
Chapter 1

Preliminaries

1.1 Basic theory of differential equations

The main mathematical tools used in this thesis are from the theory of differential equations.

The whole theory of differential equation is so vast that we can only choose to present here those

material that is most relevant to our study here.

1.1.1 The existence and uniqueness theorem of ODE

We will frequently use the existence and uniqueness theorem of ordinary differential equations

(ODEs for short) and parabolic initial-boundary value problems.

Consider the initial value problem of an ODE system
dx

dt
= f(t, x), (t, x) ∈ D,

x(t0) = x0,

(1.1.1)

where D = {(t, x) ∈ RN+1||t− t0| < a, |x− x0| < b}, a, b are positive constants,

x =


x1

...

xN

 , x0 =


x0

1

...

x0
N

 , f =


f1

...

fN

 ,
dx

dt
=


dx1

dt
...

dxN
dt

 .
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Theorem 1.1.1 Suppose f(t, x) is a continuous function on D and there is a constant L > 0

such that

|f(x)− f(y)| ≤ L|x− y|.

Then there exists a positive constant δ = δ(L) such that (1.1.1) has a unique solution x = x(t)

defined in |t− t0| ≤ δ.

For a parabolic initial-boundary value problem, often we can use the contraction mapping

theorem together with the Lp estimates and Sobolev embedding to obtain the local existence and

uniqueness. Detailed discussion will be presented in the main text where it is necessary.

1.1.2 Function spaces

We collect here some function spaces that most commonly used in the theory of partial differen-

tial equations.

Let Ω be a bounded domain in RN . The Banach space C(Ω) is defined as the set of uniformly

continuous functions on Ω with the norm

‖u‖∞ = ‖u‖C(Ω) = sup
x∈Ω
|u(x)|.

The Banach space Cm(Ω) is the set of functions that are m times continuously differentiable

over Ω with the norm

‖u‖Cm(Ω) =
∑
β≤m

‖Dβu‖C(Ω),

where β = (β1, β2, · · · , βN) is the multi-index, |β| =
∑N

j=1 βj , and

Dβu =
∂|β|u

∂xβ1

1 · · · ∂x
βN
N

.

A function u is Hölder continuous with exponent α ∈ (0, 1], if for all x, y ∈ Ω,

|u(x)− u(y)| ≤ C|x− y|α

for some constant C.
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The Hölder space Cm,α(Ω) is a Banach space consisting of functions that arem-times contin-

uously differentiable and whose m-th partial derivatives are α-Hölder continuous, and endowed

with the norm

‖u‖Cm,α(Ω) = ‖u‖Cm(Ω) +
∑
|β|=m

[Dβu]α,

where

[Dβu]α = sup
x,y∈Ω,x 6=y

|Dβu(x)−Dβu(y)|
|x− y|α

.

Denote by C∞0 (Ω) the set of infinitely differentiable functions with compact support in Ω.

Let u be a locally integrable function on Ω. A locally integrable function v is the β-th weak

partial derivative of u if ∫
Ω

φv = (−1)|β|
∫

Ω

uDβφ

for all φ ∈ C∞0 (Ω).

For p ∈ [1,∞] and m a nonnegative integer, the Sobolev space Wm,p(Ω) is defined as the set

of functions whose first m orders weak partial derivatives are Lp-integrable, endowed with the

norm

‖u‖m,p =



∑
|β|≤m

∫
Ω

|Dβu|p
1/p

if 1 ≤ p <∞,

∑
|β|≤m

ess supx∈Ω|Dβu| if p =∞.

We say that a domain Ω is smooth if ∂Ω can be locally expressed as the graph of a smooth

function.

A Banach space X1 is said to be continuously embedded into a Banach space X2, written

X1 ↪→ X2, if X1 ⊂ X2 and the injection mapping from X1 to X2 is continuous. The embedding

is said to be compact, written X1 ↪→↪→ X2, if the injection mapping is also compact.

There are vast literatures on the embedding and compact embedding between different func-

tion spaces, we refer readers to e.g. [1], [27], [45] and the references therein for details. We only

quote here a result that we will use in the main text.

Theorem 1.1.2 ( Theorem 7.26 of [27]) Suppose Ω is a smooth domain. Then

Wm,p(Ω) ↪→↪→ Ck,α(Ω) if 0 ≤ k < m−N/p < k + 1, α < m−N/p− k.
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From the above theorem, if in particular, Ω is an open interval, m = 2 and p > 1, we have

W 2,p(Ω) ↪→↪→ C1(Ω).

For parabolic problems we have the Sobolev spaces involving spatial and temporal variables.

Let Q = QT = Ω × (0, T ) where Ω is smooth bounded domain in RN and 0 < T < ∞.

W 2,1;p(Q) is the space of functions u ∈ Lp(Q) satisfying ut, Dxu,D
2
xu ∈ Lp(Q), endowed with

the norm

‖u‖2,1;p = ‖u‖2,1;p;Q := ‖u‖p;Q + ‖ut‖p;Q + ‖Dxu‖p;Q + ‖D2
xu‖p;Q.

Given α ∈ (0, 1], we set

[u]α;QT = sup

{
|u(x, t)− u(y, s)|
|x− y|α + |t− s|α/2

: x, y ∈ Ω, t, s ∈ (0, T ), (x, t) 6= (y, s)

}
.

Let k be a nonnegative integer, α ∈ (0, 1) and a = k + α. Then if we put

‖u‖a,a/2;QT :=
∑

|β|+2j≤k

max
QT

|Dβ
xD

j
tu|+

∑
|β|+2j=k

[Dβ
xD

j
tu]α;QT

and

Ca,a/2(QT ) := {u : ‖u‖a,a/2;QT <∞},

thenCa,a/2(QT ) is a Banach space with the norm ‖·‖a,a/2;QT . We have the well-known imbedding

theorem:

Theorem 1.1.3 (Lemmas II.3.3, II.3.4 of [45]) If p > N + 2, a < 2 − (N + 2)/p and Ω is a

smooth domain in RN , then

W 2,1;p(QT ) ↪→ Ca,a/2(QT ).

1.1.3 Basic theory of second order linear elliptic and parabolic equations

Suppose Ω is a smooth bounded domain in RN(N ≥ 1). A second order linear (uniform) elliptic

partial differential equation is of the form

Lu =
N∑

i,j=1

aij(x)∂i∂ju+
N∑
i=1

bi(x)∂iu+ c(x)u = f(x), (1.1.2)
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where aij , bi,c and f are measurable functions satisfying the uniform elliptic condition

N∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2 for some λ > 0 and all x ∈ Ω, ξ ∈ RN .

It is usually also assumed there exists a constant Λ > 0 such that

N∑
i,j=1

|aij|+
N∑
i=1

|bi|+ |c| ≤ Λ.

A second order linear (uniform) parabolic equation is of the form

∂tu− Au = f(x, t),

where

Au =
N∑

i,j=1

aij(x, t)∂i∂ju+
N∑
i=1

bi(x, t)∂iu+ c(x, t)u, (1.1.3)

and there exist constant λ > 0, Λ > 0 such that

N∑
i,j=1

aij(x, t)ξiξj ≥ λ|ξ|2 for all (x, t) ∈ QT , ξ ∈ RN ,

N∑
i,j=1

|aij(x, t)|+
N∑
i=1

|bi(x, t)|+ |c(x, t)| ≤ Λ for all (x, t) ∈ QT .

Theorem 1.1.4 (Theorem 15.2 of [2]) Let Ω be a bounded domain with C2 boundary ∂Ω. Sup-

pose aij ∈ C(Ω), bi, c ∈ L∞(Ω) and f ∈ Lp(Ω). Then for any u ∈ W 2,p(Ω) satisfying

Lu = f in Ω, ∂νu = 0 on ∂Ω, (1.1.4)

we have

‖u‖W 2,p(Ω) ≤ C
(
‖u‖Lp(Ω) + ‖f‖Lp(Ω)

)
,

where C depends on L and Ω only.

From this theorem, if in particular, u ∈ W 2,p(Ω) for some p > 1 and f ∈ L∞(Ω), we will

have u ∈ W 2,p(Ω) for any p > 1. Henceforth, if in addition, Ω is an open interval, we have from

Theorem 1.1.2, u ∈ C1,α(Ω) for all α ∈ (0, 1).
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Theorem 1.1.5 (Theorem 7.35 of [48]) Let Ω be a bounded domain withC2 boundary ∂Ω. Sup-

pose aij ∈ C(QT ) and bi, c are bounded functions, f ∈ Lp(QT ). Then for any u ∈ W 2,1;p(QT )

satisfying

ut − Au = f in QT , ∂νu = 0 on ∂Ω× (0, T ), u(x, 0) = 0, (1.1.5)

we have

‖u‖2,1;p;QT ≤ C (‖u‖p;QT + ‖f‖p;QT ) , (1.1.6)

where C depends on A and QT only.

With Theorem 1.1.5, one can use the same method as in the proof of Theorem 7.32 of [48]( for

the existence and uniqueness of W 2,1;p solution of initial Dirichlet value problem) the following

Theorem 1.1.6 Under the assumption of Theorem 1.1.5, the problem

ut − Au = f in QT , ∂νu = 0 on ∂Ω× (0, T ), u(x, 0) = 0,

has a unique solution u ∈ W 2,1;p(QT ) and moreover

‖u‖2,1;p;QT ≤ C‖f‖p;QT ,

with C depends on A and QT only.

1.2 Principal eigenvalues and maximum principles

Concerning the eigenvalues of elliptic operators, we have the following two well-known theo-

rems:

Theorem 1.2.1 (Theorem A3.1 of [17]) Let L be uniformly elliptic with Cα(Ω) coefficients.

Suppose that Ω is C2,α and σ ∈ C1,α(∂Ω) when B is of Robin type. Then the eigenvalue problem

Lu = λu in Ω, Bu = 0 on ∂Ω, (1.2.1)

has a nonzero (C2,α(Ω)) solution if and only if λ ∈ Σ, where Σ is a sequence of complex numbers

{λn}, called eigenvalues, with λ1 real, and satisfying λ1 < infk≥2Re(λk). Moreover, complex
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eigenvalues come in pairs of the form η+ξi, and by a nonzero solution of (1.2.1) with λ = η+ξi,

we mean a function of the form u = v + wi, where v and w are real valued functions. Clearly

v − wi is a nonzero solution with λ = η − ξi

Theorem 1.2.2 (Theorem 1.3 of [17]) Under the conditions of Theorem 1.2.1. The first eigen-

value λ1 of (1.2.1), also called the principal eigenvalue of (1.2.1), is simple and corresponds to

a positive eigenfunction; none of the other eigenvalues corresponds to a positive eigenfunction.

Theorem 1.2.3 (The weak maximum principle, Corollary 3.2 of [27]) Let L be elliptic in the

bounded domain Ω. Suppose that in Ω, u ∈ C2(Ω) ∩ C(Ω) satisfies

Lu ≥ 0(≤ 0), c ≤ 0.

Then

sup
Ω
u ≤ sup

∂Ω
{u, 0}(inf

Ω
u ≥ inf

∂Ω
{u, 0}).

Theorem 1.2.4 (The Hopf boundary lemma, Lemma 3.4 of [27]) Suppose that L is uniformly

elliptic, c = 0 and Lu ≥ 0 in Ω, where u ∈ C2(Ω). Let x0 ∈ ∂Ω be such that

(i) u is continuous at x0;

(ii) u(x0) > u(x) for all x ∈ Ω;

(iii) ∂Ω satisfies an interior sphere condition at x0.

Then

Dνu(x0) > 0

whenever the directional derivative exists, where ν is a unit vector pointing outward of Ω at x0.

If c ≤ 0 and c/λ is bounded, the same conclusion holds provided u(x0) ≥ 0, and if u(x0) = 0

the same conclusion holds irrespective of the sign of c.

Theorem 1.2.5 (The strong maximum principle, Theorem 3.5 of [27]) Let L be uniformly el-

liptic, c = 0 and Lu ≥ 0(≤ 0) in a domain Ω (not necessarily bounded). Then if u achieves its

maximum (minimum) in the interior of Ω, u is a constant. If c ≤ 0 and c/λ is bounded, then u
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cannot achieve a non-negative maximum (non-positive minimum) in the interior of Ω unless it is

a constant.

The classic maximum principles have natural extensions to operators in divergence form:

Lu = Di(a
ij(x)Dju+ bi(x)u) + ci(x)Diu+ d(x)u

with the assumptions aij(x)ξiξj ≥ λ|ξ|2 for some λ > 0 and all ξ ∈ RN ,

aij, bi, ci, d ∈ L∞(Ω),

and ∫
Ω

(dv − biDiv)dx ≤ 0 for all non-negative v ∈ C∞0 (Ω). (1.2.2)

We call a function u ∈ W 1,2(Ω) satisfies Lu = 0(≥ 0,≤ 0) respectively in Ω, if∫
Ω

{aijDju+ biu)Div − (ciDiu+ du)v} dx = 0(≤ 0,≥ 0).

for any v ≥ 0, v ∈ C∞0 (Ω).

Theorem 1.2.6 (Theorem 8.1 of [27]) Let u ∈ W 1,2(Ω) satisfy Lu ≥ 0(≤ 0) in Ω. Then

sup
Ω
u ≤ sup

∂Ω
u+(inf

Ω
u ≥ inf

∂Ω
u−),

where sup∂Ω u := inf{k ∈ R1 : (u− k)+ ∈ W 1,2
0 (Ω)}; inf∂Ω u = − sup∂Ω(−u).

Theorem 1.2.7 (Theorem 8.19 of [27]) Let u ∈ W 1,2(Ω) satisfy Lu ≥ 0 in Ω. Then, if for some

ball B ⊂⊂ Ω, we have supB u = supΩ u ≥ 0, the function u must be constant in Ω and equality

holds in (1.2.2) when u 6≡ 0.

For the parabolic operator ∂tu− Au we have the following maximum principle:

Theorem 1.2.8 (Theorem 2 of [54]) Assume c(x, t) ≥ 0 inQT . Let u ∈ C2,1(QT )∩C(QT ) and

satisfies

∂tu− Au ≤ 0(≥ 0) in QT .
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If u ≤ M(u ≥ m) on QT and there is (x1, t1) ∈ QT such that u(x1, t1) = M(u(x1, t1) = m)

and M ≥ 0(m ≤ 0) if c(x, t) 6≡ 0. Then

u(x, t) ≡M (u(x, t) ≡ m).

We also have the parabolic Hopf’s lemma.

Theorem 1.2.9 (Theorem 3 of [54]) Assume c(x, t) ≥ 0 inQT . Let u ∈ C2,1(QT )∩C(QT ) and

satisfy

∂tu− Au ≤ 0(≥ 0) in QT .

If u ≤M(u ≥ m) onQT and there is (x2, t2) ∈ ∂Ω×(0, T ] such that u(x2, t2) = M(u(x1, t1) =

m) and M ≥ 0(m ≤ 0) if c(x, t) 6≡ 0. If ∂νu(x2, t2) exists and ∂Ω satisfies the interior ball

condition at x2, then

∂νu(x2, t2) > 0 (∂νu(x2, t2) < 0).

As a consequence of the parabolic maximum principle and the Hopf’s lemma, we have the

following comparison principle

Theorem 1.2.10 (Theorem 8 of [54]) Let u ∈ C2,1(QT ) ∩ C(QT ) and satisfy

∂tu− Au ≥ 0 in QT , a∂νu+ b(x, t)u ≥ 0 on (QT \ (Ω× {T}) and u(x, 0) ≥ 0 in Ω,

where a = 0, b = 1, or a = 1 and b(x, t) ≥ 0. Then

u(x, t) ≥ 0 in QT .

If further u(x, 0) 6≡ 0 in Ω, then

u(x, t) > 0 in QT .

1.3 Topological degree and bifurcation theorems

Let X be a real Banach space and Ω ⊂ X be open bounded. Denote by K(Ω) the set of

completely continuous operators mapping Ω into X . Let

M = {(I − F,Ω, y) : F ∈ K(Ω) and y 6∈ (I − F )(∂Ω)}.
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Then there exists exactly one function deg : M → Z satisfying

(d1) deg(I,Ω, y) = 1 for y ∈ Ω;

(d2) deg(I − F,Ω, y) = deg(I − F,Ω1, y) + deg(I − F,Ω1, y) where Ω1 and Ω2 are disjoint

open subsets of Ω such that y 6∈ Ω \ (Ω1 ∪ Ω2);

(d3) deg(I − H(t, ·),Ω, y(t)) is independent of t ∈ [0, 1] whenever H : [0, 1] × Ω → X is

completely continuous, y : [0, 1] → X is continuous and y(t) 6∈ (I − H(t, ·))(∂Ω) on

[0, 1].

If we replace the Banach spaceX with a positive cone P inX and the completely continuous

mapping is from P to P , we can define topological degree on cones. If in the definition of

topological degree, the open bounded domain is a neighborhood of an isolated fixed point (or

a compact set of fixed points), then we call the topological degree the fixed point index of the

isolated fixed point (the compact set of fixed points).

We will use in the thesis the following global bifurcation theorem, which is a variation of that

appeared in [55].

Theorem 1.3.1 (Theorem 29.2 of [15]) Let X be a real Banach space, K ⊂ X a cone, T ∈

L(X) positive and T |K compact, G : R+×K → X completely continuous andG(λ, x) = o(|x|)

as x→ 0 uniformly in λ from compact subsets of R+. Suppose also that

(a) x = 0 is the only fixed point of G(0, ·) and F0(λ, x) = λTx+G(λ, x) ∈ K on R+ ×K;

(b) T |K has characteristic values λ1, · · · , λm, for some m ≥ 1.

