,15}\right]$ octadeca-2,9-dicarboximide (30)

The bis-cyclobutenediester (27) ( $80 \mathrm{mg}, 1.29 \times 10^{-4} \mathrm{~mol}$ ) was dissolved in dry THF ( 5 mL ) and cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone). ${ }^{\mathrm{t}} \mathrm{BuOOH}\left(3.8 \mathrm{M}\right.$ in toluene, $110 \mu \mathrm{~L}, 4.2 \times 10^{-4} \mathrm{~mol}, \sim 1.3$ eqv. per 'ene' group) was added and the solution stirred at $-78^{\circ} \mathrm{C}$ for 10 mins . MeLi ( $1.4 \mathrm{M}, 0.278 \mathrm{~mL}$ ) was added under $\mathrm{N}_{2(\mathrm{~g})}$ and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 mins . and allowed to rise gradually to R.T. over 2 hrs . Stirring under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. was continued for another 6 hrs. The reaction mixture was diluted with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{Na}_{2} \mathrm{SO}_{3(\text { aq) }}$ ( $10 \% \mathrm{w} / \mathrm{v}, 2 \times 50$

mL ), water ( $3 \times 20 \mathrm{~mL}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The solvents were removed using a rotary evaporator and the residue was dried under vacuum giving a white solid ( 70 mg ). The product was further purified by flash column chromatography (silica, $\mathrm{CHCl}_{3}$ ) and obtained as a white solid ( 63 mg ). Yield $=75 \%$; m.p. $>250^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.96(4 \mathrm{H}, \mathrm{s}), 5.57(4 \mathrm{H}, \mathrm{s}), 3.83(12 \mathrm{H}$, s), $3.81(3 \mathrm{H}, \mathrm{s}), 2.90(4 \mathrm{H}, \mathrm{s})$.

## 5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl) porphyrin (32)



Freshly distilled pyrrole ( $1.48 \mathrm{~g}, 22.1 \mathrm{mmol}$ ) was added to a refluxing solution of 3,5 -di-tert-butylbenzaldehyde $(4.37 \mathrm{~g}, 20.0$ mmol ) in propionic acid ( 75 mL ) and heated at reflux temperature for 2.5 hrs. The solution was allowed to cool slowly to room temperature and then refrigerated for 3 hrs . The solids were separated by filtration and washed with boiling water ( 500 mL ) followed by cold acetone ( 100 mL ) and again with boiling water ( 100 mL ). The crystalline solids were dried under vacuum at room temperature overnight and the final product was obtained as lustrous purple crystals. Yield $=1.27$ $\mathrm{g}(23 \%) ;$ m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.88(8 \mathrm{H}, \mathrm{s}), 8.08(8 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.78(4 \mathrm{H}, \mathrm{t}, J=$ $1.8 \mathrm{~Hz}), 1.51(72 \mathrm{H}, \mathrm{s}),-2.67(2 \mathrm{H}, \mathrm{bs})$.
[5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl) porphyrinato]copper(II) (33)
A solution of cupric acetate monohydrate ( $1.35 \mathrm{~g}, 6.78 \mathrm{mmol}$ ) in
 methanol ( 30 mL ) was added to a solution of (32) ( 3.41 g ), 3.39 mmol ) in $\mathrm{CHCl}_{3}(270 \mathrm{~mL}$ ) and this mixture was heated at reflux temperature with stirring for 12 hrs . The reaction was monitored by TLC (the product gave a distinct purplish red spot with $\mathrm{R}_{\mathrm{f}} \approx 0.5$ in $\mathrm{CCl}_{4}$ ) The reaction mixture was filtered and the solids washed well with $\mathrm{CHCl}_{3}$. The filtrate was washed with water ( $2 \times 100 \mathrm{~mL}$ ) and dried over $\mathrm{NaSO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The product was recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ( 2 crops) giving purplish red crystals. Yield $=3.47 \mathrm{~g}(92 \%) ; \mathrm{m} . \mathrm{p} .>300^{\circ} \mathrm{C}$. This material was used for the synthesis of (34) below without further analysis.

2-nitro-[5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl) porphyrinato]copper(II) (34)
A stirred solution of (33) $(3.28 \mathrm{~g}, 2.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was treated with small portions

$(\sim 0.5 \mathrm{~mL})$ of a $\mathrm{NO}_{2} /$ hexane solution $(0.32 \mathrm{~g}$ in 20 mL$)$ until all starting material had been consumed as monitored by TLC (silica; $\mathrm{CHCl}_{3}$ ). The solution was filtered through a silica plug with the silica being thoroughly washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated using a rotary evaporator and the product recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Yield $=2.58 \mathrm{~g}(76 \%)$; m.p. $>$ $300^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1}\right) 1522\left(\mathrm{NO}_{2}\right)\left(\right.$ lit. $\left.{ }^{8} 1527 \mathrm{KBr}\right)$.

2-nitro-5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl) porphyrin (35)
To a solution of (34) ( $2.54 \mathrm{~g}, 2.19 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was
 added sulfuric acid $(98 \%, 20 \mathrm{~mL})$ and this mixture was stirred vigorously at room temperature for 1.5 hrs . The reaction mixture was poured in a thin stream onto ice ( 300 g ) and the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organics were washed with water ( $2 \times 150 \mathrm{~mL}$ ), $\mathrm{NaCO}_{3(\mathrm{aq)}}$ (sat., $3 \times 300 \mathrm{~mL}$ ) and again with water $(2 \times 150 \mathrm{~mL})$. The organic layer was dried over $\mathrm{NaSO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Yield $=$ $1.60 \mathrm{~g}(65 \%) ;$ m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.05(1 \mathrm{H}, \mathrm{s}), 8.93(2 \mathrm{H}, \mathrm{bs}), 9.04$ and $8.92(2 \mathrm{H}$, broad $\left.\mathrm{AB}_{\mathrm{q}}\right), 8.76$ and $8.75\left(2 \mathrm{H}\right.$, broad $\left.\mathrm{AB}_{\mathrm{q}}\right), 8.07(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.04(6 \mathrm{H}, \mathrm{bs}), 7.81(1 \mathrm{H}, \mathrm{dd}$, $J=1.8 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{dd}, J=1.8 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}, J=1.8 \mathrm{~Hz}), 1.51-1.52(72 \mathrm{H}, \mathrm{m}),-2.56(2 \mathrm{H}$, bs). NMR data similar ${ }^{*}$ to data reported in the literature. ${ }^{8}$

* Published NMR data acquired on a 200 MHz spectrometer.


## 2,3-dioxo-5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl)porphyrin (37)

Step 1: $\quad$ After bubbling $\mathrm{N}_{2(\mathrm{~g})}$ through a stirred mixture of (35) ( $\left.0.71 \mathrm{~g}, 0.64 \mathrm{mmol}\right)$ and $5 \%$ $\mathrm{Pd} / \mathrm{C}(1.46 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(8: 5 ; 600 \mathrm{~mL})$ for 30 minutes, 60 mg of $\mathrm{NaBH}_{4}$ was added all at once and the mixture was stirred for another 45 mins under the inert atmosphere. The mixture was filtered through Celite washing the cake thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated using a rotary evaporator and the crude residue (36) obtained and used directly in step 2.


