Immunisation Against Lactic Acidosis in Sheep and Cattle

Quan SHU (BMSc, MMSc)

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

March 1997

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Acknowledgments

Financial support for the present project was provided by the University of New England, the Cooperative Research Centre for the Cattle and Beef Industry (Meat Quality), and University Partnerships Pty Ltd. To them I am sincerely grateful. It would have been impossible for me to undertake such a PhD program without the considerable assistance from many people.

First of all, I would like to thank sincerely my supervisors Dr. H. Gill, Prof. R. Leng, Dr. S. Bird, and Prof. J. Rowe for their encouragement, advice, guidance, and all sorts of other help related to the operation of the project. In particular, I thank Dr. H. Gill for his direct contribution at the initial stage of this work and Dr. S. Bird for his help with the experimentation at the last stage. The skills of experimental design and data analysis of Prof. J. Rowe have been invaluable for the development of my professional ability. In addition, I would like to express my appreciation to Dr. H. Gill, Dr. S. Bird, and Prof. J. Rowe for their patience and skill in criticising the manuscript.

Second, I would like to express my appreciation for the part played by Prof. **B. Bindon** and Dr. **H. Oddy** who gave general support, advice, encouragement, and organised the feedlot cattle trial (Chapter 9).

Third, I am deeply indebted to the following people for their assistance with this project in the past three years:

Prof. **B. Tao** and Dr. **S. Qin** for helpful discussions and advice on bacteriology and the isolation and selection of the vaccine bacteria used in this study.

Dr. K. Gregg for his advice on the rumen bacteria media.

Mrs. J. Druitt, Mr. Zac Abdulmajid and Ms R. Swain for their advice in the laboratory of rumen bacteriology.

Dr. D. Watson for helpful discussions and advice on the immunological aspect of this project, in particular, for his invaluable comments on the literature review (Chapter 2), cross-reactivity experiment (Chapter 10), and general discussion (Chapter 11).

Dr. W. Wong for helpful discussions and advice on immunological aspects during the thesis preparation.

Ms. S. Burgess and Ms. N. Franklin for advice in the immunology laboratory.

Dr. **D. Hennessy**, Mr. **P. Williamson** for their assistance during the cattle trial described in Chapter 8.

Dr. M. Hillard, Dr. E. Duan, and Ms. Y. Xu for their assistance during the adjuvant studies described in Chapters 7 and 9.

Mr. **R. Geddes** and his staff for their assistance during the feedlot trial described in Chapter 9.

Mr. F. Ball, Mr. S. Stachiw, Mr. P. Tyler, Mr. R. Woodgate, and Mr. C. Brodbeck for assistance in the nutrition laboratory and field work.

Dr. Ian Davies, Dr. S. Walkden Brown, Mr. R. Taylor for advice on the statistics.

Ms. S. Blomfield and Ms. R. Muldoon for their help in English writing skills.

Dr. J. Davis for her advice and proof-reading of the thesis.

Assistance from many other people is also gratefully acknowledged.

Finally, I say a very big 'thank you' to my wife, **Aihua Liu**, who spent many hours being an unpaid technical assistant in many of my experiments. I am also very indebted to my daughter, **Sophie Wei Shu**, with whom I have spent too little time.

Summary

Introduction

Lactic acidosis is due to the over production of lactic acid in the rumen by the bacteria, *S. bovis* or a combination of *S. bovis* and *Lactobacillus* when sheep and cattle consume large amounts of grain. It was hypothesised that the risk of lactic acidosis could be reduced by immunisation against the lactic acid producing bacteria. The present studies were conducted to test this hypothesis and investigate several key factors for developing an immunisation strategy against lactic acidosis.

Review of the literature

The review covers aspects of ruminant digestion, lactic acidosis, antibodymediated immunity, and some of the important factors influencing immune responses.

General materials and methods

This chapter includes general bacterial media and methods for preparing antigenic cells, and measuring antibody, rumen pH, rumen lactate, rumen *S. bovis* and *Lactobacillus*, severity of diarrhoea, and statistical analysis.