Then at least one (λi; 0) is a positive bifurcation point for x− F0(λ, x) = 0 and the component

of M̄ containing this point is unbounded, where

M = {(λ, x) ∈ R+ ×K : x = F0(λ, x), λ > 0 and x ∈ K \ {0}}.

In this thesis, usually X = C([0, h]) and K = {u ∈ C([0, h]) : u(x) ≥ 0 for all x ∈ [0, h]}

and TK has only one characteristic value λ1. By this theorem, we have an unbounded continuum

bifurcating from (λ1, 0) and remains in K.
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The following fixed point index calculation theorem plays an important role in the thesis.

Theorem 1.3.2 (Lemma 2.1 of [14]) LetE1, E2 be ordered Banach spaces with positive cones

C1, C2, respectively,E = E1×E2 andC = C1×C2. LetD be an open set inC containing 0 and

Si : D → Ci be completely continuous operators, i = 1, 2. Denote by (u, v) a general element

in C with u ∈ C1, v ∈ C2 and S(u, v) = (S1(u, v), S2(u, v)), C2(ε) = {v ∈ C2 : ‖v‖E2 < ε}.

Suppose U ⊂ C1 ∩D is relatively open and bounded, and

S1(u, 0) 6= u for u ∈ ∂U, S2(u, 0) ≡ 0 for u ∈ U.

Suppose S2 : D → C2 extends to a continuously differentiable mapping of a neighborhood of

D into E2, C2 − C2 is dense in E2 and Σ = {u ∈ U : u = S1(u, 0)}. Then the following

conclusions are true:

(i) if for any u ∈ Σ, the spectral radius r(S ′2(u, 0)|C2) > 1 and 1 is not an eigenvalue of

S ′2(u, 0)|C2 corresponding to a positive eigenvector, then for ε > 0 small, degC(I−S, U ×

C2(ε), 0) is defined and equals 0,

(ii) if for any u ∈ Σ, r(S ′2(u, 0)|C2) < 1, then degC(I − S, U × C2(ε), 0) and degC1
(I −

S1|C1 , U, 0) are both defined for ε > 0 small and they are equal.
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Chapter 2

Background and outline of research

Phytoplankton are photosynthesizing microscopic organisms that inhabit the upper sunlit layer

of almost all oceans and bodies of fresh water. Through photosynthesis they create organic com-

pounds from carbon dioxide dissolved in the water, a process that sustains the aquatic food web.

Phytoplankton are also responsible for much of the oxygen present in the Earth’s atmosphere.

Phytoplankton species typically compete for nutrients and light in aquatic environments ([20,

21, 37, 42, 63]. But in oligotrophic ecosystems with ample supply of light, they compete only

for nutrients [43, 49], and in eutrophic environments with ample nutrients supply, they compete

only for light [24, 35]. In a water column, a phytoplankton population diffuses due to water

turbulence, but they also sink or buoy. Most phytoplankton are heavier than water and have a

tendency to sink. On the other hand, some important phytoplankton, like some cyanobacteria,

green algae, have a lower density than water and will float [24].

2.1 The models and existing mathematical works

The simplest situation in phytoplankton dynamics is when the nutrients supply is ample and the

phytoplankton compete only for lights. In 1949, the classic work of Riley et al. [56] investigated

phytoplankton concentration in a vertical water column using a simple linear partial differential

equation. In 1995, Huisman and Weissing developed a theory of interspecific competition for
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light that assumes complete mixing of phytoplankton species. This theory is based on a system of

ordinary differential equations. In 1999 and 2006, Huisman et al. [35, 37] introduced a reaction-

diffusion model which is a very promising basic model for studying phytoplankton dynamics:

consider a water column with a cross section of one unit area and with n phytoplankton species.

Let x denote the depth within the water column where x runs from 0 (top) to h (bottom). And let

ui(x, t) denote the population density of a phytoplankton species i at depth x and time t. The rate

of changes in phytoplankton densities is described by the following system of reaction-diffusion

equations:

(ui)t = (Di(x) (ui)x − αi(x)ui)x + (gi(I(x, t))− di)ui, i = 1, · · · , n, (2.1.1)

where gi(I(x, t)) is the specific growth rate of phytoplankton species i as a function of light

intensity I(x, t), the continuous functions Di(x) > 0 is the diffusion coefficients, αi(x) is the

sinking (αi(x) > 0) or buoyant (αi(x) < 0) speed, and di is the loss rate of the phytoplankton

species i. The water column is assumed to be closed, and thus the zero-flux boundary conditions

are imposed:

Di(x)(ui)x(x, t)− αi(x)ui(x, t) = 0, x = 0, h, t ≥ 0, i = 1, · · · , n. (2.1.2)

The initial conditions are

ui(x, 0) = u0
i (x) 	 0, 0 ≤ x ≤ h, i = 1, · · · , n. (2.1.3)

The specific growth rate gi(I) satisfies

gi(0) = 0, g′i(I) > 0 for I ≥ 0,

and there are positive constants ci, γi such that

gi(I) ≤ ciI
γi for any I ≥ 0.

The light intensity takes the form

I(x, t) = I0e
−k0x exp

(
−
∫ x

0

[k1u1(s, t) + · · ·+ knun(s, t)] ds

)
,
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where I0 is the incident light intensity, k0 is the background turbidity and ki is the specific light

attenuation coefficient of the phytoplankton species i.

Typical growth functions gi(I) take the form

gi(I) =
miI

γi + I
,

or

gi(I) =
mi

γi
(1− e−γiI),

or

gi(I) = Iγi ,

where mi, γi are positive constants for all i = 1, · · · , n.

The first part of the thesis is a continuation of the recent works [22], [33], and the much

earlier research [40]. These works are mainly concerned with the one species phytoplankton

case. In this case (2.1.1)-(2.1.3) becomes
ut = Jx(x, t) +

[
g
(
e−k0x−k

∫ x
0 u(s,t)ds

)
− d
]
u, 0 < x < h, t > 0,

J(x, t) = D(x)ux(x, t)− α(x)u(x, t) = 0, x = 0 or h, t > 0,

u(x, 0) = u0(x) 	 0, 0 ≤ x ≤ h.

(2.1.4)

In [22], the special caseD(x) ≡ D (a positive constant) and α(x) ≡ 0 was considered. It was

shown that for this special case, there exists a critical death rate d∗ > 0 such that for 0 < d < d∗,

(2.1.4) has a unique positive steady state u∗(x), and it has no positive steady state when d ≥ d∗;

moreover, if u(x, t) is the unique solution of (2.1.4), then regardless of what initial function,

u0(x) 	 0, is taken, one always has

lim
t→∞

u(x, t) =

 0 if d ≥ d∗,

u∗(x) if 0 < d < d∗.

However, no analysis was given in [22] on the change of behavior of the model as the other

parameters vary.

In [33], the case D(x) ≡ D > 0 and α(x) ≡ α ∈ (−∞,∞) was investigated. In this case,

again it was shown that there exists a critical death rate d∗ so that for 0 < d < d∗, (2.1.4) has
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a unique positive steady state, and it has no positive steady state when d ≥ d∗. The dynamical

behavior of (2.1.4) was not considered in [33] but Hsu and Lou carefully examined how the

critical death rate d∗ changes as the other parameters D, α and h vary, and certain interesting

critical values of D, α and h were obtained through the analysis of d∗. The asymptotic profile

of the positive steady state was studied for the case α → +∞ and the case α → −∞. Several

open questions arise from [33]. For example, with D and α suitably fixed and regarding d∗ as a

function of h: d∗ = d∗(h), Hsu and Lou proved that d∗(h) is a strictly decreasing function of h

with d∗∞ := limh→∞ d
∗(h) ∈ [0,∞). They showed that d∗∞ > 0 when α < α0 for some α0 > 0

but the question whether d∗∞ > 0 for all α ∈ (−∞,∞) was left open. We will give a complete

answer to this question: There exists a unique α∗ > 0 such that d∗∞ > 0 if and only if α < α∗.

In [40], the case D(x) ≡ D > 0, α(x) ≡ α > 0, and h = ∞, was studied, where the

boundary condition at x = h should be replaced by u(x, t) → 0 as x → ∞. For such a case,

sharp necessary and sufficient conditions were given for the existence and uniqueness of positive

steady state, and it was shown that the unique positive steady state is the global attractor of (2.1.4)

(with h = ∞) whenever it exists. The case D(x) ≡ D > 0, α(x) ≡ α > 0 and h < ∞ was

considered in [41] with a sketch of the proof given, using a very different approach from the one

used in this thesis.

[22] also considered the two species (n = 2) case. In this case, [22] studied the necessary

condition for the existence of positive steady state and identified a set of (d1, d2) for which

(2.1.1)-(2.1.3) has at least one positive steady state. [22] also studied the conditions on which

the positive solution of (2.1.1)-(2.1.3) will persist or extinct. In their paper, Du and Hsu assumed

D(x) = D, a positive constant, and α(x) ≡ 0.

While much mathematical theory has been established for one or two species phytoplankton

systems, little is achieved in this direction for three or more species models. In multi-species

micro-organism competitions, it was predicted in Huisman and Weissing [38, 39, 62] that inter-

specific competition in well-mixed environment leads to competitive exclusion, similar to that in

[31, 32]. However it is widely observed in multi-species phytoplankton communities that these

communities often appear to violate the competitive exclusion principle [4]. This phenomenon
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is the so called paradox of plankton, see [30] and the reference therein. Coexistence and persis-

tence of two competing phytoplankton species have been established mathematically in [22]. We

will extend the results of [22] on two species case to more than two species case.

2.2 Outline of research

In the main part of this thesis, Chapter 3-Chapter 5, we study model (2.1.1)-(2.1.3) for one

species (n = 1) case, as well as multi-species (n ≥ 2) case.

In Chapter 3, we consider the one species case, namely, (2.1.4). Our first result is the exis-

tence and uniqueness of positive steady state solution.

Theorem 2.2.1 (Theorem 3.2.1) Problem (2.1.4) has no positive steady state solution for d 6∈

(0, d∗) and it has a unique positive steady state solution for d ∈ (0, d∗), where d∗ = −λ1(−g(e−k0x))

and λ1(Ψ) is the principal eigenvalue of the eigenvalue problem (−D(x)φ′ + α(x)φ)′ + Ψ(x)φ = λφ, 0 < x < h,

D(x)φ′(x)− α(x)φ(x) = 0, x = 0, h.

The second result is concerned with the properties of the unique steady state solution.

Theorem 2.2.2 (Theorem 3.2.2) If we denote the uniqueness positive steady state solution of

(2.1.4) by ud, then

(i) d→ ud is continuous from (0, d∗) to C2([0, h]),

(ii) 0 < d1 < d2 < d∗ implies ud1(0) > ud2(0),

(iii) 0 < d1 < d2 < d∗ implies
∫ x

0
ud1(s)ds >

∫ x
0
ud2(s)ds for all x ∈ (0, h].

(iv) ud → 0 uniformly in [0, h] as d → d∗, dud → eR(x)∫ h
0 eR(s)ds

∫∞
0
g(e−ks)ds uniformly in [0, h]

as d→ 0, where R(x) =
∫ x

0
α(s)
D(s)

ds.

The third result of Chapter 3 is about the dynamic behavior of (2.1.4).
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Theorem 2.2.3 (Theorem 3.3.1) If d ≥ d∗, then the solution u(x, t) of (2.1.4) converges to 0

uniformly for x ∈ [0, h] as t→∞.

If 0 < d < d∗, then u(x, t) converges to the unique steady state ud(x) uniformly for x ∈ [0, h]

as t→∞ .

The above three theorems extend the results of [22] from the special case thatD(x) ≡ D > 0

and α(x) ≡ 0 to the general case that D(x) and α(x) are arbitrary positive functions with con-

tinuous derivatives. We note that vertical diffusion in a phytoplankton water column caused by

the wind and wave actions is in general inhomogeneous. Remarkably, in a recent paper [57],

Ryabov, Rudolf and Blasius made use of a variable but continuous diffusion rate D(x) in their

model to demonstrate through numerical simulation that for some parameter ranges, the phyto-

plankton dynamics exhibits a bistable behavior: depending on the initial state, the phytoplankton

population may stabilize at a steady state with maximum in an upper mixed layer (UML), or at a

steady state with maximum below the UML, the latter representing a deep chlorophyll maxima

(DCM). This is in agreement with earlier numerical simulation results obtained by Yoshiyama

and Nakajima [64] based on a more simplified model where D(x) was assumed to be ∞ near

the water surface (representing a complete mixing layer above a seasonal thermocline) and it is

assumed to be finite and positive below the seasonal thermocline. In contrast, our results here

show that the phytoplankton always stabilizes at a unique steady state, regardless of its initial

state. However, this is not in contradiction to [57] and [64], since in our model ample nutrients

supply is assumed while in both [57] and [64] the phytoplankton is nutrient limited. Thus our

theoretical results here imply that limitation of nutrients is a necessary condition for the bistable

behavior of phytoplankton dynamics demonstrated in [57] and [64]; inhomogeneous diffusion

and sinking alone cannot cause such bistable behavior.

Though the ideas in the proof of our general results on the dynamical behavior follow [22],

significant changes are needed in the detailed arguments.

In Section 3.3, we study the asymptotic profiles of the steady state solution in several impor-

tant limiting cases; namely, small diffusion, large diffusion, and deep water column. In the dis-

cussion of these results, we limit ourselves to D(x) = D and α(x) = α, two positive constants,
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for simplicity of presentation. For the small diffusion case, we show that the phytoplankton

population concentrates at the bottom of the water column:

Theorem 2.2.4 (Theorem 3.4.8) Let d ∈ (0, g(e−k0h)). Then for all small D > 0, the unique

positive solution uD(x) of (2.1.4) is strictly increasing in [0, h]. Moreover, as D → 0,

max
x∈
[

0, h− 2D
α
| lnD|

]∣∣uD(x)− τ ∗D−1eα(x−h)/D
∣∣→ 0, (2.2.1)

and ∫ h

0

uD(x)dx→ τ∗/α, (2.2.2)

where τ∗ is uniquely determined by the equation

d =

∫ 1

0

g
(
e−k0h−kτ∗x/α

)
dx.

While for large diffusion, we prove that the population tends to distribute evenly in the water

column:

Theorem 2.2.5 (Theorem 3.4.9) As D →∞,

uD(x)→ c∗ uniformly on [0, h], (2.2.3)

where c∗ is uniquely determined by the equation

d =
1

h

∫ h

0

g
(
e−k0x−kc∗x

)
dx.

The concentration result in the small diffusion case appears to correspond to the widely ob-

served deep chlorophyll maxima (DCM). Our result that with large diffusion the phytoplankton

distribution tends to be homogeneous in the water column is naturally expected, and it lends

further support to the practice used in the modeling of phytoplankton in completely mixed water

columns (e.g. [28]).

Our theoretical results also reveal that, when all the other factors are the same, in a water

column with positive background turbidity, the total biomass is bigger in the large diffusion case

than in the small diffusion case, and in a water column with zero (or negligible) background
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turbidity, the total biomass tends to the same limit in both cases. We do not know whether this

phenomenon has been observed before.

When the water column depth goes to infinity, as expected, we prove that the population

distribution approaches that obtained in [40] with infinite water depth, and the population density

reaches a maximum at a certain finite depth.

Theorem 2.2.6 (Theorem 3.4.18) Suppose d∗∞ = limh→∞ d
∗
h > 0, and 0 < d < d∗∞.

(a) Suppose either k0 > 0, or k0 = 0 and 0 < d < g(1) − α2/4D. Let uh(x) be the unique

positive solution to (2.1.4). Then, as h→∞,

uh(x)→ u∞(x) in C1
loc([0,∞)), (2.2.4)

where u∞(x) is the unique positive solution to
−Du′′∞ + αu′∞ =

[
g(e−k0x−k

∫ x
0 u∞(s)ds)− d

]
u∞, x ∈ (0,∞),

u′(0) =
α

D
u(0).

(2.2.5)

Moreover u∞(x) has the following properties:

(i) There exists x∞ ∈ (0,∞) such that

u′∞(x∞) = 0, u′∞(x) > 0 for x ∈ [0, x∞), u′∞(x) < 0 for x ∈ (x∞,∞);

(ii) There exists positive constants C, L, and α0 such that

u∞(x) ≤ Ce−α0x for any x ∈ [L,∞). (2.2.6)

(b) Suppose k0 = 0 and d ≥ g(1)− α2/4D. Then uh → 0 in C1
loc([0,∞).

Here the limit limh→∞ d
∗
h exists, because according to a result in [33], d∗h is decreasing with

respect to h.

As a by product of the last result, we are able to completely answer a problem left open in

[33] as mentioned in the last section:
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Theorem 2.2.7 (Theorem 3.4.19) Let k0 > 0. Then there exists a positive constant α∗ such that

d∗∞ > 0 if and only if α < α∗.