Step 2: $\quad$ The crude amino-porphyrin (36), from step 1, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mathrm{~mL})$ and the solution was irradiated with visible light ( 500 W lamp) and bubbled with $\mathrm{O}_{2(\mathrm{~g})}$ simultaneously for 20 hrs. Dilute hydrochloric acid ( 300 mL ) was added and the mixture stirred vigorously for 8 hrs at R.T. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}(4 \times 50$ mL ). The combined organic layers were washed with water ( 3 x 200 mL ), saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(2 \times 100 \mathrm{~mL})$ and again with water ( $2 \times 200 \mathrm{~mL}$ ). The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ giving (37) as a fine brown solid ( 442 mg ). Yield $=63 \%$; m.p. $>300^{\circ} \mathrm{C} ;{ }^{\mathrm{l}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.77(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}) 8.60(2 \mathrm{H}$, $\mathrm{d}, J=6 \mathrm{~Hz}), 8.61(2 \mathrm{H}, \mathrm{s}), 7.98(4 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.71(4 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{t}, J=2$ $\mathrm{Hz}), 7.74(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 1.50(36 \mathrm{H}, \mathrm{s}), 1.46(36 \mathrm{H}, \mathrm{s}),-1.93(2 \mathrm{H}, \mathrm{bs})$. NMR data identical to published data. ${ }^{9}$
${ }^{\mathrm{t}} \mathbf{B u ~} \mathrm{H}_{2}$ TPP-q- $\left(\mathrm{NH}_{2}\right)_{2} \mathbf{( 3 8 )}$


Porphyrin dione (37) ( $30 \mathrm{mg}, 2.7 \times 10^{-5} \mathrm{~mol}$ ) was dissolved in dry deoxygenated pyridine ( 30 mL ) and BTA ( $9 \mathrm{mg}, 3.3 \mathrm{x}$ $10^{-5} \mathrm{~mol}$ ) was added all at once to the stirred solution. The solution was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 14 days. The pyridine solution was diluted with 100 mL of water and extracted with diethyl ether ( $3 \times 100 \mathrm{~mL}$ ). The combined organic layers were washed with water ( $5 \times 100$ mL ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) The solvent was removed using a rotary evaporator and the residue dried under vacuum for overnight. The residue was purified by flash column chromatography [silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Pet}$. Spirit (1:1)] giving the product as a brown/purple solid ( 32 mg ). The product was purified further by recrystallising from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to give a brown/purple solid Yield $=85 \%$; m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $9.04(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.99(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.81(2 \mathrm{H}, \mathrm{s}), 8.13(4 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 8.00(4 \mathrm{H}, \mathrm{d}, J$ $=2 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 7.82(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{s}), 3.94(4 \mathrm{H}, \mathrm{bs}), 1.56(36 \mathrm{H}, \mathrm{s})$, $1.52(36 \mathrm{H}, \mathrm{s}),-2.45(2 \mathrm{H}, \mathrm{bs})$.

## ${ }^{\text {t }}$ BuPBlock (39)



Method 1: Nitrogen gas was bubbled through a solution of the porphyrin diamine (38) ( $30 \mathrm{mg}, 2.5 \times 10^{-5}$ mol ) in dry pyridine ( 3 mL ) for 5 minutes. The polycycic dione (7) ( $13 \mathrm{mg}, 6.5 \times 10^{-5} \mathrm{~mol}$, 2.6 eqv.) was added and the solution stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 3 days then heated at $60^{\circ} \mathrm{C}$ for 3 hrs . After allowing the solution to cool to R.T. the solvent was removed using a rotary evaporator and the residue dried under vacuum for 2 hrs . The product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ giving two crops of a fine brown solid ( 28 mg ) Yield $=82 \%$; m.p $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}^{*}\left(\mathrm{CDCl}_{3}\right) \delta 9.00(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.95(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.75(2 \mathrm{H}, \mathrm{s})$, $8.48(2 \mathrm{H}, \mathrm{s}), 8.08(4 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 7.99(4 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{t}, J=$ $2 \mathrm{~Hz}), 6.66(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 6.25(2 \mathrm{H}, \mathrm{bs}), 4.18(2 \mathrm{H}, \mathrm{bs}) 2.93(2 \mathrm{H}, \mathrm{bs}), 2.81(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$, $2.20(2 \mathrm{H}, \mathrm{s}), 1.54(36 \mathrm{H}, \mathrm{s}), 1.49(36 \mathrm{H}, \mathrm{s}), 1.25(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}),-2.41(2 \mathrm{H}, \mathrm{bs}) ;$ HRMS $\mathrm{C}_{95} \mathrm{H}_{107} \mathrm{~N}_{8}$ : calculated $1359.862 ; \mathrm{m} / \mathrm{z}(\mathrm{ES})(\mathrm{M}+\mathrm{H})^{+}$observed 1359.863.
*NMR data in agreement with literature values. ${ }^{10}$
Method 2: Nitrogen gas was bubbled through a solution of porphyrin dione (37) ( 200 mg , $1.82 \times 10^{-4} \mathrm{~mol}$ ) in dry pyridine ( 4 mL ) for 20 mins . BTA ( $78 \mathrm{mg}, 2.73 \times 10^{-4} \mathrm{~mol}, 1.5$ eqv.) was added all at once and the solution heated at reflux temperature for 1 hr under $\mathrm{N}_{2(\mathrm{~g})}$ in darkness. The polycyclic dione (7) ( $73 \mathrm{mg}, 3.64 \times 10^{-4} \mathrm{~mol}, 2$ eqv.) was added all at once and heating under $\mathrm{N}_{2(\mathrm{~g})}$ was continued for 8 hrs . The solution was allowed to cool to R.T. and the solvent was removed under reduced pressure. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed well with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and solvents removed by rotary evaporator. The residues were dried under vacuum for 12 hrs and then purified by flash column chromatography [silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Pet}$. Spirit (1:1)]. Final purification by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ gave (39) as a fine brown solid $(214 \mathrm{mg})$. Yield $=85 \% ;{ }^{1} \mathrm{H}$ NMR in agreement with product from method 1.

## 5,10,15,20-tetrakis-(3,5-dimethylphenyl) porphyrin (41)

Freshly distilled pyrrole ( $7.3 \mathrm{~g}, 0.11 \mathrm{~mol}$ ) was added to a refluxing solution of 3,5dimethylbenzaldehyde ( $14.5 \mathrm{~g}, 0.11 \mathrm{~mol}$ ) in propionic acid ( 400 mL ) and heated at reflux temperature for 30 mins. The solution was allowed to cool slowly to room temperature and then left to stand overnight. The solids were separated by filtration and washed with boiling water (500

mL ) followed by cold acetone ( 20 mL ) and again with boiling water $(100 \mathrm{~mL})$. The crystalline solids were dried under vacuum at room temperature overnight and the final product was obtained as lustrous purple crystals. Yield $=3.5 \mathrm{~g}(18 \%)$; m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.85(8 \mathrm{H}, \mathrm{s}), 7.82(8 \mathrm{H}, \mathrm{s}), 7.39(4 \mathrm{H}, \mathrm{bs}), 2.59(24 \mathrm{H}, \mathrm{s}),-2.77(2 \mathrm{H}$, bs); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.1,135.8,132.9,130.9$ (broad), 129.2, 120.3, 21.5 .
[5,10,15,20-tetrakis-(3,5-dimethylphenyl) porphyrinato]copper(II) (42)


A solution of cupric acetate monohydrate ( $2.40 \mathrm{~g}, 12.0 \mathrm{mmol}$ ) in methanol ( 70 mL ) was added to a solution of $(\mathbf{4 1})(2.67 \mathrm{~g}), 3.67 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(400 \mathrm{~mL})$ and this mixture was heated at reflux temperature with stirring for 8 hrs . The solution was allowed to cool slightly and washed with water ( 300 mL ). The aqeuous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 50 \mathrm{~mL})$ and the combined organic layers washed with water ( $2 \times 100 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The product was recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to giving a pinkishpurple crystalline solid $(2.88 \mathrm{~g})$. Yield $=$ quantitative; m.p. $>300^{\circ} \mathrm{C}$; UV-Vis $\left(\mathrm{CHCl}_{3} / \mathrm{nm}\right)(\log \varepsilon)$ 417 (5.70), 539 (4.28), 571 (3.43).

2-nitro-[5,10,15,20-tetrakis-(3,5-dimethylphenyl) porphyrinato]copper(II) (43)

[5,10,15,20-tetrakis-(3,5-dimethylphenyl) porphyrinato]copper(II) (42) $(1.00 \mathrm{~g}, 1.27 \mathrm{mmol})$ was dissolved in $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$. The solution was stirred at r.t. and successively treated with small aliquots $(\sim 0.5$ mL ) of a chilled (ice bath) $\mathrm{NO}_{2} /$ hexane solution ( $0.32 \mathrm{~g} / 20 \mathrm{~mL}$ ). The reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3}\right)$ and $\mathrm{NO}_{2} /$ Pet. Spirit additions were halted after the starting material (42) could no longer be detected. The solution was filtered through a silica plug and the silica washed thoroughly with $\mathrm{CHCl}_{3}(\sim 100 \mathrm{~mL})$. The solvent was removed from the filtrate using a rotary evaporator and the residues purified by recrystallisation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to give (43) as purple crystals $(0.83 \mathrm{~g})$; Yield $=78 \%$; m.p. $>300^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \vee\left(\mathrm{NO}_{2}\right) 1513 \mathrm{~cm}^{-1}$; UV-Vis $\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm}(\log \varepsilon) 421$ (5.33), 518 (3.84), 550 (4.21), 591 (4.01).