Isolation and selection of S. bovis and Lactobacillus for vaccine preparation

This chapter describes the isolation and selection of the vaccine antigen bacteria. Five single strains of *S. bovis* and five isolates of *Lactobacillus* were obtained from the rumen contents of sheep and cattle. A strain of *S. bovis* (Sb-5) and an isolate of *Lactobacillus* (LB-27) had higher lactate-producing capacity than the other strains or isolates and were selected for vaccine preparation in the following experiments.

Immunisation with either a live or a killed vaccine against lactic acidosis in sheep

The first experiment was conducted in sheep to determine the efficacy of live and killed vaccines. Fifteen wethers were allocated to 3 treatment groups. Two groups were immunised with either formalin killed or live Sb-5 vaccine, and the other was control. The vaccines (Freund's complete adjuvant for primary immunisation and Freund's incomplete adjuvant for boosters) were injected intramuscularly. After the primary immunisation, three boosters were administered at 2-4 week intervals. Anti-*S. bovis* antibody concentration in saliva was measured prior to animals being challenged with wheat grain.

The antibody level induced by the live Sb-5 vaccine (after three booster immunisations) was higher (P<0.05) than the killed Sb-5 vaccine. A significant increase (P<0.05) in the antibody concentration was observed after each booster. Compared with the control, significantly higher rumen pH and lower L-lactate concentrations were found in the immunised groups. The rumen pH in the group immunised with the live Sb-5 was higher than that in those sheep given the killed Sb-5 (P<0.05). The results support the hypothesis that the risk of lactic acidosis can be reduced by immunisation against *S. bovis* and that live Sb-5 vaccine is more effective than the killed one.

Immunisation with a S. bovis vaccine primed either intramuscularly or intraperitoneally against lactic acidosis in sheep

A second experiment in sheep was designed to investigate the relative effectiveness of immunisation primed intramuscularly or intraperitoneally. Forty five wethers were allocated to 3 treatment groups. Two groups were immunised with Sb-5 vaccines, and the other was control. The vaccines were prepared using live Sb-5 with Freund's complete adjuvant for primary immunisation and with Freund's incomplete adjuvant for booster injections. The primary immunisation was injected either intramuscularly (IM) or intraperitoneally (IP), and the boosters were administered intramuscularly at 2-4 week intervals. Killed Sb-5 cells were also administered orally at the same time of the 2nd and 3rd booster injections. Anti-*S. bovis* antibody concentration in saliva was measured prior to and following animals being challenged by feeding wheat grain.

The average antibody level in the IM group was higher (P<0.05) than in the IP group. A significant increase (P<0.01) in the antibody concentration was observed in the immunised groups after the 1st booster immunisation. No significant differences in antibody concentrations (P>0.05) were observed in the IM group between subsequent boosters (before grain feeding). Compared with the control, there were significantly (P<0.05) lower diarrhoea scores and less increase in blood packed cell volumes (%) in the immunised animals. The liveweight loss in the IP group was higher (P<0.05) than that of the IM and control groups. The results confirmed that the risk of lactic acidosis can be reduced by immunisation against *S*.

bovis and indicated that the immunisation primed intramuscularly was more effective than that primed intraperitoneally.

Comparison of adjuvants in sheep grazing pasture

Having established that effective vaccination against lactic acidosis was possible using Freund's complete adjuvant and multiple boosters, this experiment was undertaken to investigate the efficacy of a range of commercially acceptable adjuvants using one booster following a primary immunisation. Thirty five lambs were allocated to 7 treatment groups. Six groups were immunised using live Sb-5 vaccines, and the other was control. One booster was given 4 weeks after primary immunisation. Five adjuvants (Freund's incomplete adjuvant, QuilA, Dextran sulphate, Imject Alum, and Gerbu adjuvant) were compared with the Freund's complete/incomplete adjuvant (Freund's complete adjuvant for primary injection and Freund's incomplete adjuvant for booster). Anti-*S. bovis* antibody concentration in saliva and serum was measured weekly. The experiment was carried out under grazing conditions and animals were not challenged with grain.

