The Design, Synthesis and Geometric Analysis of Large Centrally Functionalised Porphyrin-Spacer-Porphyrins

By

Shaun Patrick Gaynor B.Sc. (Hons) (UNE)

A thesis submitted for the degree of Doctor of Philosophy of the University of New England, Armidale, N.S.W., Australia.

December 2003

.

The work described in this thesis was carried out at the Department of Chemistry at the University of New England under the supervision of Associate Professor Maxwell J. Gunter.

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Dated

22/11/04

SUMMARY

This thesis describes the design, synthesis and geometric analysis of centrally functionalised Porphyrin-Spacer-Porphyrins (PSPs) that have potential as 'molecular switches' and/or 'artificial enzymes'. The synthetic approach adopted made use of specifically designed functionalised building blocks that could be 'glued' together using a number of well established protocols based on various stereospecific [2+2] and [4+2] cycloaddition reactions.

Chapter 2 describes the screening of potential binane and polynorbornane spacer groups using simple computationally generated molecular mechanics models. Details of the subsequent development of general synthetic methods toward fused-oxabridged norbornenes that were judged to have suitable geometric and functional characteristics follow. A general method for the synthesis of variously substituted aryl imides allowed for an efficient introduction of central functionalities into the spacer building blocks. The extension of these systems based on tandem [2+2] cycloaddition reactions (Mitsudo reaction) followed by epoxidation (Sharpless) gave the dual functionalised spacer building blocks. A new porphyrin building block (PBlock) was developed in conjunction with the spacer building blocks and its synthesis and reactivity were compared with a known PBlock analogue, also synthesised as part of this work using published methods. Results from the synthesis of two new PSP systems allowed for a comparison between the two PBlocks and their ability to undergo the final coupling (ACE reaction) step with the *bis*-epoxide spacer units.

The third chapter focuses on the various experimental methods (UV-Vis and NMR spectroscopy) used to explore both the static and dynamic geometric characteristics of the arch-shaped *bis*-porphryrins. A series of flexible *bis*-pyridines were collectively used as a 'molecular ruler' to measure the interporphyrin distance of a dizinc PSP host. The experimentally determined porphyrin-porphyrin distance was compared with the same distance determined from semi-empirical molecular modelling calculations (AM1). The use of more rigid *bis*-pyridines gave information about the flexibility of the PSP host system. Large conformational changes in the PSP host system were measured upon formation of a 1:1 complex with a 'small' *bis*-pyridine porphyrin guest confirming results from molecular modelling and comparative UV-Vis binding study results.

All the experimental details are given in Chapter 4.

Acknowledgements

Recognition and thanks are offered to the following people without whom the completion of this PhD project would not have been possible:

Associate Professor Max Gunter for his assistance in tackling the various chemical problems that arose throughout the project. Special thanks for the expert editing advice.

Professor Ron Warrener for allowing an opportunity to visit and work at the Centre of Molecular Architecture (CMA) in Rockhampton.

Dr Martin Johnston for help with 'molracs' and 'porphyrin blocks' during an intensive 3-month visit to Rockhampton that led to several significant breakthroughs, as well as information and advice at various other times.

Dr David Tucker for assistance with solving problems related to NMR experiments.

Members of staff at the Chemistry Department (UNE) for support and friendship over the years.

Fellow students: Sandra Farquhar, Tyrone Jeynes, Tony Banks, Ken Johnstone, Joshua McKinnon and Andrew Whitten for assistance with solving problems big and small and for their friendship.

Professor Mark Spackman for continued support especially when the going got tough.

Latha Jeyaraj (my wife) for taking on the unenviable task of proofreading and for keeping me on track.

My friends and family for endless support and encouragement.