## 2-nitro-5,10,15,20-tetrakis-(3,5-dimethylphenyl) porphyrin (44)



2-nitro-[5,10,15,20-tetrakis-(3,5-dimethylphenyl) porphyrinato] copper(II) (43) ( $2.65 \mathrm{~g}, 3.18 \mathrm{mmol}$ ) was dissolved in $\mathrm{CHCl}_{3}(350 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}(98 \%, 15 \mathrm{~mL})$ was added. The mixture was shaken vigorously for about 20 min and poured onto ice ( 500 g ). The organic layer was separated and the aqeous layer extracted with $\mathrm{CHCl}_{3}(6 \times 25$ $\mathrm{mL})$. The combined organics were washed with water ( $3 \times 200 \mathrm{~mL}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3(\text { aq })}(5 \%, 2 \times 200 \mathrm{~mL})$ and again with water $(1 \times 200 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The solvent was removed using a rotary evaporator and the product recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to give (44) as purple crystals ( 2.33 g ). Yield $=95 \%$; m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.06(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 9.05(1 \mathrm{H}, \mathrm{s}), 8.95-8.88(3 \mathrm{H}, \mathrm{m}), 8.73$ $(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{s}), 7.86(2 \mathrm{H}, \mathrm{bs}), 7.81(2 \mathrm{H}, \mathrm{bs}), 7.80(4 \mathrm{H}, \mathrm{bs}), 7.41(3 \mathrm{H}, \mathrm{bs}), 7.38(1 \mathrm{H}, \mathrm{bs}), 2.60$ ( $18 \mathrm{H}, \mathrm{bs}$ ), $2.58(6 \mathrm{H}, \mathrm{bs}),-2.64(2 \mathrm{H}, \mathrm{bs})$.

## 2,3-dioxo-5,10,15,20-tetrakis-(3,5-dimethylphenyl)porphyrin (46)



Step 1: A chloroform/methanol mixture (1:1; 500 mL ) was added to nitro-porphyrin (44) ( $2.00 \mathrm{~g}, 2.59 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}(\sim 2$ g). The mixture was deoxygenated by bubbling $\mathrm{N}_{2(\mathrm{~g})}$ through the mixture for 20 mins. Sodium borohydride ( 200 mg ) was added all at once and the mixture stirred at R.T. under $\mathrm{N}_{2(\mathrm{~g})}$ for 1 hr . The reaction mixture was filtered through Celite washing thoroughly with $\mathrm{CHCl}_{3}$. The filtrate was concentrated and washed with water ( $3 \times 200 \mathrm{~mL}$ ), dilute $\mathrm{HCl}_{\text {(aq) }}(3 \times 100 \mathrm{~mL})$ and again with water ( $3 \times 200 \mathrm{~mL}$ ). The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvents removed using a rotary evaporator. The residues were dried under vacuum in darkness overnight giving the crude aminoporphyrin (45) as a purple solid, which was used immediately in the next step.

Step 2: Crude 2-amino-5,10,15,20-tetrakis-(3,5-dimethylphenyl)porphyrin (45) was dissolved in $\mathrm{CHCl}_{3}$ ( 500 mL ). Oxygen gas was bubbled through the stirred solution whilst being irradiated using a 500 W visible lamp at R.T. for 24 hrs. Dilute $\mathrm{HCl}_{(\mathrm{aq})}(100 \mathrm{~mL})$ was added and the mixture stirred at R.T. for 1 hr . The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}$. The combined organic layers were washed with water ( $3 \times 100 \mathrm{~mL}$ ), saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(2 \times 100 \mathrm{~mL})$ and again with water $(2 \times 100 \mathrm{~mL})$. The organics were dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The crude product was dried under vacuum and purified using flash column chromatography (silica, 50\% $\mathrm{CHCl}_{3} / \mathrm{Pet}$.Spirit). A distinct olive-green band with a lower $\mathrm{R}_{\mathrm{f}}$ compared with the starting material was found to correspond to the desired product (46), which was obtained as a dark olive-green solid ( 1.38 g ) after recrystallisation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$. Yield $=72 \%$; m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.75(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.62(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.57(2 \mathrm{H}, \mathrm{s}), 7.73(4 \mathrm{H}, \mathrm{s}), 7.50(2 \mathrm{H}, \mathrm{s})$, $7.39(2 \mathrm{H}, \mathrm{s}), 7.36(2 \mathrm{H}, \mathrm{s}), 2.57(12 \mathrm{H}, \mathrm{s}), 2.53(12 \mathrm{H}, \mathrm{s}),-2.04(2 \mathrm{H}, \mathrm{bs})$.

## $\mathbf{M e H}_{2}$ TPP-q - $\left(\mathrm{NH}_{2}\right)_{2}(47)$



Porphyrin dione (46) ( $68 \mathrm{mg}, 9.0 \times 10^{-5} \mathrm{~mol}$ ) was dissolved in dry deoxygenated pyridine ( 30 mL ) and BTA ( $30 \mathrm{mg}, 1.0$ $\times 10^{-4} \mathrm{~mol}$ ) was added all at once to the stirred solution. The solution was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 38 hrs. The pyridine solution was diluted with 150 mL of water and extracted with diethyl ether ( $3 \times 60 \mathrm{~mL}$ ). The combined organic layers were washed with water ( $6 \times 100 \mathrm{~mL}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) The solvent was removed using a rotary evaporator and the residue dried under vacuum for 3 hrs . The residue was purified by flash column chromatography [silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Pet.Spirit (3:1)] giving the product as a purple solid ( 27 mg ). Yield $=35 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.95(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.90(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.71(2 \mathrm{H}, \mathrm{s}), 7.83(4 \mathrm{H}, \mathrm{s}), 7.77(4 \mathrm{H}, \mathrm{s})$, $7.47(2 \mathrm{H}, \mathrm{s}), 7.40(2 \mathrm{H}, \mathrm{s}), 7.05(2 \mathrm{H}, \mathrm{s}), 3.98(4 \mathrm{H}, \mathrm{bs}), 2.59(24 \mathrm{H}, \mathrm{s}),-2.57(2 \mathrm{H}, \mathrm{bs})$.

## MePBlock (48)



Method 1 Nitrogen gas was bubbled through a solution of the crude porphyrin diamine (47) ( $13 \mathrm{mg}, 1.5 \mathrm{x}$ $10^{-5} \mathrm{~mol}$ ) in dry pyridine ( 2 mL ) for 5 minutes. The polycycic dione (7) ( $\left.4 \mathrm{mg}, 2.0 \times 10^{-5} \mathrm{~mol}\right)$ was added and the solution stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 19 hrs then heated at $60^{\circ} \mathrm{C}$ for 2 hrs . The solvent was removed using a rotary evaporator and the residue dried under vacuum for 2 hrs . The residue was then dissolved in a minimum of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Pet.Spirit mixture (4:1) and purified by flash column chromatography [silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Pet.Spirit (1:1)] giving a dark brown solid ( 15 mg ). Yield $=98 \%$; m.p $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.01(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.93(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.72(2 \mathrm{H}, \mathrm{s}), 8.60(2 \mathrm{H}, \mathrm{s}), 7.83(4 \mathrm{H}, \mathrm{bs})$,
$7.77(4 \mathrm{H}, \mathrm{bs}), 8.04(6 \mathrm{H}, \mathrm{bs}), 7.51(2 \mathrm{H}, \mathrm{bs}), 7.41(2 \mathrm{H}, \mathrm{bs}), 6.68(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 6.27(2 \mathrm{H}, \mathrm{bs})$, $4.18(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}) 2.96(2 \mathrm{H}, \mathrm{bs}), 2.82(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 2.60-2.58(24 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{bs})$, $1.49(2 \mathrm{H}, \mathrm{bs}), 1.24(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}),-2.49(2 \mathrm{H}, \mathrm{bs}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 160.7,154.9,153.4$, $145.4,141.8,141.3,140.7,139.7,139.6,138.9,138.0,136.1,136.0,134.4,133.9,132.7,132.0$, $129.4,129.2,129.0,128.1,127.9,122.1,117.1,46.8,46.5,45.5,42.3,21.6,21.5$; HRMS $\mathrm{C}_{71} \mathrm{H}_{59} \mathrm{~N}_{8}$ : calculated 1023.486; m/z (ES) $(\mathrm{M}+\mathrm{H})^{+}$observed 1023.485.