The commercially acceptable adjuvants were effective in inducing high level and lasting anti-*S. bovis* antibody responses except that the use of Gerbu adjuvant stimulated a relatively low level and short lasting response. On some occasions the antibody levels induced by either QuilA or Freund's incomplete adjuvant were comparable (P>0.05) with the level stimulated by Freund's complete adjuvant. There was a positive correlation (r=0.874) between saliva and serum antibodies. No difference (P>0.05) was observed in liveweight gain between treatment groups. The results suggest that immunisation (a single booster following the primary injection) with a live vaccine containing one of the commercially acceptable adjuvants (including FIA, QuilA, Alum, and Dex) is safe and likely to be successful against clinical lactic acidosis. Results from this study also indicated that the serum antibody response is a good indicator of efficacy of immunisation.

Immunisation with a combination of S. bovis and Lactobacillus vaccine against lactic acidosis in cattle

Having shown effective immunisation against *S. bovis* in sheep, an experiment was conducted to determine the effectiveness of this technique in cattle using a combination of *S. bovis* (Sb-5) and *Lactobacillus* (LB-27). Ten steers were allocated to 2 treatment groups. One group was immunised with a vaccine containing live Sb-

5 and LB-27 cells, and the other was control. The vaccine (Freund's complete adjuvant for primary immunisation and Freund's incomplete adjuvant for boosters) was injected intramuscularly. After primary immunisation, boosters were administered at 2-4 week intervals. Antibody isotype IgG concentration in saliva and serum was measured over the period of experiment.

Both anti-*S. bovis* and anti-*Lactobacillus* IgG in saliva increased significantly (P<0.01) after the 1st booster, which was lower (P<0.05) than the IgG levels after the 2nd and 3rd boosters. However, it was not significantly different (P>0.05) from the IgG concentration prior to the grain challenge (after the 4th booster). There was a positive correlation between the anti-*S. bovis* and anti-*Lactobacillus* IgG in serum and saliva. Compared with the control, higher feed intake, lower rumen concentrations of lactate and numbers of *S. bovis* and *Lactobacillus* were observed in the immunised group (P<0.05). These results support the hypothesis that the risk of lactic acidosis can be reduced by immunisation against *S. bovis* and *Lactobacillus*, and provided further evidence that one booster following a primary immunisation is likely to be successful against clinical lactic acidosis.

Further comparison of adjuvants in cattle under feedlot conditions

This experiment was conducted to further test commercially acceptable adjuvants in cattle. Twenty four steers were allocated to 5 treatment groups under feedlot conditions. Four groups were immunised with vaccines containing live Sb-5 and LB-27, and the other was control. One booster was given following 4 weeks after primary immunisation. Three commercially acceptable adjuvants (QuilA, Alum, and Dextran combined with mineral oil) were compared with the Freund's complete/incomplete adjuvant. Serum antibody IgG concentration was measured over the period of the experiment.

Compared with Freund's complete/incomplete adjuvant, higher (P<0.05) or similar (P>0.05) IgG responses were observed when using the 3 commercially acceptable adjuvants. There was a positive correlation between the anti-*S. bovis* IgG and anti-*Lactobacillus* IgG. Compared with the control, a significantly (P<0.05) higher faecal pH was found in the animals immunised using either DEAE-Dextran combined with mineral oil adjuvant or QuilA adjuvant. The numbers of *S. bovis* and *Lactobacillus* in the rumen in these two groups were lower than in the control. These results suggest that using any of the 3 commercially acceptable adjuvants can induce high level and lasting IgG responses, with the DEAE-dextran combined with mineral oil being the most promising. The biological parameters point to vaccination reducing acid in the gut and reducing the risk of lactic acidosis.