2.2.4.3		Further Exploration of Reaction Conditions with Anhydride (2)	77
2.2.	4.4	Reactions with the Exo, Exo-Bis-Acyl Chloride (11)	77
2.2.	4.5	Conversion of Aryl Amic Acids to Imides	79
2.2.5		An Alkyl Imide – Flexible Tether	85
2.3	Extend	ded Imide Building Blocks: <i>bis</i> -Cyclobutene Diesters and <i>bis</i> -Epoxides	87
2.4	Porphy	yrin Building Blocks	89
2.4.1		Extension of Crossley's Porphyrin Quinoxalino-Diamines	89
2.4.2		Synthesis of 5,10,15,20-tetrakis-(3,5-dimethylphenyl)-Porphyrin Block	
		(48) (MePBlock)	91
2.4.3		Synthesis of 5,10,15,20-tetrakis-(3,5-di-tert-butylphenyl)-Porphyrin Block	ς.
		(39) (^t BuPBlock)	97
2.5	Synthe	esis of Porphyrin-Spacer-Porphyrins (PSPs)	97
2.5.1		ACE Coupling Reactions	97
2.5.2		Synthesis of PSP (51) from MePBlock (48) and <i>bis</i> -Cyclobutane	
		Epoxide (30)	99
2.5.3		Synthesis of PSP (52) from ^t BuPBlock (39) and <i>bis</i> -Cyclobutane	
		Epoxide (29)	102
2.6	Summ	ary of Syntheses	104
Chapt	ter 3:	Experimental Analysis of PSP Host Geometry: Binding Studies with	
		Various Bis-Pyridine Guests	109
3.1	Molec	ular Modelling: PSP Host and bis-Pyridine Guests	109
3.1.1		Geometric Features of PSP Host (52)	109
3.1.2		Binding Studies and the Concept of a Molecular Ruler	111
3.1.3		Modelling <i>bis</i> -Pyridine Guests	117
3.2	Synthe	esis of <i>bis</i> -Pyridine Guests	120
3.2.1		Synthesis of Flexible Guests (f _n bipy)	120
3.2.2		Synthesis of Rigid bis-Pyridine Guests	122
3.2.	2.1	Synthesis of N,N-bis-(4'-pyridine)perylene-3,4:9,10-bis-dicarboximide	
		(perylbipy) (79)	122
3.2.2.2		Synthesis of 5,15-bis-(4'-pyridyl)-10,20-bis-(3,5-di-tert-butylphenyl)	
		porphyrin (bipyP) (80).	124
3.2.2.3	3	Synthesis of <i>bis</i> -[2-(4'-pyridyl)-1H-imidazo]porphyrin (imibipyP) (81)	126

3.3	UV-Vis Binding Studies: Theory and Equations		132
3.4	Binding Studies: Flexible Guests		
3.4.1	Insertion of Zinc into PSP (5	2) and ^t BuPBlock (39)	136
3.4.2	General Methods		136
3.4.3	Measurement of Cavity Acco	essibility (K_{LMM}/K_{LM})	137
3.4.4	Determination of Binding Co	onstants (K_{LLM} and K_{LLMM}) for Each Memb	ber
	of the fnbipy Series of Ligan	ds (Guests)	138
3.4.5	Calculation of Effective Mol	arities (EMs)	140
3.5	Binding Studies: Rigid Guests		143
3.5.1	Perylene Diimide (53)		143
3.5.3	<i>bis</i> -Pyridine Porphyrin Gues	ts bipyP (80) and imibipyP (81)	150
3.5.4	NMR Studies Investigating 2	Zn ₂ PSP (104) Binding Geometries and	
	Conformational Flexibility		155
3.5.4	4.1 1:1 Complex Formation bet	ween Zn_2PSP (104) and bipyP (80)	155
3.5.4	4.2 Investigation of the Molecu	ar Size of Zn_2PSP (104) and its Complex	
	with bipyP (80) using 2D DC)SY NMR	158
3.6	Summary and Discussion of Binding	g Study Results	162
3.7	Future Work		166
Chapt	ter 4: Experimental Meth	ods	171
4.1	General Experimental Methods		171
4.2	Synthetic Methods		173
4.3	UV-Vis Binding Studies: Methods		202
	ndix A: Selected ¹ H and ¹³ C NMR S ndix B: Uv-Vis Binding Curves	pectra	205 215