Method 2 Porphyrin dione (46) ( $156 \mathrm{mg}, 2.06 \times 10^{-4} \mathrm{~mol}$ ) was dissolved in dry deoxygenated pyridine ( 4 mL ) and BTA ( $100 \mathrm{mg}, 3.52 \times 10^{-4} \mathrm{~mol}, 1.7$ eqv.) was added all at once to the stirred solution. The solution was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at reflux temperature in darkness for 1.5 hrs. The polycyclic dione (7) ( $83 \mathrm{mg}, 4.0 \times 10^{-4} \mathrm{~mol}, 2$ eqv.) was added all at once and the solution heated at reflux under $\mathrm{N}_{2(\mathrm{~g})}$ in darkness for 8 hrs . The solution was allowed to cool to R.T. and the solvent removed under reduced pressure with mild heating. The residue was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ ( 10 mL of each) and the organic layer separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 3 \mathrm{~mL})$ and the combined organics washed with $\mathrm{H}_{2} \mathrm{O}(6 \times 10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The solvent was removed on a rotary evaporator and the residue recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$. The first crop of crystals was analysed by NMR and UV-Vis. Both spectra indicated that this material was the quinoxalino-pyrazine bridged porphyrin dimer (49) ( 54 mg ). Yield $=33 \%$ (from porphyrin dione); m.p. $>300^{\circ} \mathrm{C}$; UV-Vis $\left(\mathrm{CHCl}_{3}(\log \varepsilon) 424\right.$ (5.47), 456 (5.40), 608 (4.18), 628 (4.20), 676 (3.82); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.14(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.98$ ( 4 H , $\mathrm{d}, J=5 \mathrm{~Hz}), 8.74(4 \mathrm{H}, \mathrm{s}), 8.60(2 \mathrm{H}, \mathrm{s}), 7.86(16 \mathrm{H}, \mathrm{bs}), 7.79(4 \mathrm{H}, \mathrm{bs}), 7.43(4 \mathrm{H}, \mathrm{bs}), 2.76(24 \mathrm{H}, \mathrm{s})$, $2.63(24 \mathrm{H}, \mathrm{s}),-2.37(4 \mathrm{H}, \mathrm{bs})$. The filtrate was concentrated and the residues purified by flash column chromatography [silica, Pet.Spirit/ $\mathrm{CHCl}_{3}$ (1:5)]. TLC analysis of all fractions showed that none of the unwanted porphyrin dimer (49) was present. The product fractions were combined, concentrated and the residue recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to give the porphyrin Block (48) as a brown solid ( 62 mg ). Yield $=30 \%$. The identity of the product was confirmed by co-spotting with a sample prepared from Method 1 (above) on a TLC plate as well as by NMR.

MePSP (51)


MePBlock (48) (29 mg, $2.8 \times 10^{-5} \mathrm{~mol}$ ) and p-methoxyphenyl bis-epoxide (30) $\left(8.0 \mathrm{mg}, 1.5 \times 10^{-5} \mathrm{~mol}, 0.54\right.$ eqv.) were dissolved in 1,2-dichloroethane ( 1.0 mL ) and heated in a sealed glass tube at $148^{\circ} \mathrm{C}$ for 75 hrs . The product was obtained after chromatographic purification (column: silica, $\mathrm{CHCl}_{3}$ ) as a brown solid ( $\sim 2 \mathrm{mg}^{*}$ ). Yield $\approx 5 \%$; m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) 8.97(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.90(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.69(4 \mathrm{H}, \mathrm{s}), 8.57(4 \mathrm{H}, \mathrm{s}), 7.80(8 \mathrm{H}, \mathrm{s})$, $7.75(4 \mathrm{H}, \mathrm{s}), 7.72(4 \mathrm{H}, \mathrm{s}), 7.49(4 \mathrm{H}, \mathrm{s}), 7.39(4 \mathrm{H}, \mathrm{s}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.72(2 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 6.53(4 \mathrm{H}, \mathrm{t}, J=3.5 \mathrm{~Hz}), 4.69(4 \mathrm{H}, \mathrm{s}), 4.21(4 \mathrm{H}, \mathrm{t}, J=3.5 \mathrm{~Hz}), 3.93(12 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s})$, $2.58(48 \mathrm{H}, \mathrm{bs}), 2.42(4 \mathrm{H}, \mathrm{s}), 2.37(4 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.04(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 1.91$ $(4 \mathrm{H}, \mathrm{s}), 1.88(4 \mathrm{H}, \mathrm{s}),-2.52(4 \mathrm{H}, \mathrm{bs})$. * Unknown porphyrinic impurity(s) present according to NMR spectrum (see Fig. 2.18, pl00)

## ${ }^{t}$ Bu PSP (52)

## Larger-Scale Method



In a thick-walled glass reaction tube a solution of 'BuPBlock (39) ( $111 \mathrm{mg}, 8.16$ $\times 10^{-5} \mathrm{~mol}$ ) and bis-epoxide (29) ( 28 mg , $\left.4.1 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was degassed, by feeze-thawing ( x 4 ) under high vacuum. The reaction vessel was flame-sealed under vacuum and the solution heated and magnetically stirred at $140^{\circ} \mathrm{C}$ for 90 hrs . The reaction mixture was added directly to the top of a wet $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ silica column and the product purified chromatographically (flash column). The product was obtained as a brown solid ( 80 mg ) and further purified by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ gave the final product ( 52 mg ) in $38 \%$ yield. m.p. $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.02(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.97(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.77(4 \mathrm{H}$,
s), $8.50(4 \mathrm{H}, \mathrm{s}), 8.10(8 \mathrm{H}, \mathrm{s}), 7.99(4 \mathrm{H}, \mathrm{s}), 7.95(4 \mathrm{H}, \mathrm{s}), 7.81(4 \mathrm{H}, \mathrm{s}), 7.30(2 \mathrm{H}, \mathrm{m}), 6.95(2 \mathrm{H}, \mathrm{m})$, $6.55(4 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 4.72(4 \mathrm{H}, \mathrm{s}), 4.26(4 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 3.96(12 \mathrm{H}, \mathrm{s}), 2.46(4 \mathrm{H}, \mathrm{s}), 2.39(4 \mathrm{H}$, s), $2.20(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.06(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 1.92(4 \mathrm{H}, \mathrm{s}), 1.90(4 \mathrm{H}, \mathrm{s}), 1.53(36 \mathrm{H}, \mathrm{s}), 1.52$ $(36 \mathrm{H}, \mathrm{s}), 1.49(72 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s})-2.40(4 \mathrm{H}, \mathrm{bs}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.0,168.1,158.5$, $155.0,153.7,149.1,149.0,148.8,145.5,141.0,140.7,139.8,139.6,138.9,138.1,134.2,133.6$, $129.5,129.0,128.6,128.3,128.1,126.5,124.9,123.0,121.2,120.7,117.9,89.5,82.7,70.6,57.2$, $52.9,52.8,46.7,46.5,43.8,35.0,35.0,31.9,31.7,30.9$.

N,N-bis-(4'-pyridine)-perylene-3,4:9,10-bis-dicarboximide (perylbipy) (79)
perylene-3,4:9,10-tetracarboxylic anhydride ( $1.00 \mathrm{~g}, 2.55$
 mmol ), $p$-aminopyridine ( $2.00 \mathrm{~g}, 24.4 \mathrm{mmol}$ ) and an excess of imidazole $(\sim 20 \mathrm{~g})$ were placed in a 25 mL RBF equipped with a reflux condenser and boiling chips. The mixture was heated in a microwave oven ( 500 W domestic) for 3 minutes on a high setting (reflux temperature) and allowed to cool to room temperature. Solids were filtered off and washed with water ( 300 mL ), acetone ( 50 mL ) and again with water. The solids were transferred to a conical flask and stirred with dilute $\mathrm{HCl}_{(\mathrm{aq})}(150 \mathrm{~mL})$ at R.T. for 4 hrs . The solids were filtered off, washed with water $(300 \mathrm{~mL}), \mathrm{NaHCO}_{3(\mathrm{aq})}(100 \mathrm{~mL})$ and again with water $(200 \mathrm{~mL})$ and dried under vacuum overnight to give a maroon-coloured solid ( 1.29 g ). Yield $=93 \%$; m.p. $>300^{\circ} \mathrm{C}$; I.R. (nujol) $v_{C O}=1700$ and $1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (TFA; external $\mathrm{CDCl}_{3}$ reference) $\delta 9.08(4 \mathrm{H}, \mathrm{d}, J$ $=6 \mathrm{~Hz}), 8.91(8 \mathrm{H}, \mathrm{m}), 8.35(4 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz})$.