Immunological cross-reactivity between the vaccine and other isolates of S. bovis and Lactobacillus

The above studies were based on the use of Sb-5 or a combination of Sb-5 and LB-27. In order to examine the potential for a vaccine to protect sheep and cattle from a number of strains of S. bovis and Lactobacillus spp. which may cause lactic acidosis, this study was conducted to determine the degree of immunological crossreactivity between the Sb-5 and 8 other strains of S. bovis; and between the LB-27 and 4 other isolates of Lactobacillus. The cross-reactivity index (CRIs) ranged from 7.3 to 56.1% between the strains of S. bovis (the encapsulated strains with CRIs ranging from 7.3 to 12.4%). The CRIs ranged from 11.5 to 72.2% between the isolates of Lactobacillus. The results provide evidence that there is considerable antigenic variation between the vaccine and other isolates of S. bovis and Lactobacillus. However, the results also indicate that all the strains tested crossreact with the vaccine reference strain to some extent. Because S. bovis in the rumen is encapsulated, the low CRIs (indicating the high degree of immunological crossreactivity) of the encapsulated strains suggest that the vaccine containing Sb-5 may be effective against a wide range of strains of S. bovis in sheep and cattle. The results also suggest that further work is needed to optimise the vaccine strain(s).

General discussion

Results from the studies in sheep and cattle support the hypothesis that the risk of lactic acidosis can be reduced by immunisation against *S. bovis* or *S. bovis* and *Lactobacillus*. Live vaccine (using DEAE-dextran combined with mineral oil as an adjuvant) may provide a suitable protection using one booster following a primary immunisation administered intramuscularly. This novel approach to reducing the risk of lactic acidosis associated with grain feeding offers a promising alternative to current practices of using feed additives, such as antibiotics active against the lactic acid-producing bacteria.

Contents

List	of tab	les		xiii
List of figures				xviii
1	Gen	eral intr	oduction	1
2	Review of the literature			3
	2.1	Rumina	ant digestion	4
		2.1.1	Digestive tract	4
		2.1.2	Digestion and rumen microbes	5
	2.2	Fermer	ntative lactic acidosis and its causative bacteria	9
		2.2.1	Lactic acidosis and S. bovis and Lactobacillus	9
		2.2.2	Diversity of S. bovis and Lactobacillus	13
		2.2.3	Selective media for the isolation of S. bovis	
			and Lactobacillus	21
	2.3	Limita	tions of current techniques and prospects	
		of imm	nunology for controlling lactic acidosis	22
	2.4	Antibo	dy-mediated immunity in ruminants	24
		2.4.1	The common mucosal immune system	
			and transport of antibodies	25
		2.4.2	Antibody functional features	29
		2.4.3	Measuring an antibody response	31
	2.5	Some i	important factors for inducing immune responses	32
		2.5.1	Antigen types and the requirement	
			for booster immunisation	33
		2.5.2	Immunisation routes	37
		2.5.3	Adjuvants	38
	2.6	Scope	of the experimentation	42

3	Gen	eral materials and methods	44
	3.1	Solutions and media for bacterial culture	44
	3.2	Antigenic bacteria cells for vaccine preparation	46
	3.3	Antibody measurement	47
	3.4	Rumen pH, lactate concentration, and numbers	
		of S. bovis and Lactobacillus	50
	3.5	Diarrhoea score	51
	3.6	Statistical methods	51
4	Isol	ation and selection of <i>S. bovis</i> and <i>Lactobacillus</i> for vaccine	
	prej	paration	53
	4.1	Introduction	53
	4.2	Materials and methods	54
	4.3	Results	55
	4.4	Discussion	58
5	Imn	nunisation with either a live or a killed S. bovis vaccine	
	agai	inst lactic acidosis in sheep	60
	5.1	Introduction	60
	5.2	Materials and methods	62
	5.3	Results	65
	5.4	Discussion	70
6	Imn	nunisation with a <i>S. bovis</i> vaccine primed either intramuscularly	
	or i	ntraperitoneally against lactic acidosis in sheep	75
	6.1	Introduction	75
	6.2	Materials and methods	76
	6.3	Results	79
	6.4	Discussion	88
7	Cor	nparison of adjuvants in sheep grazing pasture	91
	7.1	Introduction	91
	7.2	Materials and methods	92
	7.3	Results	95