For the multi-species case, we first extend the results in [22] for the two species case to the

case where D(x) > 0 and α(x) are smooth general functions. The proofs are very similar to

those of [22]. But by the same reason as mentioned above for the one species case, and since it

makes the thesis more complete, we decide to give a detailed presentation here. This is the main

task of Chapter 4. Actually we prove in Chapter 4 the following result:

Theorem 2.2.8 (Theorem 4.1.1) Let u∗di , di ∈ (0, d∗i ), i = 1, 2, be the unique positive solution

of the problem (−Di(x)u′ + αi(x)u)′ = [gi(e
−k0x−ki

∫ x
0 u(s) ds)− di]u, 0 < x < h,

Di(0)u′(0)− αi(0)u(0) = Di(h)u′(h)− αi(h)u(h) = 0.

If  0 < d1 < −λ(1)
1 [−g1(e−k0x−k2

∫ x
0 u∗d2

(s) ds)]

0 < d2 < −λ(2)
1 [−g2(e−k0x−k1

∫ x
0 u∗d1

(s) ds)],
(2.2.7)

where λ(i)
1 (Ψ) is the principal eigenvalue of the eigenvalue problem

(−Di(x)φ′+αi(x)φ)′+Ψ(x)φ = λφ, Di(0)φ′(0)−αi(0)φ(0) = Di(h)φ′(h)−αi(h)φ(h) = 0,

then (2.1.1)-(2.1.3) has at least one positive steady state solution.

The sufficient condition for the existence of positive steady state solution (2.2.7) is rather

implicit. We have a discussion at the end of Chapter 4 that it is not a necessary condition.

Actually, it is also shown in Chapter 4 that a necessary condition for (2.1.4) to have a positive

steady state solution is both

0 < d1 < −λ(1)
1 [−g1(e−k0x)] and 0 < d2 < −λ(2)

1 [−g2(e−k0x)]

hold. However we have the following

Proposition 2.2.9 (Proposition 4.1.5) For fixed d1 ∈ (0, d∗1), if δ > 0 is small enough, then

(2.1.1)-(2.1.3) has no positive steady state solution if d2 /∈ (δ, d∗2 − δ).
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To explain (2.2.7) more clearly, we need more preparations. We leave this task to Chapter 5.

In Chapter 5, we extend the results for the two species case to the more than two species cases

to reveal a general phenomenon. For the more than two species case, for simplicity we assume

Di(x) = Di, and αi(x) = αi, where Di > 0 and αi ∈ (−∞,∞) are constants. For three species,

we show that when the turbulence diffusion rates Di, i = 1, 2, 3, are very large, generically there

are no possibility of coexistence of multiple phytoplankton species in the same water column:

Theorem 2.2.10 (Theorem 5.2.1) (i) If di >
∫ 1

0
gi(e

−k0x)dx for some i ∈ {1, 2, 3}, then

there exists a constant D > 0, such that if min{D1, D2, D3} ≥ D then (2.1.1)-(2.1.3) has

only the trivial steady state solution.

(ii) If di ∈ (0,
∫ 1

0
gi(e

−k0x)dx] for all i = 1, 2, 3, then there exists a positive constant D such

that if min{D1, D2, D3} ≥ D, (2.1.1)-(2.1.3) has no positive steady state solution except

possibly when the following exceptional situation occurs: there exists a constant c ≥ 0

such that

c1 = c2 = c3 = c,

where ci is uniquely determined by

di =

∫ 1

0

gi(e
−(k0+ci)x)dx. (2.2.8)

However when the turbulence diffusion is not large, multiple phytoplankton species can co-

exist in the same water column, in certain parameter ranges:

Theorem 2.2.11 (Theorem 5.2.2) Suppose that

0 < d1 < −λ(1)
1 [−g1(σd2d3(x))] ,

0 < d2 < −λ(2)
1 [−g2(σd1d3(x))] ,

0 < d3 < −λ(3)
1 [−g3(σd1d2(x))] ,

(2.2.9)

where

σd2d3(x) = e−k0x−
∫ x
0 [ud2 (y)+ud3 (y)]dy, x ∈ [0, 1],

σd1d3(x) = e−k0x−
∫ x
0 [ud1 (y)+ud3 (y)]dy, x ∈ [0, 1],
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σd1d2(x) = e−k0x−
∫ x
0 [ud1 (y)+ud2 (y)]dy, x ∈ [0, 1],

where udi(x) is the unique positive solution of

−Diu
′′ + αiu

′ = [gi(e
−k0x−

∫ x
0 u(s)ds)− di]u, Diu

′(0)− αiu(0) = Diu
′(1)− αiu(1) = 0.

Then (2.1.1)-(2.1.3) has at least one positive steady state solution.

Theorem 2.2.12 (Theorem 5.2.3) Suppose α1, α2, α3 ∈ R1 and at least two of the three αi(i =

1, 2, 3) are nonpositive. Then there exist suitable (D1, D2, D3) and (d1, d2, d3) such that (2.2.9)

holds, and hence there is at least one positive steady state solution to (2.1.1)-(2.1.3).

Theorem 2.2.13 (Theorem 5.2.4) SupposeD1, D2, D3 are fixed. We can choose suitable α1, α2, α3

and d1, d2, d3 such that (2.2.9) holds, and hence there exists at least one positive steady state so-

lution to (2.1.1)-(2.1.3).

The proof of Theorem 2.2.11 is rather long. We use a fixed point index calculation tech-

nique developed in Dancer and Du [14], where they treated the classical Lotka-Volterra type

multi-species reaction-diffusion systems. See also results in Du [18] concerning the existence

of positive periodic solutions for a competitor-competitor-mutualist model with diffusion. Other

results concerning three species systems can be found in [29, 46, 47] and the references therein.

For our system, the mathematical treatment is much more difficult. The difficulties are twofold.

One is the nonlocal terms involved, which, among other difficulties, makes the usual comparison

principle difficult to use. The other is the fact there are fewer parameters in the system than in

the classical Lotka-Volterra type competition models, and hence sufficient conditions for coexis-

tence are more difficult to formulate. Because of these difficulties, we need much more involved

analysis on the solutions of the system in order to make the abstract tools applicable.

The proofs of Theorems 2.2.12 and 2.2.13 rely on a development of an idea in [33] concerning

the fine properties of certain eigenvalue problems and a detailed a priori estimates on the positive

steady state solutions of (2.1.1)-(2.1.3). The exact ranges of parameters for the existence of

positive steady states can be found in the proofs of these two theorems in Chapter 5.

In the last section of Chapter 5, we extend the results for the two and three species to the

general n(≥ 2) species case.
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Theorem 2.2.14 (Theorem 5.4.2) (i) If di >
∫ 1

0
gi(e

−k0x)dx for some i ∈ {1, · · · , n}, then

there exists a constant D > 0, such that if min{D1, D2, · · · , Dn} ≥ D then (2.1.1)-(2.1.3)

has only the trivial steady state solution.

(ii) If di ∈ (0,
∫ 1

0
gi(e

−k0x)dx] for all i = 1, 2, · · · , n, then there exists a positive constant

D such that if min{D1, D2, · · · , Dn} ≥ D, (2.1.1)-(2.1.3) has no positive steady state

solution except possibly when the following exceptional situation occurs:

there exists a constant c ≥ 0 such that

c1 = c2 = · · · = cn = c,

where ci is uniquely determined by

di =

∫ 1

0

gi(e
−(k0+ci)x)dx, i = 1, 2, · · · , n. (2.2.10)

Theorem 2.2.15 (Theorem 5.4.3) Suppose that

0 < di < −λ(i)
1 [−gi(κi(x))], i = 1, 2, · · · , n, (2.2.11)

where

κi(x) = e−k0x exp

(∑
j 6=i

∫ x

0

udj(y)dy

)
, i = 1, 2, · · · , n,

and udj is the unique positive solution of the equation

−Dju
′′ + αju

′ =
[
gj

(
e−k0x−

∫ x
0 u(y)dy

)
− dj

]
v, Dju

′(0)− αju(0) = Dju
′(1)− αju(1) = 0.

Then (2.1.1)-(2.1.3) has at least one positive steady state solution.

Theorem 2.2.16 (Theorem 3.4.27) Suppose that α1, α2, · · · , αn ∈ R1 and at least n − 1 of

the αi(i = 1, 2, · · · , n) are nonpositive. Then we can choose suitable (D1, D2, · · · , Dn) and

(d1, d2, · · · , dn) such that (2.2.11) holds, and hence there is at least one positive steady state

solution to (2.1.1)-(2.1.3).

Theorem 2.2.17 (Theorem 5.4.5) Suppose D1, D2, · · · , Dn are fixed. We can choose suitable

α1, α2, · · · , αn and d1, d2, · · · , dn such that (2.2.11) holds, and hence there exists at least one

positive steady state solution to (2.1.1)-(2.1.3).
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We end the introduction by mentioning some other closely related mathematical research. In

[20, 21] a reaction-diffusion-advection model proposed by Klausmeier and Litchman [42] was

studied, where both nutrient and light limitations were present, and the focus was on examining

the biomass concentration under the assumption that, apart from passive diffusion caused by cur-

rents movement, the species actively moves towards an optimal spatial position that maximizes

its use of both light and nutrient. In [65], a phytoplankton-nutrient model proposed in [37] was

studied. This is also a reaction-diffusion-advection model, but the reaction term is different from

the model of [42] considered in [20, 21], and no active movement of the phytoplankton is as-

sumed. In [44], like in [58], the case k0 = 0 was considered, where D(x) and σ(x) are both

positive constants, and h can be either finite or infinite. Under suitable conditions, the authors

proved the existence and uniqueness of a positive steady state, and its local stability; the asymp-

totic profile of the positive steady state was also considered for some limiting situations. In [50],

the phytoplankton-nutrient model of [42] was considered. Instead of considering the case of

large advection as in [20, 21], [50] studied the small diffusion case.
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Chapter 3

The one species case

3.1 Introduction

In this chapter we consider model (2.1.1)-(2.1.3) in the single species case. That is (2.1.4):
ut = Jx(x, t) +

[
g
(
e−k0x−k

∫ x
0 u(s,t)ds

)
− d
]
u, 0 < x < h, t > 0,

J(x, t) = D(x)ux(x, t)− α(x)u(x, t) = 0, x = 0 or h, t > 0,

u(x, 0) = u0(x) 	 0, 0 ≤ x ≤ h,

(3.1.1)

where u(x, t) is the phytoplankton density at depth x and time t, D(x) is the diffusion caused by

water turbulence, α(x) is the sinking (α(x) > 0) or buoyant (α(x) < 0) velocity, d > 0 is the

death rate of the phytoplankton species,

I(x, t) = e−k0x−k
∫ x
0 u(s,t)ds

is the light density function in the water column with k0 > 0 the background turbidity coefficient

and k > 0 the light absorption coefficient of the phytoplankton species, the growth function g(I)

is a smooth function satisfying

g(0) = 0, g′(I) > 0 for all I > 0.

We also suppose there are constants c, γ > 0 such that

g(I) ≤ cIγ
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so that ∫ ∞
0

g(e−ξ) dξ <∞.

As mentioned in the Introduction, this one species model has been studied by many authors, no-

tably [22, 33] and [40]. We first generalize the results in [22] and [33] (concerning the constant

coefficient case) to the varying coefficient case. Then we consider how the phytoplankton behav-

ior changes when the parameters of the system change. More precisely, we consider the cases

of small diffusion, large diffusion, and deep water depth and find out how the phytoplankton

distributions have in these cases. As a byproduct, we solve a problem left open in [33].

3.2 Existence and uniqueness of positive steady state solution

This subsection is concerned with the positive steady state of (3.1.1). Let

v(x, t) = u(x, t)e−R(x)

with

R(x) =

∫ x

0

α(s)

D(s)
ds.

Then v(x, t) satisfies
vt = e−R(x)

[
D(x)eR(x)vx

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s,t)ds

)
− d
]
v, 0 < x < h, t > 0,

vx(0, t) = vx(h, t) = 0, t > 0,

v(x, 0) = u0(x)e−R(x) =: v0(x) 	 0, 0 ≤ x ≤ h.

(3.2.1)

The corresponding steady state equation is
−e−R(x)

[
D(x)eR(x)v′

]′
=
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s)ds

)
− d
]
v, 0 < x < h,

v′(0) = v′(h) = 0.
(3.2.2)

For a function Ψ ∈ C([0, h]), let λ1(Ψ) denote the smallest eigenvalue of

−e−R(x)
[
D(x)eR(x)ϕ′

]′
+ Ψϕ = λϕ in (0, h), ϕ′(0) = ϕ′(h) = 0. (3.2.3)
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It is well known (see e.g. [6]) that λ1(Ψ) is a continuous function of Ψ in C([0, h]) and λ1(Ψ1) >

λ1(Ψ2) for Ψ1 ≥ Ψ2 and Ψ1 6≡ Ψ2; λ1(Ψ) is the only eigenvalue of (3.2.3) that corresponds to

an eigenfunction which does not change sign; moreover, λ1(Ψ) has a variational formulation:

λ1(Ψ) = inf
ϕ∈H1((0,h)), ϕ 6=0

∫ h
0
eR(x) [D(x)|ϕ′(x)|2 + Ψ(x)ϕ2(x)] dx∫ h

0
eR(x)ϕ2(x)dx

.

Clearly λ1(0) = 0 with a corresponding eigenfunction ϕ1(x) ≡ 1.

Define

Φ0(x) = −g(e−k0x), d∗ := −λ1(Φ0).

Then 0 < d∗ <∞.

With d∗ thus defined, we have the following existence and uniqueness result

Theorem 3.2.1 Problem (3.2.2) has no positive solution for d 6∈ (0, d∗) and it has a unique

positive solution for d ∈ (0, d∗).

Proof. The first equation in (3.2.2) can be rewritten as

−e−R(x)
[
D(x)eR(x)v′

]′ − g (e−k0x−k
∫ x
0 eR(s)v(s)ds

)
v = −dv.

Hence, if v is a positive solution, then

d = −λ1

[
−g
(
e−k0x−k

∫ x
0 eR(s)v(s)ds

)]
.

By the monotonicity property of the principal eigenvalue, we obtain

λ1

[
−g
(
e−k0x

)]
< λ1

[
−g
(
e−k0x−k

∫ x
0 eR(s)v(s)ds

)]
< λ1(0) = 0.

That is

d∗ > d > 0.

Hence (3.2.2) has no positive solution for d 6∈ (0, d∗).

We next prove there is at least one positive solution for each d ∈ (0, d∗). Let K be the set of

positive functions in C([0, h]). For v ∈ K define

G(v) = g
(
e−k0x−k

∫ x
0 eR(s)v(s)ds

)
v + (d∗ − d+ 1)v.
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For f ∈ C([0, 1]), let L be the solution operator of

−e−R(x)
[
D(x)eR(x)v′

]′
+ (d∗ + 1)v = f(x), v′(0) = v′(h).

It is clear that L(v) is a linear completely continuous operator from K to K. Since G(d, v) is

clearly a continuous operator fromR+×K toK, we have F := L◦G is a completely continuous

operator from R+ ×K to K; moreover F (d, ·) maps K◦ into K◦, where K◦ denotes the interior

of K. Thus to find a positive solution of (3.2.2) is equivalent to find a point v in K◦ such that

v = F (d, v).

We can easily verify that F satisfies the conditions of Theorem 1.3.1. Thus we know (3.2.2) has

an unbounded connected positive solution branch, Γ = {(d, v)}, that bifurcates from the trivial

solution branch {(d, 0)} at (d∗, 0). We prove that Γ can only become unbounded when d → 0.

In such a case, due to the connectedness of Γ, (3.2.2) has at least one positive solution for any

d ∈ (0, d∗). Assume there exist a sequence dn and corresponding positive solution sequence vn

such that as n→∞,

dn → d0, ‖vn‖∞ →∞.

Set v̂n = vn/‖vn‖∞. Then we have
−
[
D(x)eR(x)v̂′n

]′
=
[
g
(
e−k0x−k

∫ x
0 vn(s)eR(s) ds

)
− dn

]
eR(x)v̂n in (0, h),

v̂′n(0) = v̂′n(h) = 0.

Since fn(x) := g(e−k0xe−k
∫ x
0 vn(s)eR(s) ds) is a bounded sequence in L∞([0, h]), we have that

{v̂n} and {v̂′′n} are both bounded sequences in L∞([0, h]). By the Sobolev compact embedding

theorem, we may assume, by passing to a subsequence, that v̂n → v̂ in C1([0, h]). Moreover,

fn → f weakly in L2([0, h]), and 0 ≤ f ≤ g(1) since 0 ≤ fn ≤ g(1) for each n. It follows that

v̂ is a weak solution of

−
[
D(x)eR(x)v̂′

]′
= (f − d0)eR(x)v̂ in (0, h), v̂′(0) = v̂′(h) = 0.

We also have v̂ ≥ 0, ‖v̂‖∞ = 1. Since (f − d0) ∈ L∞([0, h]), by the strong maximum principle

we have v̂ > 0 on [0, h] and −d0 = λ1(−f).
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On the other hand, from v̂n → v̂ > 0 uniformly in [0, h] and ‖vn‖∞ → ∞, we have that

vn →∞ uniformly on [0, h]. It follows that

e−k
∫ x
0 vn(s)eR(s) ds → 0

uniformly on any compact subset of (0, h]. This means that f ≡ 0 and hence

−d0 = λ1(−f) = 0.

Therefore Γ can only become unbounded through the existence of a sequence (dn, vn) ∈ Γ such

that dn → 0 and ‖vn‖∞ → ∞. Moreover, the above proof shows that in such a case, vn → ∞

uniformly on [0, h]. As a consequence of the connectedness of Γ, we conclude that (3.2.2) has at

least one positive solution for each d ∈ (0, d∗).