## 5,15-bis-(4-pyridyl)-10,20-bis-(3,5-di-tertbutylphenyl)porphyrin (bipyP) (80)



To a refluxing solution of pyridine-4-carbaldehyde $(1.00 \mathrm{~g}, 9.34 \mathrm{mmol})$ was added, all at once, dipyrromethane ( $\mathbf{( 9 6 )}$ ( $3.12 \mathrm{~g}, 9.34 \mathrm{mmol}$ ). Heating of the solution at reflux temperature was continued for 1 hr and then allowed to cool slowly to room temperature. Fine purple crystals were filtered off and washed with hot water ( 200 mL ), acetone ( 20 mL ) and again with hot water ( 100 mL ). The product was purified using flash column chromatography (silica, $\mathrm{CHCl}_{3}$ ) followed by recrystallisation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ giving a fine light-purple crystalline solid ( 30 mg ). Yield $=0.8 \%$; m.p. $>300^{\circ} \mathrm{C} ;{ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.02(4 \mathrm{H}, \mathrm{m}), 8.93$ $(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.80(4 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 8.17(4 \mathrm{H}, \mathrm{m}), 8.07(4 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.82(2 \mathrm{H}, \mathrm{t}, J=2$
$\mathrm{Hz}), 1.53(36 \mathrm{H}, \mathrm{s}),-2.78(2 \mathrm{H}, \mathrm{bs})$; HRMS $\mathrm{C}_{58} \mathrm{H}_{61} \mathrm{~N}_{6}:$ calculated $841.4958 ; \mathrm{m} / \mathrm{z}(\mathrm{ES})(\mathrm{M}+\mathrm{H})^{+}$ observed 841.4980

## 2,3,12,13-tetraoxo-5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl)porphyrin (102) ${ }^{8}$



Step 1
[5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl) porphyrinato]copper(II) (33) (500 mg, $6.34 \times 10^{-4} \mathrm{~mol}$ ) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and cooled to $5^{\circ} \mathrm{C}$. The solution was stirred and successively treated with small aliquots ( $\sim 0.5 \mathrm{~mL}$ ) of a chilled (ice bath) $\mathrm{NO}_{2} /$ hexane solution $(0.32 \mathrm{~g} / 20 \mathrm{~mL})$. The reaction was monitored by TLC $\left(\mathrm{CHCl}_{3}\right)$ and $\mathrm{NO}_{2} /$ Pet. Spirit additions were halted after the initially formed 2 -nitro-[5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl) porphyrinato]copper(II) (43) could no longer be detected*. The solution was filtered through a silica plug and the silica washed thoroughly with $\mathrm{CHCl}_{3}(\sim 200 \mathrm{~mL})$. The solvent was removed from the filtrate using a rotary evaporator and the residues dried under vacuum overnight giving a crude mixture of dinitro-porphyrinato copper(II) isomers (97) as a purple solid ( 620 mg ) (several olive-green bands by TLC; silica, $\left.\mathrm{CHCl}_{3}\right)$. Yield $=81 \%$; m.p. $>300^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cup\left(\mathrm{NO}_{2}\right) 1527$ $\mathrm{cm}^{-1}$ (lit. $1531 \mathrm{~cm}^{-1} \mathrm{KBr}$ ).

Step 2 A solution of the crude dinitro-porphyrinato copper(II)s (97) (620 mg, 5.1 $\times 10^{-4}$ $\mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}(98 \%, 3 \mathrm{~mL})$ and stirred vigorously for 20 min and poured onto ice $(50 \mathrm{~g})$. The organic layer was separated and the aqeous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with water ( $3 \times 50 \mathrm{~mL}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ $(5 \%, 2 \times 50 \mathrm{~mL})$ and again with water ( $3 \times 50 \mathrm{~mL}$ ) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The solvent was removed using a rotary evaporator and the crude product (98) dried overnight under vacuum to give a purple solid ( 450 mg ). Yield $=77 \%$; m.p. $>300^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cup\left(\mathrm{NO}_{2}\right) 1477$ and $1364 \mathrm{~cm}^{-1}$ (lit. 1477 and $1363 \mathrm{~cm}^{-1} \mathrm{KBr}$ ).

Step 3 A stirred mixture of the crude dinitro-porphyrins (98) (400 mg, $\left.3.5 \times 10^{-4} \mathrm{~mol}\right)$ and $5 \% \mathrm{Pd} / \mathrm{C}(520 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 1,200 \mathrm{~mL})$ was deoxygenated by bubbling nitrogen gas through it for 30 min . Sodium borohydride $\left(\mathrm{NaBH}_{4}, 70 \mathrm{mg}\right)$ was added all at once and the mixture stirred with continued $\mathrm{N}_{2(\mathrm{~g})}$ bubbling for 2 hrs at room temperature. The mixture was filtered

[^4]through Celite washing the cake thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated using a rotary evaporator and the brown-purple residue (99) was used immediately in the next step.

Step 4 The crude diamino-porphyrins (99) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 300 mL ). The solution was stirred and irradiated ( 500 W visible lamp) whilst $\mathrm{O}_{2(\mathrm{~g})}$ was being continuously bubbled through it at room temperature for 24 hrs . Dilute $\mathrm{HCl}_{(\mathrm{aq})}(120 \mathrm{~mL})$ was added and the mixture stirred at r.t. for 1 hr . The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water ( 3 x 100 mL ), saturated $\mathrm{NaHCO}_{3(\text { aq })}(2 \times 50 \mathrm{~mL})$ and again with water ( $2 \times 100 \mathrm{~mL}$ ). The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. To a refluxing solution of the crude residue in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added a saturated solution of zinc acetate dihydrate in MeOH ( 3 mL ). The solution was heated at reflux temperature for 30 mins . The reaction mixture was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The solvent was removed under reduced pressure. The product was purified using flash column chromatography (silica, $50 \%$ hexane $/ \mathrm{CHCl}_{3}$ ). Two main bands ( 1 x narrow olive-green and $1 \times$ broad orange) were evident with the olive-green band (non-polar) being isolated as the product (102) (orange polar bands are expected to correspond to the zinc amino-dioxoporphyrins, 101). ${ }^{11}$ Recrystallisation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ gave the tetraoxo-porphyrin (102) (26 mg). Yield $=7 \%$ (from 98); m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.50(4 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz})$, $7.75(4 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 7.65(8 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 1.46(72 \mathrm{H}, \mathrm{s}),-1.78(2 \mathrm{H}, \mathrm{bs}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 186.9, 149.3, 140.7, 139.6, 137.5, 128.9, 127.1, 121.7, 118.3, 35.0, 31.7.
bis-[2-(4-pyridyl)-1H-imidazo]porphyrin (imibipyP) (81)


2,3,12,13-tetraoxo-5,10,15,20-tetrakis-(3,5-di-tertbutylphenyl)porphyrin (102) ( $26 \mathrm{mg}, 2.3 \times 10^{-5} \mathrm{~mol}$ ), pyridine-4-carbaldehyde $\left(6.5 \mathrm{mg}, 6.0 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{OAc}(50 \mathrm{mg})$ were stirred in refluxing AcOH (glacial) $/ \mathrm{CHCl}_{3}(1: 1,5 \mathrm{~mL})$ for 4 hrs. The reaction mixture was washed with water ( $3 \times 10 \mathrm{~mL}$ ), $\mathrm{NaHCO}_{3(\mathrm{aq})}$ ( $3 \times 10 \mathrm{~mL}$ ) and again with water ( $2 \times 10 \mathrm{~mL}$ ), dried over $\mathrm{NaSO}_{4}$ (anhyd.) and the solvent removed using a rotary evaporator. The residue was purified using flash column chromatography (silica, $\mathrm{CHCl}_{3}$ ) giving
imibipyP (81) ( 10 mg ). Yield $=34 \%$; m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ broad unresolved spectrum described in Chapter 3 (Section 3.2.2.3); UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) / \mathrm{nm} 423$ (5.15), 516 (4.03), 551 (3.93), 587 (3.87), 638 (3.54), 659 (3.53); HRMS $\mathrm{C}_{88} \mathrm{H}_{100} \mathrm{~N}_{10}$ : calculated 1297.821; m/z (ES) $(\mathrm{M}+\mathrm{H})^{+}$observed 1297.820