	7.4	Discussion	100
8	Imm	unisation with a combination of <i>S. bovis</i> and	
	Lact	<i>obacillus</i> vaccine against lactic acidosis in cattle	103
	8.1	Introduction	103
	8.2	Materials and methods	104
	8.3	Results	107
	8.4	Discussion	115
9	Furt	ther comparison of adjuvants in cattle	
	und	er feedlot conditions	119
	9.1	Introduction	119
	9.2	Materials and methods	120
	9.3	Results	124
	9.4	Discussion	134
10	Imn	nunological cross-reactivity between the vaccine	
	and	other isolates of S. bovis and Lactobacillus	138
	10.1	Introduction	138
	10.2	Materials and methods	139
	10.3	Results	141
	10.4	Discussion	143
11	Gen	eral discussion	146
	11.1	Overview of the immunisation studies	146
	11.2	Immunisation and grain-feeding management	148
	11.3	Immunisation and hind gut lactic acidosis	151
	11.4	Future research	152

Bibliography

157

List of tables

Table 2.1	Volume (weight) of various parts of the gastrointestinal	
	tract of sheep, cattle (ruminant), and horse (non ruminant)	
	expressed as a percentage of total body weight	
	(from Parra, 1978)	5
Table 2.2	Fermentation characteristics of substrates	
	of rumen S. bovis strains (from Stewart and Bryant, 1988)	14
Table 2.3	The amylase activities of four S. bovis strains	
	(from Paje et al., 1986)	15
Table 2.4	Prevalence of the S. bovis biotypes and serotypes	
	isolated from the intestinal tract of healthy pigeons	
	(from De Herdt et al., 1992)	17
Table 2.5	Some characteristics of Lactobacillus ruminis	
	and Lactobacillus vitulinus (from Ogimoto and Imai, 1981;	
	Stewart and Bryant, 1988)	20
Table 2.6	Major methods for preveting lactic acidosis	
	in sheep and cattle	22
Table 2.7	Concentrations of immunoglobulins (mg/ml)	
	in blood serum and various secretions of cattle	
	and sheep (from Gnanasampanthan, 1993)	27
Table 2.8	Types of antigen bacterial cells used in the studies	
	of immunisation against streptococci	35
Table 2.9	Numbers of immunisation and dose rate used	
	in the studies of streptococcal vaccines	36
Table 2.10	Some of the commercially acceptable adjuvants	
	for veterinary vaccines	42
Table 4.1	The single strains of S. bovis and the isolates	
	of Lactobacillus obtained from different animals	56
Table 4.2	Lactate concentration (mmol/L) in mRF-2 broth	
	after incubation (at 38.5°C for 20~24 hours) with	
	either a strain of S. bovis or a isolate of Lactobacillus	57

Table 5.1	Timetable of major events, sample collections,	
	and measurements	64
Table 5.2	Mean salivary total antibody concentration (units/ml)	
	of non-immunised sheep and sheep immunised	
	with a vaccine containing either killed or live S. bovis cells.	
	Primary immunisation was administered on Day 0,	
	and boosters were given on Days 28, 42, and 56	65
Table 5.3	Mean feed intake (g/sheep) on Days 64 and 65	
	of non-immunised sheep and sheep immunised with	
	a vaccine containing either killed or live S. bovis cells	67
Table 5.4	Mortality after the grain feeding of animals	
	in non-immunised sheep and sheep immunised	
	with a vaccine containing either killed or live S. bovis cells	67
Table 5.5	Mean rumen pH and L-lactate concentration (mmol/L)	
	during the grain challenge of non-immunised sheep	
	and sheep immunised with a vaccine containing	
	either killed or live S. bovis cells. Data are presented	
	as Least Square Means with standard error	69
Table 5.6	Mean diarrhoea scores during the grain challenge period	
	of non-immunised sheep and sheep immunised with	
	a vaccine containing either killed or live S. bovis cells	70
Table 6.1	Timetable of major events, sample collections,	
	and measurements	78
Table 6.2	Mean saliva antibody concentration (units/ml) of	
	non-immunised sheep and sheep primed either	
	intramuscularly or intraperitoneally.	
	Primary immunisation was administered on Day 0,	
	and the boosters were given on Days 28, 46, and 67	80
Table 6.3	Changes of blood PCV (%) during the period of grain	
	feeding of non-immunised sheep and sheep	
	primed either intramuscularly or intraperitoneally.	
	Data are shown as Least Square Means (SE)	82
Table 6.4	Liveweight change (kg/sheep) during the period Day 0-75	
	and Day 75-105 of non-immunised sheep and sheep	