We next prove the uniqueness conclusion. Suppose by way of contradiction that for some

d ∈ (0, d∗), (3.2.2) has two positive solutions v1 and v2. We first observe that v1 − v2 must

change sign in (0, h). Otherwise we may assume that v1 ≤ v2 and v1 6≡ v2. From this and the

equations for v1 and v2 we obtain

−d = λ1

[
−g
(
e−k0xe−k

∫ x
0 v1(s)eR(s) ds

)]
< λ1

[
−g
(
e−k0xe−k

∫ x
0 v2(s)eR(s) ds

)]
= −d,

a contradiction. Therefore v1 − v2 changes sign in (0, h).

We claim that v1(0) 6= v2(0). Otherwise, we denote ξi(x) =
∫ x

0
vi(s)e

R(s) ds, ηi(x) =

eR(x)v′i(x), for i = 1, 2, and find that (vi, ξi, ηi) are solutions of the initial value system (v′, ξ′, η′) =
(
e−R(x)η, eR(x)v,−[g(e−k0xe−kξ)− d]eR(x)v

)
,

(v(0), ξ(0), η(0)) = (v1(0), 0, 0).

By the well-known existence and uniqueness theorem of ODE, we find that (v1, ξ1, η1) = (v2, ξ2, η2)

in a small neighborhood [0, δ). We may then repeat this argument to conclude that v1 ≡ v2 as

long as they are defined, which is a contradiction to our assumption that they are different solu-

tions of (3.2.2). Therefore v1(0) 6= v2(0).

For definiteness we assume that v1(0) < v2(0). Since v1 − v2 changes sign in (0, h), there

exists x0 ∈ (0, h) such that v2(x) > v1(x) in [0, x0) and v1(x0) = v2(x0). Thus we have∫ x0

0

[−(D(x)eR(x)v′1)′v2] dx =

∫ x0

0

[g(e−k0xe−k
∫ x
0 v1(s)eR(s) ds)− d]eR(x)v1v2 dx.
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By integration by parts, we deduce

−D(x)eR(x)v′1v2

∣∣∣x0

0
+

∫ x0

0

D(x)eR(x)v′1v
′
2 dx

=

∫ x0

0

g(e−k0xe−k
∫ x
0 v1(s)eR(s) ds)eR(x)v1v2 dx− d

∫ x0

0

eR(x)v1v2 dx.

Similarly, we have∫ x0

0

[−D(x)(eR(x)v′2)′v1] dx =

∫ x0

0

[g(e−k0xe−k
∫ x
0 v2(s)eR(s) ds)− d]eR(x)v1v2 dx,

and
−D(x)eR(x)v′2v1

∣∣∣x0

0
+

∫ x0

0

D(x)eR(x)v′1v
′
2 dx

=

∫ x0

0

g(e−k0xe−k
∫ x
0 v2(s)eR(s) ds)eR(x)v1v2 dx− d

∫ x0

0

eR(x)v1v2 dx.

Therefore

D(x)eR(x)[v1v
′
2 − v2v

′
1]
∣∣∣x0

0

=

∫ x0

0

[g(e−k0xe−k
∫ x
0 v1(s)eR(s) ds)− g(e−k0xe−k

∫ x
0 v2(s)eR(s) ds)]eR(x)v1v2 dx.

(3.2.4)

Since v′1(0) = v′2(0) = 0 by the boundary condition, and v1(x0) = v2(x0) > 0, v′1(x0) ≥ v′2(x0),

we have

D(x)eR(x)[v1v
′
2 − v2v

′
1]
∣∣∣x0

0
= D(x0)eR(x0)v1(x0)[v′2(x0)− v′1(x0)] ≤ 0.

Therefore (3.2.4) implies that∫ x0

0

[g(e−k0xe−k
∫ x
0 v1(s)eR(s) ds)− g(e−k0xe−k

∫ x
0 v2(s)eR(s) ds)]eR(x)v1v2 dx ≤ 0.

But on the other hand, from v1(x) < v2(x) in (0, x0) we have∫ x0

0

[g(e−k0xe−k
∫ x
0 v1(s)eR(s) ds)− g(e−k0xe−k

∫ x
0 v2(s)eR(s) ds)]eR(x)v1v2 dx > 0.

This contradiction proves our uniqueness conclusion. �

Theorem 3.2.2 If we denote the unique positive solution of (3.2.2) by vd, then

(i) d→ vd is continuous from (0, d∗) to C2([0, h]),
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(ii) 0 < d1 < d2 < d∗ implies vd1(0) > vd2(0),

(iii) 0 < d1 < d2 < d∗ implies
∫ x

0
eR(s)vd1(s)ds >

∫ x
0
eR(s)vd2(s)ds for all x ∈ (0, h].

(iv) vd → 0 uniformly in [0, h] as d → d∗, dvd →
∫∞

0
g(e−ks)ds

/∫ h
0
eR(s)ds uniformly in

[0, h] as d→ 0 .

Proof. To prove that d→ vd is continuous from (0, d∗) to C2([0, h]), we use the standard com-

pactness and uniqueness argument. If dn → d0 ∈ (0, d∗), then a subsequence of vdn converges in

C1([0, h]) to a positive solution of (3.2.2) with d = d0. The uniqueness assumption means this

positive solution must be vd0 . Therefore the entire sequence converges to vd0 . From the equation

of vd0 we see that vdn → vd0 in C1([0, h]) implies that the convergence also holds in C2([0, h]).

This prove conclusion (i).

We now turn to conclusion (ii). We will write v1 = vd1 , v2 = vd2 for simplicity.

Argue indirectly. Assume that for some 0 < d1 < d2 < d∗, v1(0) ≤ v2(0) holds. Consider

firstly the case v1(0) < v2(0). Then we can show v1− v2 changes sign and define [0, x0] as in the

uniqueness proof of Theorem 3.2.1. We similarly have

eR(x)[v1v
′
2 − v2v

′
1]
∣∣∣x0

0
≤ 0.

On the other hand,

eR(x)[v1v
′
2 − v2v

′
1]
∣∣∣x0

0
=

∫ x0

0

[−v2(eR(x)v′1)′ + v1(eR(x)v′2)′] dx

=

∫ x0

0

[g(e−k0xe−k
∫ x
0 eR(s)v1(s) ds)− g(e−k0xe−k

∫ x
0 eR(s)v2(s) ds)]eR(x)v1v2 dx

+ (d2 − d1)

∫ x0

0

eR(x)v1v2 dx

>0,

a contradiction.

Consider now the case v1(0) = v2(0). From the equation and d2 > d1 and v′1(0) = v′2(0) we

find that v′′2(0) > v′′1(0). It follows that v2(x) > v1(x) for x > 0 small. Thus we can still find an

interval (0, x0) as above and derive a contradiction. Therefore v1(0) > v2(0). Conclusion (ii) is

now proved.
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To prove conclusion (iii), we first observe that if v is a positive solution of (3.2.2) then

z(x) :=
∫ x

0
eR(s)v(s) ds satisfies

−D(x)z′′ + α(x)z′ = −dz +

∫ x

0

g(e−k0s−kz(s))eR(s)v(s) ds

= −dz + k−1

∫ x

0

g(e−k0s−kz(s))d(k0s+ kz(s))− k0k
−1

∫ x

0

g(e−k0s−kz(s)) ds

= −dz + k−1

∫ k0x+kz(x)

0

g(e−ξ) dξ − k0k
−1

∫ x

0

g(e−k0s−kz(s))

= −dz +G(k0x+ kz(x))− k0k
−1

∫ x

0

g(e−k0s−kz(s)) ds,

where

G(η) := k−1

∫ η

0

g(e−ξ) dξ.

For d ∈ (0, d∗), we set zd(x) :=
∫ x

0
eR(s)vd(s) ds. Fix any d2 ∈ (0, d∗), we will show that

zd1(x) > zd2(x) for all x ∈ (0, h] if 0 < d1 < d2. Write vi = vdi and zi = zdi . We know

from the proof of Theorem 3.2.1, that vd(x) can only become unbounded through d → 0 and

vd(x)→∞ uniformly as d→ 0. Thus for d1 small, we have v1 > v2 on [0, h] and hence z1 > z2

for x ∈ (0, h]. If the desired conclusion does not hold, then we can find a maximal d1 < d2

such that zd(x) > zd2(x) in (0, h] for d ∈ (0, d1). Then we have zd1 ≥ zd2 . We claim that

zd1(x) = zd2(x) holds for some x ∈ (0, h]. Otherwise z1(x) > z2(x) for all x ∈ (0, h]. Fix

d0 ∈ (d1, d2). By (ii), for any d ∈ [d1, d0], vd(0) ≥ vd0(0) > vd2(0). By (i), there exists C > 0

such that ‖vd‖C2([0,h]) < C for all d ∈ [d1, d0]. Therefore we can find δ > 0 small enough such

that zd(x) > zd2(x) for d ∈ [d1, d0] and x ∈ (0, δ]. Since z1(x) > z2(x) in [δ, h], by (i) we can

find d̃1 ∈ (d1, d0] such that zd(x) > zd2(x) for d ∈ [d1, d̃1] and x ∈ [δ, h]. Thus zd(x) > zd2(x)

for d ∈ (0, d̃1] and x ∈ (0, h], contradicting the maximality of d1. This proves our claim that

zd1(x) = zd2(x) holds for some x ∈ (0, h]. We show this leads to a contradiction.

Consider firstly the possibility that x = h, i.e., z1(h) = z2(h). Since, for i = 1, 2,

D(h)z′′i (h)− α(h)z′i(h) = D(h)eR(h)v′i(h) = 0,

we deduce from the above equation for z that,

dizi(h) = G(k0h+ kzi(h))− k0k
−1

∫ h

0

g(e−k0s−kzi(s)) ds.
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Using the assumption z1(h) = z2(h), we obtain from the above identity

(d2 − d1)z1(h) = k0k
−1

∫ h

0

[g(e−k0s−kvz1(s))− g(e−k0s−kz2(s))] ds.

It follows the right side of the above identity is less than or equal to 0, but the left side is positive.

We arrive at a contradiction. Hence we have z1(h) > z2(h).

Consider next the remaining possibility that x ∈ (0, h). Denoting w := z1 − z2 we obtain

−D(x)w′′+α(x)w′

=d2z2 − d1z1 + C(x)w − k0k
−1

∫ x

0

[g(e−k0s−kz1(s))− g(e−k0s−kz2(s))] ds

≥[C(x)− d1]w,

w(0) =0, w(h) > 0,

where C(x) = G′(k0x + kθ(x)) for some θ(x) ∈ [z2(x), z1(x)]. By the maximum principle we

have w(x) > 0 in (0, h], again reaching a contradiction.

We now prove (iv). The conclusion vd(x)→ 0 uniformly as d→ d∗ is a direct result from the

standard bifurcation analysis. To prove dvd(x)→
∫∞

0
g(e−k0x)dx

(∫ h
0
eR(s)ds

)−1

in C([0, h]) as

d→ 0, we denote zd(x) =
∫ x

0
vd(s)e

R(s)ds. Multiply (3.2.2) by eR(x) and integrate it over [0, h].

By taking into account the boundary conditions, we obtain

dzd(h) =k−1

∫ h

0

g(e−k0s−kzd(s))d(k0s+ kzd(s))− k0k
−1

∫ h

0

g(e−k0s−kzd(s))ds

=k−1

∫ k0h+kzd(h)

0

g(e−s)ds− k0k
−1

∫ h

0

g(e−k0s−kzd(s))ds

(3.2.5)

From the proof of Theorem 3.2.1, we know that ‖vd‖∞ → ∞ and v̂d(x) := vd(x)/‖vd‖∞ →

v0(x) > 0 in C1[0, h] as d→ 0. Note that 0 < v0(x) ≤ 1. We will prove that v0(x) ≡ 1 on [0, h].

We note that vd(x) → ∞ uniformly in [0, h] as d → 0. As a result zd(x) → ∞ in any compact

subset of (0, h] as d→ 0, and hence by the dominated convergence theorem, we obtain∫ h

0

g(e−k0s−kzd(s))ds→ 0,

and,

dzd(h)→ k−1

∫ ∞
0

g(e−s)ds as d→ 0.
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We also have as d→ 0

fd(x) = g
(
e−k0x−k

∫ x
0 vd(s)eR(s)ds

)
→ 0 uniformly in [δ, h],

for any 0 < δ < h.

Consider the equation for v̂d:
−
[
D(x)eR(x)v̂′d

]′
=
[
g
(
e−k0x−k

∫ x
0 vd(s)eR(s) ds

)
− d
]
eR(x)v̂d in (0, h),

v̂′d(0) = v̂′d(h) = 0.

Integrate the above equation over [0, h′], we obtain

−D(h′)eR(h′)v′d(h
′) =

∫ h′

0

[
g
(
e−k0x−k

∫ x
0 vd(s)eR(s) ds

)
− d
]
eR(x)v̂d(x)dx

Letting d→ 0,

D(h′)eR(h′)v̂′0(h′) = 0.

That is

v0(h′) = c0, h
′ ∈ (0, h],

for some constant 0 < c0 ≤ 1. By the continuity of v0,

v0(x) = c0, x ∈ [0, h].

By the definition of v0, clearly c0 = 1. That means

v̂d(x)→ 1 in C1([0, h]) as d→ 0.

Consequently from

dvd

∫ h

0

v̂d(s)e
R(s)ds =

dvd
‖vd‖∞

∫ h

0

vd(s)e
R(s)ds→ k−1

∫ ∞
0

g(e−s)ds as d→∞

we obtain that

dvd → k−1

∫ ∞
0

g(e−s)ds
/∫ h

0

eR(s)ds.

This proves conclusion (iv).

The proof of Theorem (3.2.2) is now complete. �
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3.3 The global stability of the corresponding parabolic equa-

tion

In this subsection, we consider the global dynamical behavior of equation (3.1.1), or equivalently,

equation (3.2.1). Assume v0 ∈ C2([0, h]). We use the contraction mapping theorem, the standard

Lp estimate and Sobolev embeddings to show that there exist a unique solution v(x, t) of (3.2.1)

for small t > 0.

Define ∆T = [0, h]× [0, T ] and DT = {v ∈ C(∆T ) : v(x, 0) = v0(x), ‖v − v0‖C(∆T ) ≤ 1}.

Then DT is a complete metric space with the usual metric d(u, v) = ‖u− v‖C(∆T ).

By Theorem 1.1.6 we find that for any v ∈ DT the following initial boundary value problem:


vt = e−R(x)

[
D(x)eR(x)vx

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s,t)ds

)
− d
]
v, 0 < x < h, t > 0,

vx(0, t) = vx(h, t) = 0, t > 0,

v(x, 0) = v0(x), 0 ≤ x ≤ h,

(3.3.1)

admits a unique solution v ∈ W 2,1;p(∆T ) for any p > 1; moreover,

‖v̄ − v0‖2,1;p;∆T
≤ C‖G(x)‖p;∆T

,

where G(x) =
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s,t)ds

)
− d
]
v(x).

Hence there is a positive constant C̄ such that ‖v̄ − v0‖2,1;p;∆T
≤ C̄ for any v ∈ DT . By

Theorem 1.1.3, we have v − v0 ∈ C1+α,(1+α)/2(∆T ) and for any v ∈ DT ,

‖v − v0‖C1+α,(1+α)/2(∆T ) ≤ C1, (3.3.2)

where C1 is a constant dependent on h, α, and ‖v0‖C2([0,h]).

Now define F : DT → C(∆T ) by

F(v) = v.

Then v ∈ DT is a fixed point of F if and only if it solves (3.2.1) for 0 ≤ t ≤ T .

By (3.3.2) we have

‖v − v0‖C(∆T ) ≤ ‖v − v0‖C0,(1+α)/2(∆T )T
(1+α)/2 ≤ C1T

(1+α)/2.
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Therefore if we take T ≤ C
−2/(1+α)
1 , then F maps DT into itself.

Next we show F is a contraction mapping on DT for T sufficiently small. Indeed, let vi ∈

DT (i = 1, 2) and vi = F(vi). Set V = v1 − v2. Then V satisfies

Vt − e−R(x)
[
D(x)eR(x)Vx

]
x

=
[
g
(
e−k0x−k

∫ x
0 eR(s)v1(s,t)ds

)
− d
]
v1

−
[
g
(
e−k0x−k

∫ x
0 eR(s)v2(s,t)ds

)
− d
]
v2,

V (x, 0) = 0, 0 < x < h, Vx(0, t) = Vx(h, 0) = 0, t > 0.

We note that[
g
(
e−k0x−k

∫ x
0 eR(s)v1(s,t)ds

)
− d
]
v1 −

[
g
(
e−k0x−k

∫ x
0 eR(s)v2(s,t)ds

)
− d
]
v2

≤ d|v2 − v1|+ sup
0≤s≤1

g(s)|v1 − v2|+ k sup
0≤s≤1

|g′(s)|‖v2‖C(∆T )

∣∣∣ ∫ x

0

(v1 − v2)dx
∣∣∣

≤ C2‖v1 − v2‖C(∆T ).

(3.3.3)

and using the Lp estimates for parabolic equations and Sobolev embedding theorems we obtain

‖v1 − v2‖C1+α,(1+α)/2(∆T ) ≤ C3‖v1 − v2‖C(∆T ) (3.3.4)

Fix a T0 and C2 = C2(T0), C3 = C3(T0) such that (3.3.3) and (3.3.4) hold for T = T0. We note

that (3.3.3) and (3.3.4) hold for any 0 < T ≤ T0 for C2 ≡ C2(T0) and C3 ≡ C3(T0). Therefore

‖v1 − v2‖C(∆T ) ≤ ‖v1 − v2‖C0,(1+α)/2(∆T )T
(1+α)/2 ≤ C3T

(1+α)/2‖v1 − v2‖C(∆T ).