Nicotinic acid 5-nicotinoyloxy-naphthalen-1-yl ester (fobipy) (82)


Naphthalene-1,5-diol ( $160 \mathrm{mg}, 1.0 \mathrm{mmol}$ ), nicotinic acid ( $369 \mathrm{mg}, 3.0$ mmol ) and HOBT ( $405 \mathrm{mg}, 3.0 \mathrm{mmol}$ ) were placed in a two-necked RBF fitted with a septum and the flask flushed with $\mathrm{N}_{2(\mathrm{~g})}$ for 60 secs. Dry THF ( 20 mL ) was added under $\mathrm{N}_{2(\mathrm{~g})}$ (canula) and the solution stirred for 5 mins. EDC ( $575 \mathrm{mg}, 3.0 \mathrm{mmol}$ ) was added followed by $\mathrm{Et}_{3} \mathrm{~N}$ (dry, 800 $\mu \mathrm{L})$. The solution was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 5 days. The solvents were removed under reduced pressure and the residue was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}$ and the combined organics washed with water, dried over $\mathrm{NaSO}_{4}$ (anhyd.) and the solvent removed on a rotary evaporator. The product was dried under vacuum overnight giving a reddish-brown solid ( 320 mg ). Yield $=87 \%$; m.p. $=189-192^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.55(2 \mathrm{H}, \mathrm{s}), 8.92(2 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 8.57(2 \mathrm{H}, \mathrm{m}), 7.89(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, 7.59-7.51 ( $4 \mathrm{H}, \mathrm{m}$ ), $7.46\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}\right.$ ); HRMS $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ : calculated 370.0954; m/z (EI) M ${ }^{+}$ observed 370.0952 .

## Nicotinic acid 2-[5-(2-nicotinoyloxyethoxy)-naphthalen-1-yloxy]-ethyl ester (f $\mathbf{f}_{2}$ bipy) (83)



Step 1: A solution of 2-chloroethanol ( $3.2 \mathrm{~g}, 34 \mathrm{mmol}$ ) in MeCN ( 15 mL ) was added, all at once, to a refluxing mixture of naphthalene-1,5-diol ( $1.6 \mathrm{~g}, 10 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{~g})$ in MeCN ( 25 $\mathrm{mL})$. Heating was continued at reflux temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 7 days. The reaction mixture was allowed to cool to R.T. and the solids filtered off and washed with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The filtrate was concentrated and the residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{NaHCO}_{3(a q)}$ (sat.), dil. $\mathrm{HCl}_{(\mathrm{aq})}$, and finally with $\mathrm{H}_{2} \mathrm{O}$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed using a rotary evaporator. The residues were dried under vacuum overnight giving the crude product $(57)(482 \mathrm{mg})$ as a white solid. Yield $($ crude $)=15 \%$

Step 2: Crude 1,5-bis-(2-hydroxy-ethoxy)-naphthalene (57) (355 mg, 1.43 mmol ), nicotinic acid ( $1.0 \mathrm{~g}, 8.1 \mathrm{mmol}$ ) and HOBT ( $1.1 \mathrm{~g}, 8.1 \mathrm{mmol}$ ) were placed in a two-necked RBF fitted with a septum and the flask flushed with $\mathrm{N}_{2(\mathrm{~g})}$ for 60 secs. Dry THF ( 24 mL ) and $\mathrm{CHCl}_{3}$ ( 12 mL ) were added under $\mathrm{N}_{2(\mathrm{~g})}$ (canula) and the solution stirred for 5 mins. EDC ( $1.2 \mathrm{~g}, 6.0 \mathrm{mmol}$ ) was added followed by $\mathrm{Et}_{3} \mathrm{~N}$ (dry, $830 \mu \mathrm{~L}$ ). A white precipitate formed immediately upon the addition of triethylamine. The mixture was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 3 days. The solvents were removed under reduced pressure and the residue was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{HCl}_{(\mathrm{aq})}(6 \mathrm{M})$. The aqueous layer was neutralised and extracted with $\mathrm{CHCl}_{3}$ and the combined organics washed with water and dried over $\mathrm{NaSO}_{4}$ (anhyd.). A small sample was purified by recrystallisation from $\mathrm{CHCl}_{3} /$ hexane giving the product as a light-red solid ( 20.0 mg ). Yield $=3 \%$; m.p. $=128-130^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{d}_{6}$-acetone) $\delta 9.17(2 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 8.78(2 \mathrm{H}, \mathrm{s}), 8.35-8.31(2 \mathrm{H}, \mathrm{m})$, $7.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.53-7.49(2 \mathrm{H}, \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 4.88$ $(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 4.59(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}) ;$ HRMS C $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ : calculated 458.1478; m/z $\left(\mathrm{M}^{+}\right) \mathrm{EI}$ observed 458.1471.

Nicotinic acid 3-[5-(3-nicotinoyloxypropoxy)-naphthalen-1-yloxy]-propyl ester (f $\mathbf{f}_{\mathbf{3}}$ bipy) (84)


Step 1: $\quad$ A solution of 3-bromopropan-1-ol ( $5.6 \mathrm{~g}, 40 \mathrm{mmol}$ ) in MeCN ( 15 mL ) was added, all at once, to a mixture of naphthalene-1,5-diol ( $1.6 \mathrm{~g}, 10 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{~g})$ in MeCN $(25 \mathrm{~mL})$. The mixture was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. for 3 days and then heated at reflux temperature for 1 hr . After cooling to R.T. the solids were filtered off and washed with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The filtrate was concentrated and the residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{NaHCO}_{3(\mathrm{aq})}$ (sat.), dil. $\mathrm{HCl}_{(\mathrm{aq})}$, and finally with $\mathrm{H}_{2} \mathrm{O}$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed using a rotary evaporator. The residues were dried under vacuum overnight. Yield (crude) $=25 \%$

Step 2: A sample of the crude 1,5-bis-(3-hydroxy-propoxy)-naphthalene (58) (204 mg, $0.74 \mathrm{mmol})$, nicotinic acid ( $0.37 \mathrm{~g}, 3.0 \mathrm{mmol}$ ) and HOBT ( $0.40 \mathrm{~g}, 3.0 \mathrm{mmol}$ ) were placed in a two-necked RBF fitted with a septum and the flask flushed with $\mathrm{N}_{2(\mathrm{~g})}$ for 60 secs. Dry THF ( 15 mL ) and $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ were added under $\mathrm{N}_{2(\mathrm{~g})}$ (canula) and the solution stirred for 5 mins . EDC $(0.43 \mathrm{~g}, 2.2 \mathrm{mmol})$ was added followed by $\mathrm{Et}_{3} \mathrm{~N}(\mathrm{dry}, 500 \mu \mathrm{~L})$. A precipitate formed immediately upon the addition of triethylamine. The mixture was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 6 days. The solvents were removed under reduced pressure and the residue was partitioned between
$\mathrm{CHCl}_{3}$ and $\mathrm{HCl}_{(\mathrm{aq})}(6 \mathrm{M})$. The aqueous layer was neutralised and extracted with $\mathrm{CHCl}_{3}$ and the combined organics washed with water and dried over $\mathrm{NaSO}_{4}$ (anhyd.). A small sample was purified by recrystallisation from $\mathrm{CHCl}_{3}$ giving the product as a pink solid ( 57 mg ). Yield $=16 \%$; m.p. $=151-153^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.22(2 \mathrm{H}, \mathrm{m}), 8.76(2 \mathrm{H}, \mathrm{s}), 8.29-8.25(2 \mathrm{H}, \mathrm{m}), 7.86(2 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 7.38-7.30(4 \mathrm{H}, \mathrm{m}), 6.85(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 4.67(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 4.30(4 \mathrm{H}, \mathrm{t}, J=6$ $\mathrm{Hz}), 2.41(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}) ;$ HRMS $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ : calculated $486.1791 ; \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$EI observed 486.1786.

## Nicotinic acid 4-[5-(4-nicotinoyloxybutoxy)-naphthalen-1-yloxy]-butyl ester (fibipy) (85)



Step 1: A solution of 4-chlorobutan-1-ol (85\% tech. grade, $5.0 \mathrm{~g}, 28 \mathrm{mmol}$ ) in $\mathrm{MeCN}(15 \mathrm{~mL})$ was added, all at once, to a refluxing mixture of naphthalene-1,5-diol ( $1.6 \mathrm{~g}, 10$ mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{~g})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$. Heating was continued at reflux temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 7 days. The reaction mixture was allowed to cool to R.T. and the solids filtered off and washed with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The filtrate was concentrated and the residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{NaHCO}_{3(\text { aq) }}$ (sat.), dil. $\mathrm{HCl}_{(\text {(aq) }}$, and finally with $\mathrm{H}_{2} \mathrm{O}$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed using a rotary evaporator. The residues were dried under vacuum overnight to give the product (59) as a white solid ( 700 mg ). Yield (crude) $=23 \%$.