	primed either intramuscularly or intraperitoneally.	
	Data are presented as Least Square Means (SE)	85
Table 6.5	Correlations and the significance of the linear relationships	
	between the measurements ^a of antibody, feed intake,	
	rumen pH, diarrhoea score, PCV, and liveweight	
	change during the period of grain feeding in non-immunised	
	sheep and sheep primed either intramuscularly	
	or intraperitoneally.	86
Table 7.1	Timetable of major events, sample collections,	
	and measurements	94
Table 7.2	Mean saliva antibody concentration (units/ml) of	
	non-immunised sheep and sheep immunised	
	with S. bovis vaccines containing FCA, FIA, QuilA,	
	Dex, Alum, and Gerbu adjuvants. Data are presented	
	as Least Square Means. Primary immunisation was	
	administered on Day 0, and the single booster was	
	given on Day 28	96
Table 7.3	The correlations between the salivary and serum	
	antibody concentrations of non-immunised control	
	and sheep immunised with S. bovis vaccines containing	
	FCA, FIA, QuilA, Dex, Alum, and Gerbu adjuvants	98
Table 7.4	Mean liveweight gains (kg/sheep) over time (Day -7 to Day 70)	
	of non-immunised sheep and sheep immunised with S. bovis	
	vaccines containing FCA, FIA, QuilA, Dex, Alum,	
	and Gerbu adjuvants. Data are presented as	
	Least Square Means (SE)	100
Table 8.1	Timetable of major events, sample collections,	
	and measurements	106
Table 8.2	Mean salivary antibody concentrations (units/ml)	
	of non-immunised cattle and cattle immunised	
	with a vaccine containing S. bovis and Lactobacillus.	
	Primary immunisation was administered on Day 0,	
	and boosters were given on Days 30, 44, 59, and 73	108

Table 8.3	Correlations and the significance of the linear relationships	
	between the salivary and serum antibodies in non-immunised	
	cattle and cattle immunised with a vaccine	
	containing S. bovis and Lactobacillus	109
Table 8.4	Withdrawn animals from non-immunised cattle and	
	cattle immunised with a vaccine containing S. bovis	
	and Lactobacillus	110
Table 8.5	Rumen pH on Day 93 in non-immunised cattle	
	and cattle immunised with a vaccine containing	
	S. bovis and Lactobacillus	112
Table 8.6	Log numbers (CFU/ml) of S. bovis and Lactobacillus	
	in the rumen fluid on Days 90 and 92 of non-immunised	
	cattle and cattle immunised with a vaccine containing	
	S. bovis and Lactobacillus. Data were converted	
	using log10 transformation and presented as the	
	Least Square Means. On Day 90 animals were fed	
	with pasture hay and on Day 92 animals were fed	
	with 90% grain	115
Table 9.1	Timetable of major events, sample collections,	
	and measurements	123
Table 9.2	Mean serum anti-S. bovis IgG concentration (units/ml)	
	of non-immunised cattle and cattle immunised with	
	vaccines using FCA, QuilA, Dex, and Alum adjuvants.	
	Data are presented as Least Square Means. Primary	
	immunisation was administered on Day 0, and the booster	
	was given on Day 26	125
Table 9.3	Mean serum anti-Lactobacillus IgG concentration (units/ml)	
	of the groups of non-immunised cattle and cattle	
	immunised with vaccines using FCA, QuilA, Dex,	
	and Alum adjuvants. Data are presented as	
	Least Square Means. Primary immunisation was	
	administered on Day 0 and the booster was	
	given on Day 26	126
Table 9.4	The correlations between the anti-S. <i>bovis</i> and	