Hence for T ≤ min{C−2/(1+α)
1 , (2C3)−2/(1+α)}, F maps DT into itself and is a contraction

mapping. By the contraction mapping theoremF has a unique fixed point inDT . We thus proved

the local existence and uniqueness for (3.2.1).

By the comparison principle u ≤ φ, where φ is the unique positive solution of the problem
φt = e−R(x)[D(x)φx(x, t)]x + [g(1)− d]φ, 0 < x < h, t > 0,

φx(x, t) = 0, x = 0 or h, t > 0,

φ(x, 0) = ‖v0(x)‖∞, 0 ≤ x ≤ h.

It is clear that φ is defined for all t > 0. Hence v(x, t) has local a priori bounds. By using

the contraction mapping theorem repeatedly one shows that v(x, t) can be uniquely extended to

define on all t > 0. By the maximum principle, v(x, t) > 0 for all t > 0 and x ∈ [0, h].

The main result of this subsection is the following theorem.
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Theorem 3.3.1 If d ≥ d∗, then the solution v(x, t) of (3.2.1) converges to 0 uniformly for x ∈

[0, h] as t→∞.

If 0 < d < d∗, then v(x, t) converges to the unique positive steady state vd(x) uniformly for

x ∈ [0, h] as t→∞ .

Proof. We first consider the case d > d∗ = −λ1(−g(e−k0x)). In such a case, we have

vt =e−R(x)
[
D(x)eR(x)vx

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s,t)ds

)
− d
]
v

≤e−R(x)
[
D(x)eR(x)vx

]
x

+
[
g
(
e−k0x

)
− d
]
v.

Let φ1(x) be a principal eigenfunction corresponding to d∗ satisfying v0(x) ≤ φ1(x) in [0, h].

Then we obtain, by the comparison principle,

v(x, t) ≤ e−(d−d∗)tφ1(x)→ 0 as t→ 0.

Thus

lim
t→∞

v(x, t) = 0 uniformly for x ∈ [0, h] if d > d∗.

We now consider the case 0 < d < d∗. By Theorem 3.2.1, (3.2.1) has a unique positive

steady state solution vd(x). We want to show that v(x, t) → vd(x) uniformly for x ∈ [0, h] as

t→∞. For this purpose, we need two key lemmas.

Let

z(x, t) =

∫ x

0

eR(s)v(s, t)ds.

Then z(0, t) = 0 and

zt =D(x)zxx − α(x)zx − dz +

∫ x

0

g
(
e−k0s−kz(s,t)

)
eR(s)v(s, t)ds

=D(x)zxx − α(x)zx − dz +G(k0x+ kz(x, t))− k0k
−1

∫ x

0

g
(
e−k0s−kz(s,t)

)
ds,

(3.3.5)

where G(η) = k−1
∫ η

0
g(e−ξ) dξ.

Lemma 3.3.2 Suppose d ∈ (−∞,∞) and v, ṽ ∈ C2,1([0, h]× (0,∞)) satisfy
vt ≤ e−R(x)

[
D(x)eR(x)vx

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s,t)ds

)
− d
]
v, 0 < x < h, t > 0,

vx(0, t) = vx(h, t) = 0, t > 0,
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and 
ṽt ≥ e−R(x)

[
D(x)eR(x)ṽx

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)ṽ(s,t)ds

)
− d
]
ṽ, 0 < x < h, t > 0,

ṽx(0, t) = ṽx(h, t) = 0, t > 0.

If v(x, t) < ṽ(x, t) for x ∈ [0, h] and all small t ≥ 0, then z(x, t) < z̃(x, t) for all t > 0 and

x ∈ (0, h], where

z(x, t) =

∫ x

0

eR(s)v(s, t)ds, z̃(x, t) =

∫ x

0

eR(s)ṽ(s, t)ds.

Proof. From v(x, t) < ṽ(x, t) for x ∈ [0, h] and all small t ≥ 0 we have

z(x, t) < z̃(x, t) for x ∈ (0, h] and t ≥ 0 small. (3.3.6)

Suppose the conclusion of Lemma 3.3.2 is not true. Then there exists a finite maximal time

denoted by t∗ such that (3.3.6) holds for every t ∈ [0, t∗). Clearly z(x, t∗) ≤ z̃(x, t∗) for all

x ∈ [0, h]. We claim that

z(x, t∗) = z̃(x, t∗) for some x ∈ (0, h]. (3.3.7)

Otherwise we have z(x, t∗) < z̃(x, t∗) for all x ∈ (0, h]. Let

w(x, t) = z̃(x, t)− z(x, t).

Then w(x, t) ≥ 0 for all 0 ≤ t ≤ t∗ and 0 ≤ x ≤ h, and

wt ≥D(x)wxx − α(x)wx − dw + C(x, t)w

+ k0k
−1

∫ x

0

[
g
(
e−k0s−kz(s,t)

)
− g

(
e−k0s−kz̃(s,t)

)]
ds

≥D(x)wxx − α(x)wx + [C(x, t)− d]w for 0 ≤ x ≤ h, t ∈ (0, t∗],

w(0, t) = 0, w(h, t) > 0 for t ∈ (0, t∗],

w(x, 0) > 0 for 0 < x ≤ h,

(3.3.8)

where

C(x, t) = kG′(k0x+ kθ(x, t)), θ(x, t) ∈ [z(x, t), z̃(x, t)] .
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We use the strong maximum principle and Hopf boundary lemma to conclude that w(x, t) > 0

for t ∈ (0, t∗] and x ∈ (0, h], and wx(0, t∗) > 0. Then by the smoothness of w(x, t), we have

wx(x, t) > 0 for all t close to t∗ and x close to 0. Thus from w(0, t) ≡ 0 we conclude w(x, t) > 0

for 0 < x ≤ δ, t∗ ≤ t ≤ t∗ + δ for some small δ > 0. From w(x, t∗) > 0 for x ∈ [δ, h], we can

find δ0 ∈ (0, δ) such that w(x, t) > 0 for x ∈ [δ, h] and t ∈ [t∗, t∗ + δ0]. Thus w(x, t) > 0 for

x ∈ (0, h] and t ∈ (0, t∗ + δ0], contradicting the maximality of t∗. This proves (3.3.7).

Thus there exists x0 ∈ (0, h] such that w(x0, t
∗) = 0. If x0 = h, then wt(h, t∗) ≤ 0. By the

boundary conditions, we have

D(h)zxx(h, t
∗)− α(h)zx(h, t

∗) = D(h)ux(h, t
∗)− α(h)u(h, t∗) = 0,

D(h)z̃xx(h, t
∗)− α(h)z̃x(h, t

∗) = D(h)ũx(h, t
∗)− α(h)ũ(h, t∗) = 0.

Thus we have D(h)wxx(h, t
∗)− α(h)wx(h, t

∗) = 0, and from (3.3.8) we obtain

0 ≥ wt(h, t
∗) ≥ k0k

−1

∫ h

0

[
g
(
e−k0s−kz(s,t)

)
− g

(
e−k0s−kz̃(s,t)

)]
ds.

Since z(x, t∗) ≤ z̃(x, t∗) in [0, h], the above inequality holds only if z(x, t∗) ≡ z̃(x, t∗).

From (3.3.8), w(x, t) is an upper solution of the problem
w̃t = D(x)w̃xx − α(x)w̃x − dw̃, 0 < x < h, 0 < t ≤ t∗,

w̃(0, t) = w̃(h, t) = 0, 0 < t ≤ t∗,

w̃(x, 0) = w(x, 0) > 0, 0 < x < h.

By the strong maximum principle, w̃(x, t) > 0 for x ∈ (0, h) and 0 < t ≤ t∗. On the other hand,

by the comparison principle, we have w(x, t) ≥ w̃(x, t) for x ∈ (0, h) and 0 < t ≤ t∗. Hence

w(x, t∗) > 0 for x ∈ (0, h). This contradicts our earlier conclusion that w(x, t∗) ≡ 0. Therefore

we must have w(h, t∗) > 0. We may now apply the strong maximum principle to (3.3.8) to

conclude that w(x, t∗) > 0 for x ∈ (0, h], which contradicts (3.3.7). The proof is now complete.

�

Lemma 3.3.3 Suppose d > 0, and let v(x, t) be the unique solution of (3.2.1). Then there exists

C > 0 such that

v(x, t) ≤ C for all x ∈ [0, h], t > 0. (3.3.9)
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Proof. Our assumption on the function g implies that

g(I) ≤ βIγ for some β > 0, γ > 0 and all I ∈ [0, 1].

Therefore with

I(x, t) = exp

(
−k0x− k

∫ x

0

eR(s)v(s, t)ds

)
we have

g(I(x, t)) ≤ βIγ(x, t) ≤ β exp

(
−γk

∫ x

0

eR(s)v(s, t)ds

)
.

Then from the equation for v we obtain

eR(x)vt ≤
[
D(x)eR(x)vx

]
x

+

[
β exp

(
−γk

∫ x

0

eR(x)v(s, t)ds

)
− d
]
eR(x)v.

Integrating this inequality for x over [0, h] we obtain

d

dt

[∫ h

0

eR(x)vdx

]
≤ β

∫ h

0

exp

(
−γk

∫ x

0

eR(s)v(s, t)ds

)
eR(x)vdx− d

∫ h

0

eR(x)vdx.

Denote

w(t) =

∫ h

0

eR(x)v(x, t)dx, z(x, t) =

∫ x

0

eR(s)v(s, t)ds.

We obtain ∫ h

0

exp

(
−γk

∫ x

0

eR(s)v(s, t)ds

)
eR(x)vdx =

∫ h

0

e−γkzzxdx

= (γk)−1
[
e−γkz(0,t) − e−γkz(h,t)

]
= (γk)−1

[
1− e−γkw(t)

]
.

Consequently

wt ≤ β(γk)−1
[
1− e−γkw(t)

]
− dw,

and

wt + dw ≤ C0 := β(γk)−1.

Thus we obtain (
edtw

)
t
≤ C0e

dt,

and

w(t) ≤ w(0)e−dt + C0e
−dt
∫ t

0

edsds ≤ C := w(0) + C0/d. (3.3.10)
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To prove the boundedness of v(x, t) we set

W (t) := max
x∈[0,h],s∈[0,t]

v(x, s).

Clearly W (t) is non-decreasing. Suppose for contradiction that W (t) → ∞ as t → ∞. We are

going to derive a contradiction.

Since W (t)→∞, we can find tn →∞ such that W (tn) = maxx∈[0,h] v(x, tn)→∞. Define

zn(x, t) =
v(x, t+ tn − 1)

W (tn)
.

Clearly zn satisfies 
(zn)t = e−R(x)

[
D(x)eR(x)(zn)x

]
x

+ cnzn,

(zn)x(0, t) = (zn)x(h, t) = 0, t > 0,

(zn)(x, 0) ∈ [0, 1],

where cn(x, t) = g(I(x, t + tn − 1)) − d. We also have |cn| ≤ M0 := maxI∈[0,1] |g(I) − d|. A

simple comparison consideration gives

0 ≤ zn(x, t) ≤ eM0t for x ∈ [0, h] and t ≥ 0.

By standard parabolic regularity we know that zn is bounded in C1+α,α([0, h]× [1/2, 2]), for any

α ∈ (0, 1). Therefore by passing to a subsequence if necessary we have zn → z∗ in C1,0([0, h]×

[1/2, 2]). Since |cn| ≤ M0, by passing to a further subsequence, we may assume that cn → c

weakly in L2([0, h] × [1/2, 2]). Clearly we have |c| ≤ M0. It follows that z∗ is a weak solution

to


z∗t = e−R(x)

[
D(x)eR(x)z∗x

]
x

+ cz∗, x ∈ [0, h], t ∈ [1/2, 2],

z∗x(0, t) = z∗x(h, t) = 0, x = 0 or h, t ∈ [1/2, 2],

z∗(x, t) ∈ [0, e2M0 ], x ∈ [0, h], t ∈ [1/2, 2].

Since maxx∈[0,h] zn(x, 1) = 1, we have maxx∈[0,h] z
∗(x, 1) = 1 and hence z∗ is not identically

zero. By the strong maximum principle we have z∗(x, 1) ≥ δ0 > 0 in [0, h]. It follows that

zn(x, 1) ≥ δ0/2 for all large n and x ∈ [0, h]. Consequently

v(x, tn) ≥ (δ0/2)W (tn) for all large n and x ∈ [0, h].
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This means

v(x, tn)→∞ as n→∞,

since W (tn)→∞ as n→∞. We thus reach a contradiction to (3.3.10). Therefore there exists

a constant C such that

v(x, t) ≤ C for all x ∈ [0, h] and t > 0.

This completes the proof. �

We are now ready to prove the conclusion of Theorem 3.3.1 for the case 0 < d < d∗. We

want to show that for such d, the solution v(x, t) of (3.2.1) converges to the unique positive

steady state vd(x) uniformly for x ∈ [0, h] as t→∞ .

We may assume the initial data v0 > 0 in [0, h]. Otherwise we can replace v0(x) by v(x, 1)

and v(x, t) by v(x, t+ 1).

Since d < d∗ = −λ1(Φ0) and

Φδ(x) := −g(e−(k0+kδ)x)→ Φ0(x)

uniformly in [0, h] as δ → 0, we can find δ > 0 sufficiently small such that d < −λ1(Φδ). Fix

such a δ and let φ be a positive eigenfunction corresponding to λ1(Φδ). Then we choose ε > 0

small so that εφ(x) < v0(x) and εφ(x)eR(x) < δ in [0, h]. Let v(x, t) be the unique solution of

(3.2.1) with initial data v(x, 0) = εφ(x). Then we can find τ > 0 small such that

0 < eR(x)v(x, t) < δ for t ∈ (0, τ ] and x ∈ [0, h].

Hence for t ∈ (0, τ ],

vt =e−R(x)
[
D(x)eR(x)vx

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)v(s,t)ds

)
− d
]
v

≥e−R(x)
[
D(x)eR(x)vx

]
x

+ [−Φδ(x)− d] v

>e−R(x)
[
D(x)eR(x)vx

]
x

+ [−Φδ(x) + λ1(Φδ)] v
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It follows that

(v − εφ)t > e−R(x)
[
D(x)eR(x)(v − εφ)x

]
x

+ [−Φδ(x) + λ1(Φδ)] (v − εφ), x ∈ [0, h], t ∈ (0, τ ],

(v − εφ)x = 0, x = 0 or h, t ∈ (0, τ ],

v − εφ = 0, x ∈ [0, h], t = 0.

By the strong maximum principle we deduce v − εφ > 0 for x ∈ [0, h] and t ∈ (0, τ ]. Hence for

any fixed s ∈ (0, τ ] we have

v(x, s) > v(x, 0) in [0, h].

By continuity,

v(x, s+ t) > v(x, t) in [0, h] for all small t ≥ 0.

By Lemma 3.3.2 we have z(x, s + t) > z(x, t) for x ∈ (0, h] and all t > 0, where z(x, t) =∫ x
0
eR(s)v(s, t)ds. This means z(x, t) is monotone increasing in t.

By Lemma 3.3.3, z(x, t) ≤ C for all x ∈ [0, h] and t > 0 for some C > 0. Hence

limt→∞ z(x, t) = z∗ exists. On the other hand, by Lemma 3.3.3 ‖v(·, t)‖∞ is also bounded.

Thus we can apply the standard parabolic regularity to (3.2.1) to conclude that for any sequence

tn → ∞, {v(·, tn)} has a subsequence that converges in C1([0, h]): v(·, tnk) → v∗. Since

z(·, tn) → z∗, we must have z∗(x) =
∫ x

0
eR(s)v∗(s)ds. Hence v∗ = e−R(x)z′∗. This implies that

limt→∞ v(x, t) exists and equals e−R(x)z′∗(x). Hence e−R(x)z′ must be a nonnegative steady state

of (3.2.1). Since z∗(0) = 0 and z∗ is the limit of an increasing sequence, we have z∗(x) > 0 for

x ∈ (0, h] and z′∗ 6≡ 0. Therefore e−R(x)z′∗ is a nontrivial nonnegative steady state of (3.2.1). By

the strong maximum principle it is positive and hence we can use Theorem 3.2.1 to conclude that

e−R(x)z′∗ ≡ vd.

Next we consider dK = −λ1(ΦK) with K > 0 large. Recall that ΦK(x) = −g(e−(k0+kK)x).

Let φK(x) be the positive eigenfunction corresponding to λ1(ΦK) with ‖φK‖∞ = 1. It is easy

to see by a regularity and compactness argument that as K → ∞, λ1(ΦK) → 0 and φK → 1 in

C1([0, h]). Therefore we can find K0 > 0 large so that

d > −λ1(ΦK),
1

2
< φK(x) for K ≥ K0.
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We now fix K > K0 such that K > v0(x)eR(x) in [0, h]. Then

v0(x) < 2KφK(x), K < 2KφK(x) for x ∈ [0, h].