Step 2: The crude bis-(hydroxybutoxy)naphthalene (59) ( $700 \mathrm{mg}, 2.3 \mathrm{mmol}$ ), nicotinic acid ( $1.2 \mathrm{~g}, 9.7 \mathrm{mmol}$ ) and HOBT ( $1.30 \mathrm{~g}, 9.7 \mathrm{mmol}$ ) were placed in a two-necked RBF fitted with a septum and the flask flushed with $\mathrm{N}_{2(\mathrm{~g})}$. Dry THF ( 24 mL ) and $\mathrm{CHCl}_{3}(12 \mathrm{~mL})$ were added under $\mathrm{N}_{2(\mathrm{~g})}$ and the solution stirred for 5 mins . EDC ( $1.15 \mathrm{~g}, 6.0 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}$ (dry, 1.0 mL ) were added and the solution stirred under $\mathrm{N}_{2(\mathrm{~g})}$ for 3 days. A precipitate formed immediately upon the addition of triethylamine. The solvents were removed under reduced pressure and the residue was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{HCl}_{(\mathrm{aq})}(6 \mathrm{M})$. The aqueous layer was neutralised and extracted with $\mathrm{CHCl}_{3}$ and the combined organics washed with water and dried over $\mathrm{NaSO}_{4}$ (anhyd.). The solvent was removed on a rotary evaporator and the residue dried under vacuum overnight giving the crude product as a thick red oil. A small quantity ( 30 mg ) of the pure product (red oil) was obtained by preparative TLC (alumina, $\mathrm{CHCl}_{3} / \mathrm{EtOAc} 9: 1$ ). Yield $=3 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.22(2 \mathrm{H}, \mathrm{d}, 2 \mathrm{~Hz}), 8.75(2 \mathrm{H}, \mathrm{s}), 8.28-8.24(2 \mathrm{H}, \mathrm{m}), 7.82(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.37-7.30$
$(4 \mathrm{H}, \mathrm{m}), 6.82(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 4.49(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 4.20(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.09(8 \mathrm{H}, \mathrm{m}) ;$ HRMS $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$ : calculated 514.2104; m/z ( $\mathrm{M}^{+}$) EI observed 514.2107.

Nicotinic acid 6-[5-(6-nicotinoyloxyhexoxy)-naphthalen-1-yloxy]-hexyl ester (f.bipy) (86)
Step 1: A solution of 6-bromohexan-1-ol ( 5.0 g ,
 $28 \mathrm{mmol})$ in $\mathrm{MeCN}(15 \mathrm{~mL})$ was added, all at once, to a mixture of naphthalene-1,5-diol ( $1.60 \mathrm{~g}, 10 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{~g})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$. The mixture was heated at reflux temperature under $\mathrm{N}_{2(\mathrm{~g})}$ for 6 hrs. After cooling to R.T. the solids were filtered off and washed with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The filtrate was concentrated and the residues were partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{NaHCO}_{3(\mathrm{aq)}}$ (sat.), dil. $\mathrm{HCl}_{(\text {(aq) }}$, and finally with $\mathrm{H}_{2} \mathrm{O}$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed using a rotary evaporator. The residues were dried under vacuum overnight. Yield $($ crude $)=60 \%$.

Step 2: A sample of the crude 1,5-bis-(6-hydroxy-hexyloxy)-naphthalene (58) (1.29 g, $3.58 \mathrm{mmol})$, nicotinic acid $(1.76 \mathrm{~g}, 14.3 \mathrm{mmol})$ and $\mathrm{HOBT}(1.93 \mathrm{~g}, 14.3 \mathrm{mmol})$ were placed in a two-necked RBF fitted with a septum and the flask flushed with $\mathrm{N}_{2(\mathrm{~g})}$ for 1 min. Dry THF (40 $\mathrm{mL})$ and $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ were added under $\mathrm{N}_{2(\mathrm{~g})}$ (canula) and the solution stirred for 5 mins. EDC $(2.05 \mathrm{~g}, 10.74 \mathrm{mmol})$ was added followed by $\mathrm{Et}_{3} \mathrm{~N}$ (dry, 2.0 mL ). A gel formed immediately upon the addition of triethylamine. The mixture was stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at R.T. in darkness for 6 days. The solvents were removed under reduced pressure and the residue was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{HCl}_{(\mathrm{aq)}}(6 \mathrm{M})$. The aqueous layer was neutralised and extracted with $\mathrm{CHCl}_{3}$ and the combined organics washed with water and dried over $\mathrm{NaSO}_{4}$ (anhyd.). The product was purified by flash column chromatography (alumina, $\mathrm{CHCl}_{3}$ ) giving a red sticky oil ( 1.4 g ). Yield $=69 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.20(2 \mathrm{H}, \mathrm{bs}), 8.75(2 \mathrm{H}, \mathrm{bs}), 8.31-8.24(2 \mathrm{H}, \mathrm{m}), 7.82(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.40-7.29(4 \mathrm{H}, \mathrm{m}), 6.80(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 4.39(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 4.11(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 1.99-$ $189(8 \mathrm{H}, \mathrm{m})$, , $.68-1.56(8 \mathrm{H}, \mathrm{m})$; HRMS $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$ : calculated 570.2730; m/z ( $\mathrm{M}^{+}$) EI observed 570.2730 .

## $\mathrm{Zn}^{\mathrm{t}}$ BuPBlock (103)



To a refluxing solution of ${ }^{\mathrm{t}} \mathrm{Bu}$ PBlock (39) ( $50 \mathrm{mg}, 3.7 \mathrm{x}$ $10^{-5} \mathrm{~mol}$ ) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added a saturated solution of zinc acetate dihydrate in $\mathrm{MeOH}(2 \mathrm{~mL})$. The solution was heated at reflux temperature for 30 mins. The reaction mixture was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~mL}\right.$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The solvent was removed under reduced pressure. The product was recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ giving (103) as a greenish brown solid ( 46 mg ). Yield $=87 \%$; m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.96$ $(4 \mathrm{H}, \mathrm{s}), 8.86(2 \mathrm{H}, \mathrm{s}), 8.57(2 \mathrm{H}, \mathrm{s}), 8.07(4 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.97(4 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{t}, J=2$ $\mathrm{Hz}), 7.78(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 6.68(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 6.25(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 4.20(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz})$, $2.96(2 \mathrm{H}, \mathrm{t}, 2 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 2.22(2 \mathrm{H}, \mathrm{s}), 1.52(36 \mathrm{H}, \mathrm{s}), 1.489(18 \mathrm{H}, \mathrm{s}), 1.485$ (18H,s).

## $\mathbf{Z n}_{2}{ }^{\mathbf{t}}{ }^{\text {BuPSP (104) }}$



To a refluxing solution of ${ }^{\text {t BuPSP (52) }}$ ( $12.0 \mathrm{mg}, 3.53 \mu \mathrm{~mol}$ ) in $\mathrm{CHCl}_{3}(500 \mu \mathrm{~L}$ ) was added a saturated solution of zinc acetate dihydrate in $\mathrm{MeOH}(150 \mu \mathrm{~L})$. The mixture was heated at reflux temperature for 30 mins. The reaction mixture was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~mL}\right.$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed under reduced pressure. The product was recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ giving the product (104) as a brown solid ( 11.1 mg ). Yield $=90 \%$; m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.94(8 \mathrm{H}, \mathrm{s}), 8.84(4 \mathrm{H}, \mathrm{s}), 8.56(4 \mathrm{H}, \mathrm{s}), 8.06(8 \mathrm{H}, \mathrm{bs}), 7.95(8 \mathrm{H}, \mathrm{bs}), 7.92(4 \mathrm{H}, \mathrm{bs}), 7.27$ $(2 \mathrm{H}, \mathrm{m}), 6.93(2 \mathrm{H}, \mathrm{m}), 6.54(4 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 4.70(4 \mathrm{H}, \mathrm{s}), 4.25(4 \mathrm{H}, \mathrm{bs}), 3.94(12 \mathrm{H}, \mathrm{s}), 2.44(4 \mathrm{H}$, s), $2.38(4 \mathrm{H}, \mathrm{s}), 2.19(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.04(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 1.92(4 \mathrm{H}, \mathrm{s}), 1.88(4 \mathrm{H}, \mathrm{s}), 1.52$ $(36 \mathrm{H}, \mathrm{s}), 1.51(36 \mathrm{H}, \mathrm{s}), 1.47(72 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}, \mathrm{s}) ;$ HRMS $\mathrm{C}_{224} \mathrm{H}_{241} \mathrm{~N}_{17} \mathrm{O}_{14} \mathrm{Zn}_{2}$ : calculated $3522.741 ; \mathrm{m} / \mathrm{z}(\mathrm{ES})(\mathrm{M}+2 \mathrm{H})^{2+}$ observed 1761.369 .