	anti-Lactobacillus IgG concentrations of non-immunised	
	cattle and cattle immunised with vaccines using FCA,	
	QuilA, Dex, and Alum adjuvants	129
Table 9.5	Average (over time) rumen pH, faecal pH, and faecal	
	dry matter content, and liveweight gain of non-immunised	
	cattle and cattle immunised with vaccines using FCA,	
	QuilA, Dex, and Alum adjuvants. Data were presented	
	as Least Square Means (SE)	131
Table 10.1	Sources and some characteristics of strains of S. bovis and	
	isolates of Lactobacillus obtained from sheep and cattle	140

List of figures

Figure 2.1	The digestive tract of sheep (ruminant)	
	and horse (non-ruminant) illustrating the large	
	fermentation compartments of the rumen in the sheep	
	and the hind gut of the horse (from Stevens, 1988)	6
Figure 2.2	Sequence of digestion in ruminants (from Van Soest, 1994)	7
Figure 2.3	Changes in numbers of rumen S. bovis and	
	Lactobacillus (CFU/ml) in sheep after overfeeding	
	with wheat. Grain overfeeding was started on Day 0	
	(from Shu and Liu, 1995a)	11
Figure 3.1	Standard curve of the relationship of different	
	dilutions (x 1,000) of the standard serum and	
	the absorbance values (OD)	49
Figure 5.1	Mean daily feed intake (g/sheep) during the period	
	following the grain challenge (Day 66 to 75) of	
	non-immunised sheep and sheep immunised with a vaccine	
	containing either killed or live S. bovis cells. Data are shown	
	only for the surviving sheep in the immunised and control	
	groups. Vertical error bars represent standard errors	
	of the means	68
Figure 5.2	Mean daily diarrhoea score during the period following	
	grain challenge (Day 66 to 75) of non-immunised sheep	
	and sheep immunised with a vaccine containing either killed	
	or live S. bovis cells. Data are shown only for the surviving	
	sheep in the immunised and control groups. Vertical error	
	bars represent standard errors of the means	71
Figure 6.1	Mean daily feed intake (g/sheep) of non-immunised sheep	
	and sheep primed either intramuscularly or intraperitoneally.	
	Vertical error bars represent standard errors of the means.	
	Data were from 15 animals in each of the IM and control	
	groups, and from 13 IP animals	81

Figure 6.2	Mean rumen pH during the grain feeding period	
	of non-immunised sheep and sheep primed either	
	intramuscularly or intraperitoneally. Vertical error bars	
	represent standard errors of the means. Data were from	
	15 animals in each of the IM and control groups, and	
	from 13 animals in the IP group	83
Figure 6.3	Mean diarrhoea score during the grain-feeding	
	period of non-immunised sheep and sheep primed	
	either intramuscularly or intraperitoneally. Vertical error bars	
	represent standard errors of the means. Data were from	
	15 animals in each of the IM and control groups, and from	
	13 animals in the IP group	84
Figure 6.4	The overall relationship between the salivary antibody	
	concentration and diarrhoea score in non-immunised sheep	
	and sheep primed either intramuscularly or intraperitoneally.	
	Antibody is the average saliva antibody concentration over	
	the period of grain feeding, and diarrhoea is the total	
	diarrhoea score over the period of grain feeding. The antibody	
	data in the figure was transformed by $\log(1+x)$	87
Figure 7.1	Average salivary antibody concentrations (units/ml)	
	after booster immunisation (Day 35 to Day 70) of	
	non-immunised sheep and sheep immunised with S. bovis	
	vaccines containing FCA, FIA, QuilA, Dex, Alum,	
	and Gerbu adjuvants. Vertical error bars represent standard	
	errors of the means (each group has 5 sheep). Values with	
	different letters (a, b, c, d, e, or f) are significantly	
	different (P<0.05)	97
Figure 7.2	The overall relationship between serum and salivary	
	antibody concentrations (units/ml) of non-immunised sheep	
	and sheep immunised with S. bovis vaccines containing	
	FCA, FIA, QuilA, Dex, Alum, and Gerbu adjuvants. The line	
	in the figure represents the regression line of the antibody	
	concentration in serum and saliva. The equation is the	
	regression equation of the antibody concentration	