Let v̄(x, t) be the solution of (3.2.1) with initial data v̄(x, 0) = 2KφK(x). Then we can find

δ0 > 0 small so that v0(x) < v̄(x, t), K < v̄(x, t)eR(x) for t ∈ (0, δ0] and x ∈ [0, h]. Hence for

t ∈ (0, δ0], we have

v̄t =e−R(x)
[
D(x)eR(x)v̄x

]
x

+
[
g
(
e−k0x−k

∫ x
0 eR(s)v̄(s,t)ds

)
− d
]
v̄

≤e−R(x)
[
D(x)eR(x)v̄x

]
x

+ [−ΦK(x)− d] v̄

<e−R(x)
[
D(x)eR(x)v̄x

]
x

+ [−ΦK(x) + λ1(ΦK)] v̄

Thus for w(x, t) = v̄(x, t)− 2KφK(x), we have
wt < e−R(x)

[
D(x)eR(x)wx

]
x

+ [−ΦK(x) + λ1(ΦK)]w, x ∈ [0, h], t ∈ (0, δ0],

wx = 0, x = 0 or h, t ∈ (0, δ0],

w = 0, x ∈ [0, h], t = 0.

By the strong maximum principle we deduce w = v̄ − 2KφK(x) < 0 for t ∈ (0, δ0] and

x ∈ [0, h]. It follows that v̄(x, s) < v̄(x, 0) for 0 < s ≤ δ0. Using the same argument as before,

we conclude that

z̄(x, t) :=

∫ x

0

eR(s)v̄(s, t)ds

is monotone decreasing in t. Moreover, from Lemma 3.3.2 it follows that z̄(x, t) > z(x, t) :=∫ x
0
eR(s)v(s, t)ds > z(x, t) for all t > 0 and x ∈ (0, h]. Hence limt→∞ z̄(x, t) = z∗(x) ≥∫ x

0
eR(s)vd(s)ds. We may then use parabolic regularity much as before to deduce that v̄(x, t) →

e−R(x)(z∗)′(x) in C1[0, h], and e−R(x)(z∗)′(x) is a positive steady state of (3.2.1). Thus we must

have e−R(x)(z∗)′(x) ≡ vd(x).

Since z ≤ z ≤ z̄, and limt→∞ z(x, t) = limt→∞ z̄(x, t) =
∫ x

0
eR(s)vd(s)ds, we necessarily

have

lim
t→∞

z(x, t) =

∫ x

0

eR(s)vd(s)ds.

Thus we can repeat the above argument to conclude that v(x, t)→ vd(x) uniformly for x ∈ [0, h]

as t→∞. This proves what we wanted.
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Finally we consider the case d = d∗. We want to show that in this case the solution v(x, t) to

(3.2.1) converges to 0 uniformly for x ∈ [0, h] as t→∞.

This follows from a simple modification of the proof for the case 0 < d < d∗ given above.

Indeed, let v̄(x, t) be defined exactly as above. Then we know that z̄(x, t) :=
∫ x

0
eR(s)v̄(s, t)ds >

0 is strictly decreasing in t. Hence limt→∞ z̄(x, t) = z∗(x) ≥ 0 exists. By the same consideration

as in the proof for the case 0 < d < d∗ we can show that v̄(x, t) → e−R(x)(z∗)′(x) in [0, h] as

t→∞, and hence e−R(x)(z∗)′(x) is a nonnegative steady state of (3.2.1). However, since d = d∗,

by Theorem 3.2.1, the only nonnegative steady state of (3.2.1) is the trivial solution 0. Hence

v̄(x, t)→ 0 uniformly for x ∈ [0, h] as t→∞, and z̄(x, t)→ 0 as t→∞.

Using Lemma 3.3.2, we have 0 < z(x, t) < z̄(x, t), which implies that z(x, t) → 0 as

t→∞. Using this fact and the parabolic regularity as before, we deduce limt→∞ v(·, t) exists in

C1([0, h]), and the limit is a nonnegative steady state of (3.2.1). Since d = d∗, this limit must be

0. This finishes the proof.

�

Remark 3.3.4 If d ≤ 0, it is easy to show that the unique solution v(x, t) of (3.2.1) satisfies

limt→∞ v(x, t) =∞ uniformly for x ∈ [0, h]. This case is not of biological interest though.

3.4 The limiting profile of the positive steady state solution

In this section, we study the asymptotic profile of the phytoplankton distribution in three limiting

cases: (a) small diffusion rate, (b) large diffusion rate, and (c) deep water column. For simplicity

we assume that D(x) ≡ D > 0, α(x) ≡ α > 0 throughout this section.
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3.4.1 The small diffusion case

With D(x) ≡ D and α(x) ≡ α, the original equation becomes
ut = Jx(x, t) +

[
g
(
e−k0x−k

∫ x
0 u(s,t)ds

)
− d
]
u, 0 < x < h, t > 0,

J(x, t) = Dux(x, t)− αu(x, t) = 0, x = 0 or h, t > 0,

u(x, 0) = u0(x) 	 0, 0 ≤ x ≤ h.

(3.4.1)

The corresponding steady state equation is
−Du′′ + αu′ =

[
g(e−k0x−k

∫ x
0 u(s)ds)− d

]
u, x ∈ (0, h),

Du′(0) = αu(0), Du′(h) = αu(h).
(3.4.2)

We will study the asymptotic profile of the positive solution of (3.4.2) as the diffusion rate D

approaches 0.

Denote by λD1 (Ψ) the first eigenvalue of the eigenvalue problem

−Dφ′′ + αφ′ + Ψφ = λφ, Dφ′(0) = αφ(0), Dφ′(h) = αφ(h).

Let

d∗D = −λD1
(
−g
(
e−k0x

))
. (3.4.3)

By Theorem 3.2.1, for any 0 < d < d∗D, there exists a unique positive solution uD to (3.4.2). By

Theorems 3 and 6 in [33], we have limD→0 d
∗
D = g

(
e−k0h

)
, and moreover, for fixed 0 < d <

g
(
e−k0h

)
, (3.4.2) has a unique positive solution for any smallD > 0. Therefore, in the following

we always assume

0 < d < g
(
e−k0h

)
.

For convenience, we rewrite our equation. Choose xD ∈ [0, h] such that

u(xD) = max
x∈[0,h]

u(x) = ‖u‖∞.

Set

v(x) := u(x) exp

[
−α(x− xD)

2D

]
.

46



Then we obtain an equivalent problem to (3.4.2):
−Dv′′ + α2

4D
v =

[
g

(
e
−k0x−k

∫ x
0 v(s) exp

[
α(s−xD)

2D

]
ds

)
− d
]
v, x ∈ (0, h),

v′(0) =
α

2D
v(0), v′(h) =

α

2D
v(h).

(3.4.4)

Let

x = Dy + xD and z(y) = v(xD +Dy).

We then have

−z′′ + α2

4
z = D

[
g
(
e
−k0(xD+Dy)−kD

∫ y
−xD/D

z(s)eαs/2ds
)
− d
]
z (3.4.5)

in the interval (−xD/D, (h− xD)/D), and z satisfies the boundary condition

z′ =
α

2
z for y = −xD/D and (h− xD)/D. (3.4.6)

Concerning the location of xD, we have the following result.

Lemma 3.4.1 There exists D0 > 0 such that for any 0 < D ≤ D0, the unique solution u(x) of

(3.4.2) is strictly increasing in [0, h], and hence for such D we have xD = h.

Proof. Since the function g
(
e
−k0(xD+Dy)−kD

∫ y
−xD/D

z(s)eαs/2ds
)
− d is bounded, we may choose

D0 so small that D0

∣∣∣ [g (e−k0(xD+Dy)−kD
∫ y
−xD/D

z(s)eαs/2ds
)
− d
] ∣∣∣ ≤ α2

4
. It follows from (3.4.5)

that z′′(y) ≥ 0 for any y ∈ (−xD/D, (h− xD)/D) with 0 < D ≤ D0. On the other hand, by

(3.4.6), we have z′(−xD/D) = α
2
z(−xD/D) > 0. Hence we have z′(y) > 0 on [−xD/D, (h− xD)/D]

and z(y) is strictly increasing on [−xD/D, (h− xD)/D]. This means v(x) is strictly increasing

on [0, h]. It follows u(x) = v(x)eα(x−xD)/D is strictly increasing on [0, h]. This completes the

proof of the lemma. �

In the following, we always assume 0 < D ≤ D0 and xD = h.

Denote by vD(x) the unique positive solution to (3.4.4). Set z̃D(y) = zD(y)/‖zD‖∞. By the

definition of zD(y), we have ‖zD‖∞ = zD(0) = vD(h) = uD(h). Furthermore, the following

holds.
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Lemma 3.4.2

As D → 0, z̃D(y)→ e
α
2
y in C1(Λ) for any finite interval Λ ⊂ (−∞, 0].

Proof. Let {Dn} be an arbitrary sequence of positive numbers converging to 0 as n → ∞. We

know from Lemma 3.4.1 that xn := xDn = h for sufficiently large n. Thus we have h−xn
Dn

= 0

and− xn
Dn
→ −∞ as n→∞. Moreover, using (3.4.5) and the standard elliptic regularity, we find

that by passing to a subsequence if necessary, z̃n := z̃Dn → z0 in C1(Λ) for any finite interval

Λ ⊂ (−∞, 0] and some function z0(y) defined on (−∞, 0], and z0 satisfies (in the weak sense

and hence classical sense) 
− z′′0 +

α2

4
z0 = 0, y ∈ (−∞, 0),

z0(0) = 1, z′0(0) =
α

2
.

It is readily checked that the unique solution of this initial value problem is given by z0(y) = e
α
2
y.

This implies that z̃D(y) → e
α
2
y in C1(Λ) for any finite interval Λ ⊂ (−∞, 0] as D → 0. The

lemma is proved. �

Set ṽD(x) = vD(x)/‖vD‖∞. We have

Lemma 3.4.3 ‖ṽD(·)− exp
[
α

2D
(· − h)

]
‖L∞([0,h]) → 0 as D → 0.

Proof. LetD be sufficiently small. By Lemma 3.4.2, |ṽD(x)−exp[ α
2D

(x−h)]| remains bounded

for those x ∈ [0, h] such that (x− h)/D remains bounded. Using the fact that limy→−∞ e
αy/2 =

0 and the monotonicity of z̃D(y) for small D, we readily deduce that the function |ṽD(x) −

exp[ α
2D

(x− h)]| at the remaining x ∈ [0, h] is also small. This proves the lemma. �

We now consider the function

ûD(x) = D−1ṽD(x) exp

[
α(x− h)

2D

]
=

uD(x)

D‖vD‖∞
=

uD(x)

D‖uD‖∞
.

We will show that, for small D, ûD behaves like a δ-function concentrating at x = h. Indeed we

have the following result.
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Lemma 3.4.4 For any given small δ > 0, x ∈ [0, h− δ] implies

0 < ûD(x) ≤ D−1 exp

[
− αδ

2D

]
→ 0 as D → 0. (3.4.7)

Moreover,

lim
D→0

∫ h

0

ûD(x)dx =
1

α
. (3.4.8)

Proof. The inequality (3.4.7) is clear if we notice that 0 < ṽD(x) ≤ 1 for x ∈ [0, h]. To prove

(3.4.8), we let η > 0 be any fixed large number. Let D ∈ (0, D0] be sufficiently small such that

h/D > η. By Lemma 3.2, z̃D → e
αy
2 in C1([−η, 0]). We have∫ h

0

ûD(x)dx =

∫ h

0

D−1ṽD(x)eα(x−h)/(2D)dx

=

∫ 0

−h/D
z̃D(y)e

α
2
ydy

=

∫ 0

−η
z̃D(y)e

α
2
ydy +

∫ −η
−h/D

z̃D(y)e
α
2
ydy.

Now

0 <

∫ −η
−h/D

z̃D(y)e
α
2
ydy ≤

∫ −η
−∞

e
α
2
ydy =

2

α
e−αη/2.

And as D → 0, ∫ 0

−η
z̃D(y)e

α
2
ydy →

∫ 0

−η
eαydy =

1− e−αη

α
.

It follows that

lim
D→0

∫ h

0

ûD(x)dx = 1/α + oη(1),

with oη(1) → 0 as η → ∞. Letting η → ∞, we readily have (3.4.8). This completes the proof

of the lemma. �

Denote τD := D‖vD‖∞ = D‖uD‖∞. Then we have

uD(x) = τDûD(x).

Moreover, ûD(x) satisfies
−Dû′′D + αû′D =

[
g
(
e−k0x−kτD

∫ x
0 ûDds

)
− d
]
ûD, x ∈ (0, h),

Dû′D = αûD, x = 0, h.
(3.4.9)

49



Lemma 3.4.5 τD is bounded from above.

Proof. Suppose there exists a subsequence Dn → 0 such that τn := τDn → ∞. If we denote

ûn := ûDn and gn(x) = g
(
e−k0x−kτn

∫ x
0 ûnds

)
, and integrate equation (3.4.9) over [0, h], we will

have ∫ h

0

[gn(x)− d]ûn(x)dx = 0,

and hence

d

∫ h

0

ûn(x)dx =

∫ h

0

gn(x)ûn(x)dx

≤
∫ h

0

g(e−kτn
∫ x
0 ûn(s)ds)ûn(x)dx

=
1

τn

∫ τn
∫ h
0 ûn(x)dx

0

g(e−kη)dη.

Since
∫ h

0
ûn(x)dx→ 1

α
(Lemma3.4.4), it follows that

lim sup
n→∞

τn ≤
α

d

∫ ∞
0

g
(
e−kη

)
dη <∞,

which contradicts the initial assumption that τn →∞. This finishes the proof. �

Lemma 3.4.6 τD is bounded away from 0.

Proof. Assume there exist a sequence Dn → 0 so that τn → 0. Much as before, we integrate

(3.4.9) over [0, h] to get ∫ h

0

[gn(x)− d]ûn(x)dx = 0. (3.4.10)

By the mean value theorem we have∫ h

0

gn(x)ûn(x)dx = gn(x0
n)

∫ h

0

ûn(x)dx

for some x0
n ∈ [0, h].

We may assume, subject to a subsequence, that x0
n → x0 ∈ [0, h]. It follows that

gn(x0
n) = g

(
e−k0x0

n−kτn
∫ x0

n
0 ûn(x)dx

)
→ g(e−k0x0

) as n→∞.

Thus letting n→∞ in (3.4.10) and using Lemma 3.4.4, we obtain

d = g(e−k0x0),
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which contradicts our assumption that 0 < d < g(e−k0h). This completes the proof of the lemma.

�

Lemma 3.4.7

lim
D→0

τD → τ∗,

where τ∗ > 0 is uniquely determined by the equation

d =

∫ 1

0

g
(
e−k0h−kτ∗x/α

)
dx. (3.4.11)

Proof. Since τD is bounded away from 0 and ∞, for any sequence Dn → 0, subject to a

subsequence, we may assume that τn := τDn → τ∗ ∈ (0,∞). We prove that τ∗ is uniquely

determined by (3.4.11).

To this end we fix a δ ∈ (0, h). Integrating the equation for ûn := ûDn , namely, (3.4.9), over

[0, h] we obtain ∫ h

0

[gn(x)− d]ûn(x)dx = 0.

By Lemma 3.4.4, as n→∞,∫ h

0

ûn(x)dx→ 1

α
,

∫ δ

0

ûn(x)dx→ 0,

and ∫ δ

0

gn(x)ûn(x)dx ≤ g(1)

∫ δ

0

ûn(x)dx→ 0.

Therefore
d

α
=

∫ h

δ

gn(x)ûn(x)dx+ o(1)

=

∫ h

δ

g
[
e−k0x−kτn

∫ x
0 ûn(s)ds

]
ûn(x)dx+ o(1)

=
1

kτn

∫ k0h+kτn
∫ h
0 ûndx

k0δ+kτn
∫ δ
0 ûndx

g(e−s)ds− k0

kτn

∫ h

δ

gn(x)dx+ o(1)

(3.4.12)

Since 0 < gn(x) ≤ g(1) for all n and x ∈ [0, h], we may assume, by passing to a subsequence,

gn(x) → g∗(x) weakly in L2([0, h]) with ‖g∗‖∞ ≤ g(1). Hence letting n → ∞ in (3.4.12), we

obtain
d

α
=

1

kτ∗

∫ k0h+kτ∗/α

k0δ

g
(
e−x
)
dx− k0

kτ∗

∫ h

δ

g∗(x)dx.
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Letting δ → h, we obtain
dkτ∗
α

=

∫ k0h+kτ∗/α

k0h

g
(
e−x
)
dx.

That is,

d =

∫ 1

0

g
(
e−k0h−kτ∗x/α

)
dx.

Since τ∗ is uniquely determined this way, we have

τD → τ∗ as D → 0.

This finishes the proof. �

Summing up the above discussion, we have the following result.

Theorem 3.4.8 Let d ∈ (0, g(e−k0h)). Then for all small D > 0, the unique positive solution

uD(x) of (3.4.2) is strictly increasing in [0, h]. Moreover, as D → 0,

max
x∈
[

0, h− 2D
α
| lnD|

]∣∣uD(x)− τ ∗D−1eα(x−h)/D
∣∣→ 0, (3.4.13)

and ∫ h

0

uD(x)dx→ τ∗/α, (3.4.14)

where τ∗ is uniquely determined by (3.4.11).

Proof. These conclusions follow directly from Lemmas 3.4.1, 3.4.3, 3.4.4 and 3.4.7. We explain

how (5.3.12) is obtained; the other conclusions are obvious.

From the definitions we obtain

uD(x) = e
α(x−h)

2D ‖vD‖∞ṽD(x) = τDD
−1e

α(x−h)
2D ṽD(x).