To a refluxing solution of MePSP (51) (2 $\mathrm{mg}, 0.74 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(500 \mu \mathrm{~L})$ was added a saturated solution of zinc acetate dihydrate in $\mathrm{MeOH}(150 \mu \mathrm{~L})$. The mixture was heated at reflux temperature for 30 mins. The reaction mixture was partitioned between $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CHCl}_{3}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.) and the solvent removed under reduced pressure. The product (105) was obtained as a brown solid ( 2 mg ). Yield $\approx 95 \%$ (impure); m.p. $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 8.90(8 \mathrm{H}, \mathrm{bs}), 8.79(4 \mathrm{H}, \mathrm{s}), 8.65(4 \mathrm{H}, \mathrm{s}), 7.80$ $(8 \mathrm{H}, \mathrm{bs}), 7.70(8 \mathrm{H}, \mathrm{bs}), 7.49(4 \mathrm{H}, \mathrm{bs}), 7.37(4 \mathrm{H}, \mathrm{bs}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.72(2 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 6.53(4 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 4.69(4 \mathrm{H}, \mathrm{s}), 4.21(4 \mathrm{H}, \mathrm{bs}), 3.94(12 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.58(48 \mathrm{H}, \mathrm{bs})$, $2.42(4 \mathrm{H}, \mathrm{s}), 2.38(4 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{d}), 2.04(2 \mathrm{H}, \mathrm{d}), 1.92(4 \mathrm{H}, \mathrm{s}), 1.88(4 \mathrm{H}, \mathrm{s}) ;$ HRMS $\mathrm{C}_{173} \mathrm{H}_{141} \mathrm{~N}_{17} \mathrm{O}_{15} \mathrm{Zn}_{2}$ : calculated $2823.938 ; \mathrm{m} / \mathrm{z}(\mathrm{ES})(\mathrm{M}+2 \mathrm{H})^{2+}$ observed 1412.952.

### 4.3 UV-VIS BINDING STUDIES: METHODS

Stock host solutions were prepared by weighing a small sample ( $\sim 20 \mathrm{mg}$ ) of porphyrin followed by quantitative transfer to a volumetric flask ( 100 mL ). The stock solution was serially diluted until the intensity (absorbance) of the Soret band ( $\sim 425 \mathrm{~nm}$ ) was measured to be between 0.6 and 1.2 corresponding to a pale straw colour. Small aliquots of the guest solution were then transferred, by pipette, to the known mass of host (porphyrin). After each aliquot was added the solutions were diluted to a volume of 10.00 mL . A batch of between 10 and 20 solutions, with a constant concentration of host and various concentrations of the same guest, were thus prepared. Pure host and guest solutions were also analysed under identical conditions. Room temperature was kept at $(25 \pm 3)^{\circ} \mathrm{C}$ and each solution was equilibrated in a water bath at $(25 \pm 1)^{\circ} \mathrm{C}$ for $3-4$ minutes before a UV-Vis spectrum was recorded. All spectra in each batch were recorded immediately, one after the other, using a Cary 100 (version 9.00) UV-visible spectrophotometer
with each full scan taking approximately one minute to complete. Absorbances of each solution were recorded over a range of wavelengths ( $800-300 \mathrm{~nm}$ ). The spectrophotometer was set to record at 1 nm intervals using a spectral bandwidth of 1 nm in double beam mode relative to a solvent baseline. The absorbance was recorded specifically at two wavelengths corresponding to the host $\left(\lambda_{H}\right)$ and complex $\left(\lambda_{C}\right)$ absorption maxima respectively.
(1) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry - Fifth Edition; 5th ed.; Longman Scientific \& Technical: Harlow, Essex, England, 1989.
(2) Kallos, J.; Deslongchamps, P. Can. J. Chem. 1966, 44, 1239.
(3) Warrener, R. N.; Wang, S.; Russell, R. A. Tetrahedron 1997, 53, 3975.
(4) Maier, G.; Jung, W. A. Chem. Ber. 1982, 115, 804.
(5) Warrener, R. N.; Johnston, M. R.; Schultz, A. C.; Golic, M.; Houghton, M. A.; Gunter, M. J. Synlett 1998, 6, 590.
(6) Levison, J. J.; Robinson, S. D. J. Chem. Soc.(A) 1970, 2947.
(7) Hill, J. G.; Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1983, 48, 3607.
(8) Promarak, V.; Burn, P. L. J. Chem. Soc., Perkin Trans. 1 2001, 14.
(9) Beavington, R.; Rees, P. A.; Burn, P. L. J. Chem. Soc., Perkin Trans. 1 1998, 2847.
(10) Warrener, R. N.; Johnston, M. R.; Gunter, M. J. Synlett 1998, 6, 593.
(11) Crossley, M. J.; Govenlock, L. J.; Prashar, J. K. J. Chem. Soc., Chem. Commun. 1995, 2379.

## Appendix A: Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra






(22)


${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$
300 MHz
$\mathrm{T}=303 \mathrm{~K}$



${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$
300 MHz
$\mathrm{T}=303 \mathrm{~K}$
(26)

| $T\|T\|$ |
| :---: |
| 200 |
| 150 |




```
\({ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)\)
300 MHz
\(\mathrm{T}=303 \mathrm{~K}\)
```

(29)



| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$
300 MHz
$\mathrm{T}=303 \mathrm{~K}$


${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$
300 MHz
$\mathrm{T}=303 \mathrm{~K}$
(48)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$
300 MHz
$\mathrm{T}=303 \mathrm{~K}$






## Appendix B: UV-Vis Binding Curves

UV-Vis binding studies: ZnPBlock (103) and $\mathrm{Zn}_{2} \mathrm{PSP}$ (104) with pyridine and flexible bispyridine Guests ( $f_{n}$ bipy: 82-86)

All titrations (constant porphyrin host concentration + variable guest) done in DCM at $25^{\circ} \mathrm{C}$. UVVis traces ( $\lambda=380$ to 500 nm ) shown on left and NLLS curve fits shown on right.




ZnPBlock $(103)+f_{0}$ bipy (82)


[G] $\left(\mathrm{molL}^{-1}\right)$
$\mathrm{Zn}_{2} \operatorname{PSP}(\mathbf{1 0 4})+\mathrm{f}_{0}$ bipy (82)


ZnPBlock (103) $+\mathrm{f}_{2}$ bipy (83)


$\mathrm{Zn}_{2} \operatorname{PSP}(\mathbf{1 0 4})+\mathrm{f}_{2}$ bipy (83)



ZnPBlock (103) $+\mathrm{f}_{3}$ bipy (84)


$\mathrm{Zn}_{2} \operatorname{PSP}(\mathbf{1 0 4})+\mathrm{f}_{3}$ bipy $(\mathbf{8 4})$



ZnPBlock (103) $+\mathrm{f}_{4}$ bipy (85)


## $\mathrm{Zn}_{2} \mathrm{PSP}(\mathbf{1 0 4})+\mathrm{f}_{4}$ bipy $(\mathbf{8 5})$




ZnPBlock (103) + f 6 bipy (86)


$\mathrm{Zn}_{2} \operatorname{PSP}(104)+\mathrm{f}_{6}$ bipy (86)




[^0]:    *A second run at the same scale under identical conditions gave the amic acid in $68 \%$ yield.

[^1]:    * $>85 \%$ pure by ${ }^{1} \mathrm{H}$ NMR, (2) present as impurity ( $<15 \%$ ).

[^2]:    * Non-systematic nomenclature

[^3]:    *Non-systematic nomenclature

[^4]:    * cospotted (TLC) with a previously prepared sample of (43).