	in serum and saliva	99
Figure 8.1	Mean daily dry matter intake (g/head) during the period	
	of grain challenge of non-immunised cattle and cattle	
	immunised with a vaccine containing S. bovis and	
	Lactobacillus. Vertical error bars represent standard	
	errors of the least square means	111
Figure 8.2	Mean rumen pH during the period of grain challenge of	
	non-immunised cattle and cattle immunised with a vaccine	
	containing S. bovis and Lactobacillus. Vertical error bars	
	represent standard errors of the means	113
Figure 8.3	Mean rumen lactate concentration (mmol/L) during the	
	period of grain challenge of non-immunised cattle and cattle	
	immunised with a vaccine containing S. bovis and	
	Lactobacillus. Vertical error bars represent standard	
	errors of the means	114
Figure 9.1	Average (after booster immunisation, from Day 33 to 138)	
	serum anti-S. bovis antibody IgG concentrations (units/ml)	
	of non-immunised cattle and cattle immunised with	
	vaccines using FCA, QuilA, Dex, and Alum adjuvants.	
	Vertical error bars represent standard errors of the means.	
	Values with different letters (a, b, or c) are	
	significantly different (P<0.05)	127
Figure 9.2	Average (after booster immunisation, from Day 33 to 138)	
	serum anti-Lactobacillus antibody IgG concentrations (units/ml)	
	of non-immunised cattle and cattle immunised with vaccines	
	using FCA, QuilA, Dex, and Alum adjuvants. Vertical error	
	bars represent standard errors of the means. Values with	
	different letters (a, b, or c) are significantly different (P<0.05)	128
Figure 9.3	The overall relationship between anti-S. bovis and	
	anti-Lactobacillus IgG in serum taken from non-immunised	
	cattle and cattle immunised with vaccines using FCA, QuilA,	
	Dex, and Alum adjuvants. Line in the figure represents the	
	regression line of the anti-S. bovis and anti-Lactobacillus	
	antibody IgG. The equation in the figure is the regression	

	equation of the anti-S. bovis and anti-Lactobacillus	
	antibody IgG	130
Figure 9.4	Mean log number of S. bovis in rumen fluid collected from	
	the control animals and cattle immunised with vaccines	
	using QuilA and Dex adjuvants. Vertical error bars represent	
	standard errors of the means (n=5 for QuilA or Dex group,	
	n=4 for the Control). * The number of rumen S. bovis	
	in the immunised cattle was significantly lower than	
	in the control (P<0.05) on Day 47	132
Figure 9.5	Mean log number of Lactobacillus in rumen fluid collected	
	from non-immunised cattle and cattle immunised with	
	vaccines using QuilA and Dex adjuvants. Vertical error bars	
	represent standard errors of the means (n=5 for QuilA	
	or Dex group, n=4 for the Control). The number	
	of rumen Lactobacillus in the immunised cattle	
	tended to be significantly lower than in the	
	control on Day 47 (P=0.050)	133
Figure 10.1	Mean cross-reactivity index of the vaccine strain Sb-5	
	and 8 other strains of <i>S. bovis</i> isolated from sheep and cattle.	
	Vertical error bars represent standard errors of the means	142
Figure 10.2	Mean cross-reactivity index of the vaccine isolate LB-27	
	and 4 other isolates of Lactobacillus obtained from sheep	
	and cattle. Vertical error bars represent standard errors	
	of the means	143