For x ∈ [0, h− 2D
α
| lnD|], we have

D−1eα(x−h)/(2D) ≤ 1,

and hence (5.3.12) follows readily from Lemmas 3.4.3 and 3.4.7. �

Let us observe that (5.3.12) and (3.4.14) imply that for small D, uD(x) behaves like a δ-

function concentrating at x = h.
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3.4.2 The large diffusion case

By Theorem 6 in [33], d∗D → 1
h

∫ h
0
g(e−k0x)dx as D →∞. By Theorem 3.2.1, we know that for

any fixed d ∈ (0, 1
h

∫ h
0
g(e−k0x)dx), (3.4.2) has a unique positive solution uD(x) for every large

D. We now show that the asymptotic profile of uD(x) is given by the following result.

Theorem 3.4.9 As D →∞,

uD(x)→ c∗ uniformly on [0, h], (3.4.15)

where c∗ is uniquely determined by the equation

d =
1

h

∫ h

0

g
(
e−k0x−kc∗x

)
dx.

Proof. Setting vD(x) := uD(x) exp
(
− αx

2D

)
, we have

− v′′D +
α2

4D2
vD =

1

D

[
g
(
e−k0x−k

∫ x
0 vD(s) exp( αs2D )ds

)
− d
]
vD, x ∈ (0, h),

v′D(0) =
α

2D
vD(0), v′(h) =

α

2D
vD(h).

(3.4.16)

Denote ṽD = vD/‖vD‖∞. We then have
−ṽ′′D +

α2

4D2
ṽD =

1

D

[
g
(
e−k0x−k‖vD‖∞

∫ x
0 ṽD(s) exp( αs2D )ds

)
− d
]
ṽD,

ṽ′D(0) =
α

2D
ṽD(0), ṽ′D(h) =

α

2D
ṽD(h).

(3.4.17)

The right side of the first equation of (3.4.17) is clearly uniformly bounded on [0, h] for all large

D. Hence ṽD and ṽ′′D are both uniformly bounded on [0, h] for large D. Thus along any sequence

of D going to ∞, we can choose a subsequence, say Dn, such that Dn → ∞, and ṽn := ṽDn

converges inC1([0, h]) to a function v0. Clearly v0 satisfies (in the weak sense and hence classical

sense)

v′′0 = 0 in (0, h), v′0(0) = v′0(h) = 0, ‖v0‖∞ = 1, (3.4.18)

which implies v0 ≡ 1. It follows that ṽD → 1 in C1([0, h]) as D →∞.

On the other hand, since ṽD satisfies (3.4.17), we can multiply the first equation of (3.4.17)

by exp
(
αx
2D

)
and integrate it over [0, h] to obtain∫ h

0

[
g
(
e−k0x−k‖vD‖∞

∫ x
0 ṽD(s) exp( αs2D )ds

)
− d
]
ṽD(x) exp

(αx
2D

)
dx = 0.
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Using our assumption on d and the fact that ṽD → 1 in C1([0, h]), we easily see from the

above identity that ‖vn‖∞ is bounded away from∞ and 0. Thus by passing to a subsequence,

we may assume that ‖vn‖∞ → c∗ for some c∗ ∈ (0,∞). Letting n → ∞ in the above equation

(with D = Dn), we obtain ∫ h

0

[
g
(
e−k0x−kc∗x

)
− d
]
dx = 0. (3.4.19)

It follows that

d =
1

h

∫ h

0

g
(
e−k0x−kc∗x

)
dx.

As this identity uniquely determines the value of c∗, we must have

un(x) := vn(x) exp(x/2Dn)→ c∗ uniformly on [0, h].

Hence uD(x)→ c∗ uniformly on [0, h] as D →∞. The proof is now complete. �

Remark 3.4.10 From Theorem 3.4.9 we clearly have∫ h

0

uD(x)dx→ c∗h as D →∞.

Comparing

d =
1

h

∫ h

0

g
(
e−k0x−kc∗x

)
dx =

∫ 1

0

g(e−k0hx−kc∗hx)dx,

with (3.4.11), namely

d =

∫ 1

0

g(e−k0h−kτ∗x/α)dx,

we easily deduce that

c∗h > τ∗/α if k0 > 0; c∗h = τ∗/α if k0 = 0.

That is, when all the other parameters are the same and the water column has positive background

turbidity (k0 > 0), the total biomass of the phytoplankton in the large diffusion case is bigger

than that in the small diffusion case. In view of the profiles of the phytoplankton distribution

given in Theorems 3.4.8 and 3.4.9, the above conclusion appears biologically reasonable, as in

the small diffusion case the population concentrates near the bottom of the water column, and

hence intuitively its overall use of light would be less than in the large diffusion case, where the

population distribution is rather even over the water column. The fact that the total biomass tends

to the same limit in both cases when k0 = 0 appears less intuitive.
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3.4.3 The deep water column case

From the definition,

d∗ = −λ1(Φ0) with Φ0(x) = −g(e−k0x).

Hence

d∗ = g(1) if k0 = 0; d∗ < g(1) if k0 > 0.

This indicates that d∗ > 0 is independent of h when k0 = 0, and d∗ depends on h when k0 > 0.

We will write d∗ = d∗h to stress its dependence on h when k0 > 0. In fact, by Lemma 6.1 of [33],

when k0 > 0, d∗ = d∗h > 0 is strictly decreasing in h. Therefore

d∗∞ := lim
h→∞

d∗h

always exists and d∗∞ ∈ [0, g(1)). We assume for the moment that

d∗∞ > 0, (3.4.20)

and will find out the conditions on the other parameters D and α guaranteeing this condition

later.

From now on, we assume that (3.4.20) holds and fix d ∈ (0, d∗∞). It follows that 0 < d < d∗h

for every h > 0. By Theorem 3.2.1, (3.4.2) has a unique positive solution u(x) for every h > 0.

To stress its dependence on h, we denote u(x) = uh(x) and will examine the asymptotic profile

of uh(x) as h → ∞. It turns out that once this profile is known, then one can use the results

in [40] to find out the exact conditions on D and α such that (3.4.20) holds. This will answer a

question left open in [33].

Let

uh(x) = wh(x)eαx/D.

Then wh(x) satisfies the equation
−
[
Deαx/Dw′

]′
=
[
g
(
e−k0x−k

∫ x
0 w(s)eαx/Dds

)
− d
]
weαx/D, 0 < x < h,

w′(0) = w′(h) = 0.
(3.4.21)

Lemma 3.4.11 w′h(x) < 0 for x ∈ (0, h).
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Proof. Integrating the first equation in (3.4.21) over [0, h], we obtain∫ h

0

[
g
(
e−k0x−k

∫ x
0 eαs/Dwh(s)ds

)
− d
]
wh(x)eαx/Ddx = −Deαx/Dw′h(x)

∣∣∣h
0

= 0. (3.4.22)

Since the function f(x) := g
(
e−k0x−k

∫ x
0 eαs/Dwh(s)ds

)
−d is strictly decreasing, the above identity

implies f(0) > 0, f(h) < 0, and f(x) has a unique zero xh ∈ (0, h). Therefore, by (3.4.21),

eαx/Dw′h(x) is strictly decreasing in [0, xh], and strictly increasing in [xh, h]. Since w′h(0) =

w′h(h) = 0, it follows that

w′h(x) < 0 for all x ∈ (0, h).

�

By the above lemma, we have ‖wh‖∞ = wh(0). Denote

w̃h(x) := wh(x)/‖wh‖∞ = wh(x)/wh(0) and zh(x) :=
w̃′h(x)

w̃h(x)
.

Then clearly

zh(0) = zh(h) = 0 and zh(x) < 0 for x ∈ (0, h). (3.4.23)

Moreover, the following conclusions hold.

Lemma 3.4.12

lim inf
h→∞

∫ h

0

w̃h(x)eαx/Ddx > 0, (3.4.24)

and

0 ≥ zh(x) ≥ −α +
√
α2 + 8dD

2D
for all h > 0 and x ∈ [0, h]. (3.4.25)

Proof. Suppose there is some h̄ > 0 and x̄ ∈ [0, h̄] such that

zh̄(x̄) < −α +
√
α2 + 8dD

2D
.

Clearly x̄ 6= 0, x̄ 6= h̄ since zh̄(0) = zh̄(h̄) = 0.

Since zh̄(h̄) = 0, we can find a point x̂ ∈ (x̄, h̄) such that

zh̄(x̂) = −α +
√
α2 + 8dD

2D
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and for all x ∈ (x̄, x̂),

zh̄(x) < −α +
√
α2 + 8dD

2D
.

It follows that

z′h̄(x̂) ≥ 0.

On the other hand, by (3.4.21) we have

Dz′h̄(x̂) + d = −g
(
e−k0x̂−k

∫ x̂
0 eαs/Dwh̄(s)ds

)
−Dz2

h̄(x̂)− αzh̄(x̂) + 2d

≤ −Dz2
h̄(x̂)− αzh̄(x̂) + 2d = 0.

Thus

z′h̄(x̂) ≤ −d/D < 0.

We reach a contradiction. This proves that (3.4.25) holds. It follows that

w̃h(x) = exp

(∫ x

0

zh(s)ds

)
≥ exp

(
−α +

√
α2 + 8dD

2D
x

)
.

Therefore for h > 0,∫ h

0

w̃h(x)eαx/Ddx ≥
∫ h

0

exp

(
α−
√
α2 + 8dD

2D
x

)
dx.

(3.4.24) follows readily from this inequality. �

Lemma 3.4.13 wh(0) is bounded away from∞.

Proof. Integrating the first equation in (3.4.21) over [0, h] and dividing the result by wh(0), we

obtain ∫ h

0

[
g
(
e−k0x−kwh(0)

∫ x
0 w̃h(s)eαs/Dds

)
− d
]
w̃h(x)eαx/Ddx = 0.

Therefore

d

∫ h

0

w̃h(x)eαx/Ddx ≤
∫ h

0

g
(
e−kwh(0)

∫ x
0 w̃h(s)eαs/Dds

)
w̃h(x)eαx/Ddx

=
1

wh(0)

∫ wh(0)
∫ h
0 w̃h(x)eαx/Ddx

0

g
(
e−kη

)
dη

≤ 1

wh(0)

∫ ∞
0

g
(
e−kη

)
dη

Lemma 3.4.13 then follows from Lemma 3.4.12 and the fact that
∫∞

0
g
(
e−kη

)
dη <∞. �
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Lemma 3.4.14 wh(0) is bounded away from 0 if 0 < d < d∗∞ and k0 > 0.

Proof. We argue indirectly. Assume that 0 < d < d∗∞ and k0 > 0, but there exists hn → ∞

such that wn(0) := whn(0) → 0. Let φn(x) > 0 be the (L∞-normalized) first eigenfunction

corresponding to d∗n := d∗hn . Multiplying the first equation in (3.4.21) by φn(x)/‖wn‖∞ and

integrating it over [0, hn], we obtain

−D
∫ hn

0

eαx/Dw̃′nφ
′
ndx =

∫ hn

0

[
g
(
e−k0x−kwn(0)

∫ x
0 w̃n(s)eαs/Dds

)
− d
]
w̃nφne

αx/Ddx. (3.4.26)

Multiplying the equation for φn by w̃neαx/D and integrating it over [0, hn] we obtain

−D
∫ hn

0

eαx/Dw̃′nφ
′
n =

∫ hn

0

[
g
(
e−k0x

)
− d∗n

]
w̃nφne

αx/Ddx. (3.4.27)

From (5.4.4) and (3.4.27) we deduce

(d∗n − d)

∫ hn

0

w̃nφne
αx/Ddx

=

∫ hn

0

[
g
(
e−k0x

)
− g

(
e−k0x−kwn(0)

∫ x
0 w̃n(s)eαs/Dds

)]
w̃nφne

αx/Ddx.

(3.4.28)

Therefore ∫ hn

0

∆n(x)w̃nφne
αx/Ddx = 0, (3.4.29)

where

∆n(x) := d∗n − d−
[
g
(
e−k0x

)
− g

(
e−k0x−kwn(0)

∫ x
0 w̃n(s)eαs/Dds

)]
.

Clearly

d∗n − d ≥ d∗∞ − d > 0

and

0 < g
(
e−k0x−kwn(0)

∫ x
0 w̃n(s)eαs/Dds

)
< g

(
e−k0x

)
→ 0 as x→∞.

Thus we can find a sufficiently large T such that

∆n(x) > 0 for all x ≥ T and n ≥ 1. (3.4.30)

For x ∈ [0, T ], since wn(0)→ 0, we have

g
(
e−k0x

)
− g

(
e−k0x−kwn(0)

∫ x
0 w̃n(s)eαs/Dds

)
→ 0
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uniformly in [0, T ]. It follows that, as n→∞,

∆n(x)→ d∗∞ − d > 0 uniformly for x ∈ [0, T ].

Thus for all large n, ∆n(x) > 0 in [0, T ]. In view of (3.4.30), we find that ∆n(x) > 0 in [0, hn]

for all large n. But this clearly contradicts (3.4.29). This proves the lemma. �

Lemma 3.4.15 For k0 = 0, wh(0) is bounded away from 0 if 0 < d < g(1) − α2

4D
, but

limh→∞wh(0) = 0 when d ≥ g(1)− α2

4D
.

Proof. Let k0 = 0. First we let 0 < d < g(1)− α2

4D
and assume there is a subsequence of h, say

hn, such that hn → ∞ and wn(0) := whn(0) → 0. We prove this is impossible. Using elliptic

regularity, much as before, we deduce by standard argument that, subject to a subsequence,

w̃n(x) := wn(x)/wn(0)→ w0(x) in C1(Λ) for any finite interval Λ ⊂ [0,∞), and w0 is positive

and satisfies  −Dw
′′
0 − αw′0 = [g(1)− d]w0, 0 < x <∞,

w0(0) = 1, w′0(0) = 0.

A direct calculation yields

w0(x) = e−
α

2D
x
[

cos(θx) +
α

2Dθ
sin(θx)

]
,

with θ = (2D)−1
√

4D[g(1)− d]− α2. But this is absurd since the above expression changes

sign in (0,∞).

We next prove that wh(0) → 0 when d ≥ g(1) − α2/(4D). Assume on the contrary that

d ≥ g(1)−α2/4D but there is a subsequence hn →∞ such thatwn(0) := whn(0)→ τ ∈ (0,∞).

As before we may assume that ṽn(x) := whn(x)eαx/2D → v0(x) in C1
loc([0,∞)) and v0(x) is a

weak hence classic positive solution to
−Dv′′0 +

α2

4D
αv0 =

[
g
(
e−k

∫ x
0 v0(s)eαs/2Dds

)
− d
]
v0, 0 < x <∞,

v0(0) = τ, v′0(0) = ατ/2D.

From d ≥ g(1) − α2/(4D) we deduce v′′0(x) ≥ 0 for x > 0. Hence v′0(x) ≥ ατ/2D and

v0(x) ≥ τ for any x ≥ 0. This implies∫ ∞
0

v0(x)eαx/2Ddx =∞.
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On the other hand, from (3.4.22)(with k0 = 0), we have

d

∫ h

0

wh(x)eαx/Ddx =

∫ h

0

g
(
e−k

∫ x
0 wh(s)eαs/Dds

)
wh(x)eαx/Ddx

≤
∫ ∞

0

g(e−kη)dη.

It follows that, for any given M > 0,

d

∫ M

0

v0(x)eαx/(2D)dx = lim
n→∞

d

∫ M

0

ṽn(x)eαx/(2D)dx

≤ lim
n→∞

d

∫ hn

0

whn(x)eαx/Ddx

≤
∫ ∞

0

g(e−kη)dη.

Hence ∫ ∞
0

v0(x)eαx/(2D)dx ≤ d−1

∫ ∞
0

g(e−kη)dη <∞.

This contradiction proves the lemma.

�

Let

vh(x) = wh(x)eαx/2D = uh(x)e−αx/2D.

Then vh(x) is the unique positive solution of the boundary value problem
−Dv′′ + α2

4D
v =

[
g
(
e−k0x−k

∫ x
0 v(s) exp[ αs2D ]ds

)
− d
]
v, x ∈ (0, h),

v′(0) =
α

2D
v(0), v′(h) =

α

2D
v(h).

(3.4.31)

By Lemma 3.4.11, for any fixed T > 0 and x ∈ [0, T ],

0 < vh(x) = wh(x)eαx/2D ≤ wh(0)eαx/2D ≤ wh(0)eαT/2D <∞.

Since vh(x) satisfies (3.4.31), we find that v′′h(x) is uniformly bounded on [0, T ]. Thus by the

Sobolev compact embedding theorems and a diagonal argument, from any given sequence of h

going to infinity, we can choose a subsequence {hn}, such that vn(x) := vhn(x) satisfies

vn(x)→ v∞(x) in C1(Λ) for any finite interval Λ ∈ [0,∞).
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By Lemmas 3.4.13 and 3.4.14 , if k0 > 0, or if k0 = 0 and 0 < d < g(1)− α2/4D, we have

τ∞ := v∞(0) = lim
n→∞

whn(0) ∈ (0,∞).

On the other hand, if k0 = 0 and d ≥ g(1)− α2/4D, then

τ∞ := v∞(0) = lim
h→∞

wh(0) = 0.

Moreover, v∞ satisfies (in the weak sense and hence classical sense)
−Dv′′∞ +

α2

4D
v∞ =

[
g
(
e−k0x−k

∫ x
0 v∞(s) exp( αs2D )ds

)
− d
]
v∞, x ∈ (0,∞),

v∞(0) = τ∞, v′∞(0) =
ατ∞
2D

.

(3.4.32)

Thus for k0 = 0 and d ≥ g(1) − α2/4D, we have τ∞ = 0 and hence v∞ ≡ 0 by the

uniqueness results of ODE. Hence in this case we have

lim
h→∞

vh(x) = 0 in C1
loc([0,∞)),

which implies

lim
h→∞

uh(x) = 0 in C1
loc([0,∞)).

In the following, we assume k0 > 0, or k0 = 0 and 0 < d < g(1) − α2/4D. In this case

τ∞ ∈ (0,∞). By the strong maximum principle we have v∞(x) > 0 for any x ∈ [0,∞). We will

prove that such v∞ is unique, which implies that vh → v∞ in C1
loc([0,∞)) as h → ∞. We need

the following lemma.

Lemma 3.4.16 There exist positive constants C,L and α′ > α such that

v∞(x) ≤ Ce−
α′
2D
x for x ∈ [L,∞). (3.4.33)

Proof. First we consider the case k0 > 0.

Fix xd ∈ (0,∞) such that

g
(
e−k0x

)
≤ d

2
for x ∈ [xd,∞).

61



Then we have, for x ∈ [xd,∞),

v′′∞(x) ≥
(
α2

4D2
+

d

2D

)
v∞.

Denote

ξ =

√
α2

4D2
+

d

2D
,

and for any small ε > 0 define

zε(x) = v∞(xd)
[
(1− ε)e−ξ(x−xd) + εeξ(x−xd)

]
.

One readily checks that zε satisfies

z′′ = ξ2z, z(xd) = v∞(xd), lim
x→∞

z(x)

exp ( α
2D
x)

= +∞.

Since v∞(x) ≤ v∞(0)e
α

2D
x for x > 0 (as each vh has this property due to the monotonicity

of wh(x)), we may now apply the comparison principle to conclude that v∞ ≤ zε in [xd,∞).

Letting ε→ 0, we deduce

v∞(x) ≤ v∞(xd)e
−ξ(x−xd) for x ≥ xd.

Taking C = v∞(xd)e
xd , L = xd and α′ = 2Dξ, we readily have (3.4.33). This finishes the proof

for the case k0 > 0.

Next we consider the case k0 = 0. If

G(x) := g
(
e−k

∫ x
0 v∞(s)e

αs
2D ds

)
≥ d

for all x ≥ 0, then from (3.4.32) we deduce

v′′∞(x) ≤ α2

4D2
v∞,

and we can use the comparison theorem to deduce

v∞(x) ≥ τ∞e
− α

2D
x − εe

α
2D
x

for all x > 0 and ε > 0. Letting ε→ 0 we deduce

v∞(x) ≥ τ∞e
− α

2D
x
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for all x ≥ 0. But then we deduce, as x→∞,∫ x

0

v∞(s)e
α

2D
sds→∞

and

g
(
e−k

∫ x
0 v∞(s)e

αs
2D ds

)
→ 0 < d,

a contradiction. Therefore there exists xd > 0 such that

G(x) ≤ G(xd) < d

for x ≥ xd. We may now repeat the argument used for the case k0 > 0 to deduce that

v∞(x) ≤ v∞(xd)e
−ξ′(x−xd) for x ≥ xd,

with ξ′ =
√

α2

4D2 + d−G(xd)
D

.

The proof of the lemma is now complete. �

Remark 3.4.17 Clearly Lemma 3.4.16 implies u∞(x)→ 0 as x→∞. Moreover, from (3.4.25),

we obtain

0 ≥ w′∞(x)

w∞(x)
≥ −α +

√
α2 + 8dD

2D
for all x ≥ 0. (3.4.34)

This fact will be useful later.

Now we are in a position to state and prove the main result of this subsection.

Theorem 3.4.18 Let (3.4.20) hold, and 0 < d < d∗∞.

(a) Suppose either k0 > 0, or k0 = 0 and 0 < d < g(1) − α2/4D. Let uh(x) be the unique

positive solution to (3.4.2). Then, as h→∞,

uh(x)→ u∞(x) in C1
loc([0,∞)), (3.4.35)

where u∞(x) is the unique positive solution to
−Du′′∞ + αu′∞ =

[
g(e−k0x−k

∫ x
0 u∞(s)ds)− d

]
u∞, x ∈ (0,∞),

u′(0) =
α

D
u(0).

(3.4.36)

Moreover u∞(x) has the following properties:
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(i) There exists x∞ ∈ (0,∞) such that

u′∞(x∞) = 0, u′∞(x) > 0 for x ∈ [0, x∞), u′∞(x) < 0 for x ∈ (x∞,∞);

(ii) There exists positive constants C, L, and α0 such that

u∞(x) ≤ Ce−α0x for any x ∈ [L,∞). (3.4.37)

(b) Suppose k0 = 0 and d ≥ g(1)− α2/4D. Then uh → 0 in C1
loc([0,∞)).

Proof. Part (b) follows from the discussion right before Lemma 3.4.16. For part (a), let vh and

v∞ be defined as above. We prove that vh(x)→ v∞(x) in C1
loc([0,∞)). If this is proved, we set

u∞(x) = v∞(x)eαx/2D.

Then (3.4.35) and (3.4.36) follow readily. (3.4.37) is also obvious from Lemma 3.4.16 by taking

α0 = α′−α
2D

.

We already know that for any sequence of h converging to∞, there is a subsequence {hn}

such that vhn → v∞ in C1
loc([0,∞)), and v∞ is a positive solution to (3.4.32). To prove that

limh→∞ vh = v∞, it suffices to show that the limit v∞ is unique. We argue indirectly. Assume

there is another sequence of h other that hn, say h̄n, such that

v̄n := vh̄n → v̄∞ 6≡ v∞ in C1
loc([0,∞)).

Clearly v̄∞ satisfies
−Dv̄′′∞ +

α2

4D
v̄∞ =

[
g
(
e−k0x−k

∫ x
0 v̄∞(s) exp( αs2D )ds

)
− d
]
v̄∞, x ∈ (0,∞),

v̄∞(0) = τ̄∞, v̄′∞(0) =
ατ̄∞
2D

.

(3.4.38)

We prove that v∞(x) = v̄∞(x) for all x ∈ [0,∞). This contradiction would imply the uniqueness

of v∞.

If τ∞ = τ̄∞, by the uniqueness theorem of the initial value problem of ODEs, we readily

have v∞(x) = v̄∞(x) for all x ∈ [0,∞).

Suppose τ∞ 6= τ̄∞. For definiteness, we assume τ∞ < τ̄∞. We now have two cases:
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1. there exists c ∈ (0,∞) such that v∞(x) < v̄∞(x) for x ∈ [0, c) and v∞(c) = v̄∞(c);

2. v∞(x) < v̄∞(x) for all x ∈ [0,∞).

If case (1) happens, we multiply (3.4.32) by v̄∞ and integrate it over [0, c] to obtain

−D[v′∞v̄∞]
∣∣∣c
0

+D

∫ c

0

v′∞v̄
′
∞ +

(
α2

4D
+ d

)∫ c

0

v∞v̄∞ =

∫ c

0

g∞v∞v̄∞,

where g∞ = g
(
e−k0x−k

∫ x
0 v∞(s) exp( αs2D )ds

)
.

Similarly, we multiply (3.4.38) by v∞ and integrate it over [0, c] to obtain

−D[v∞v̄
′
∞]
∣∣∣c
0

+D

∫ c

0

v′∞v̄
′
∞ +

(
α2

4D
+ d

)∫ c

0

v∞v̄∞ =

∫ c

0

ḡ∞v∞v̄∞,

with ḡ∞ = g
(
e−k0x−k

∫ x
0 v̄∞(s) exp( αs2D )ds

)
.

From these two identities, we deduce

D[v∞v̄
′
∞ − v′∞v̄∞]

∣∣∣c
0

=

∫ c

0

[g∞ − ḡ∞]v∞v̄∞.

As

D[v∞v̄
′
∞ − v′∞v̄∞]

∣∣∣c
0

= D[v̄′∞(c)− v′∞(c)]v∞(c) ≤ 0,

and ∫ c

0

[g∞ − ḡ∞]v∞v̄∞ > 0 since g∞ > ḡ∞ on (0, c),

we reach a contradiction. Hence case (1) can not happen.

We prove case (2) can not happen either. Suppose on the contrary case (2) happens. Then for

any b ∈ (0,∞), we have similar to case (1) that

D[v∞(b)v̄′∞(b)− v′∞(b)v̄∞(b)] =

∫ b

0

[g∞ − ḡ∞]v∞v̄∞.

As b → ∞, the right side of this identity is bounded from below by a positive constant (it is

positive and increasing in b), while by Lemma 3.16 and Remark 3.17,

D[v∞(b)v̄′∞(b)− v′∞(b)v̄∞(b)] ≤ D

(∣∣∣∣v′∞(b)

v∞(b)

∣∣∣∣+

∣∣∣∣ v̄′∞(b)

v̄∞(b)

∣∣∣∣) v∞(b)v̄∞(b)→ 0.

We again reach a contradiction. This means that case (2) can not happen either.
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So in all possible cases we arrive at a contradiction. This proves the uniqueness of v∞ and

hence (3.4.35).

It remains to prove property (i), which will follow if we can show that

z(x) := u′∞(x)/u∞(x)

has a unique zero in [0,∞).

It is readily checked that z satisfies

Dz′ = −Dz2 + αz −G(x) + d, 0 < x <∞.

where G(x) = g
(
e−k0x−k

∫ x
0 u∞(s)ds

)
is a strictly decreasing function of x.

Since u∞(0) = τ∞ > 0, u′∞(0) = ατ∞/D > 0 and limx→∞ u∞(x) = 0, we can find

x∞ ∈ (0,∞) such that u′(x∞) = 0. Obviously x∞ is a zero for z in (0,∞). We prove that there

is no other zeros of z.

We may assume that z(x) has no zero in [0, x∞). It follows that z′(x∞) ≤ 0 andG(x∞)−d ≥

0. Assume x∗ > x∞ is also a zero of z. Without loss of generality we may assume that there is

no other zeros in (x∞, x∗). (Note that z′(x∞) = 0 implies Dz′′(x∞) = −G′(x∞) > 0.) Since

G(x) is strictly decreasing, we have

z′(x∗)− z′(x∞) = D−1(G(x∞)−G(x∗)) > 0.

Hence we have either z′(x∞) < 0 or z′(x∞) = 0 and z′(x∗) > 0. This implies that z(x) is

negative in (x∞, x∗). By the mean value theorem we can find x̄ ∈ (x∞, x∗) such that z′(x̄) = 0

and z(x̄) < 0. Consequently,

G(x̄)− d = −Dz′(x̄)−Dz2(x̄) + αz(x̄) < 0.

Since G(x) is strictly decreasing, we have

G(x)− d < 0 for all x ∈ [x̄,∞).

By (3.4.34), w′∞(x) ≤ 0 for x ≥ 0. That is[
u∞(x)e−αx/D

]′ ≤ 0 ∀x ≥ 0.
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It follows that

z(x) ≤ α/D ∀x ∈ [0,∞).

Now we have

z(x∗) = 0, z′(x) = −z2(x) +
α

D
z(x) +

1

D
(d−G(x)) > z(x) (α/D − z(x)) ∀x ∈ [x∗,∞).

This implies that z(x) > 0 for all x ∈ (x∗,∞). Hence

u′∞(x) > 0 for all x ∈ (x∗,∞).

But this is in contradiction to (3.4.37).

The proof of the theorem is complete. �

Finally we use Theorem 3.4.18 and some results in [40] to find out exactly when (3.4.20)

holds. By Theorem 3.4.18 we find that if k0 > 0, if d∗∞ > 0 and 0 < d < d∗∞, then (3.4.36)

has a positive solution that converges to 0 as x → ∞. By Theorem 3.1 of [40], this implies that

condition (B) there holds, which is equivalent to, by Theorem 6.2 in [40],

α2

4D
− g(1) + d < 0 and k0 < Kc(d, α), (3.4.39)

where Kc : B0 → (0,∞) is a continuous function, with

B0 :=

{
(d, α) ∈ R2 : d > 0, α > 0,

α2

4D
− g(1) + d < 0

}
,

that has the following properties (Proposition 6.1 of [40]):

(a) Kc(d, α) is strictly decreasing in d and in α;

(b) Kc(d, α)→ 0 as (d, α) approaches a point on the curve α2

4D
− g(1) + d = 0;

(c) Kc(d, 0
+) <∞ for d ∈ (0, g(1)), Kc(0

+, α) <∞ for α ∈ (0, 2
√
Dg(1) );

(d) Kc(0
+, 0+) = +∞.
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Therefore d∗∞ > 0 and 0 < d < d∗∞ imply (d, α) ∈ B0 and k0 < Kc(d, α). In particular, this

implies that

α < 2
√
Dg(1).

Thus d∗∞ = 0 whenever α ≥ 2
√
Dg(1).

For fixed k0 > 0 and small ε > 0, we consider the function Kc(ε, α), which is strictly

decreasing and takes values between 0 (when α = 2
√
D(g(1)− ε)) and Kc(ε, 0

+). For ε > 0

small enough, by property (d) we find that Kc(ε, 0
+) > k0, and hence we can find a unique

αε ∈ (0, 2
√
D(g(1)− ε)) such that k0 = Kc(ε, αε). By the monotonicity of Kc we find that αε

is decreasing in ε and

α∗ := lim
ε→0

αε ∈ (0, 2
√
Dg(1) ]. (3.4.40)

We show that d∗∞ = 0 whenever α ≥ α∗. Arguing indirectly we assume that d∗∞ > 0 for

some α ≥ α∗. Then for d ∈ (0, d∗∞), by Theorem 3.4.18, (3.4.36) has a positive solution that

converges to 0 as x → ∞. Thus we can use [40] to conclude that (3.4.39) holds. In particular,

k0 < Kc(d, α). On the other hand, our earlier analysis shows that for sufficiently small ε ∈ (0, d),

α ≥ α∗ > αε and

k0 = Kc(ε, αε) > Kc(d, α).

This contradiction proves that we must have d∗∞ = 0 when α ≥ α∗.

Next we prove that d∗∞ > 0 if α < α∗. Note that by [33], we already know that d∗∞ > 0 if

α ≤ 0. Fix a α ∈ (0, α∗). By the definition of α∗, α < αε for all small ε > 0. We fix such an

ε > 0. Then

k0 = Kc(ε, αε) < Kc(ε, α).

By [40], for d = ε, there exists a unique (smooth) positive function ud defined on [0,∞) such

that w(x) := ud(x)e−αx/D satisfies
−Dw′′ − αw′ =

[
g
(
e−k0x−k

∫ x
0 w(s)eαs/Dds

)
− d
]
w, 0 < x <∞,

w′(0) = 0.
(3.4.41)

Moreover, w(x)eαx/D → 0 exponentially as x→∞.
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For h large, consider the variational characterization of the eigenvalue −d∗h:

−d∗h = inf
φ∈H1(0,h)

∫ h
0
e(α/D)x

[
Dφ2

x − g
(
e−k0x

)
φ2
]
dx∫ h

0
e(α/D)xφ2dx

.

Using w(x) := ud(x)e−αx/D (restricted on [0, h]) as a test function we have

−d∗h ≤
∫ h

0
e(α/D)x

[
Dw2

x − g
(
e−k0x

)
w2
]
dx∫ h

0
e(α/D)xw2dx

.

Multiplying the first equation in (3.4.41) by we(α/D)x and integrating it over [0, h] we obtain

−Dwxwe(α/D)x
∣∣∣h
0

+D

∫ h

0

w2
xe

(α/D)xdx =

∫ h

0

[
g
(
e−k0x−k

∫ x
0 w(s)eαs/Dds

)
− d
]
w2eαx/Ddx.

Therefore

−d∗h ≤
∫ h

0
e(α/D)x

[
Dw2

x − g
(
e−k0x

)
w2
]
dx∫ h

0
e(α/D)xw2dx

≤

∫ h
0
e(α/D)x

[
g
(
e−k0x−k

∫ x
0 w(s)eαs/Dds

)
− g

(
e−k0x

)
− d
]
w2dx+Dwxwe

αx/D
∣∣∣h
0∫ h

0
e(α/D)xw2dx

≤ −d+
Dwxwe

αx/D
∣∣∣h
0∫ h

0
e(α/D)xw2dx

.

By the exponential decay property of w(x)eαx/D, we have, as h→∞,∣∣∣∣Dwxweαx/D∣∣∣h
0

∣∣∣∣ =
∣∣Dwx(h)w(h)eαh/D

∣∣ ≤ D sup
s∈[0,∞)

|wx(s)|w(h)eαh/D → 0,

since by Remark 3.4.17, we have sups∈[0,∞) |wx(s)| <∞. Hence

−d∗∞ = lim
h→∞
−d∗h ≤ −d.

That is

d∗∞ ≥ d = ε > 0.

We have thus proved the following result.

Theorem 3.4.19 Let k0 > 0 and suppose that α∗ is defined by (3.4.40). Then d∗∞ > 0 if and only

if α < α∗.
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Chapter 4

The two species case

4.1 Steady-states of the two species model

In this chapter we study the steady states of the two species model, namely, for i = 1, 2,
(ui)t = (Di(x)(ui)x − αi(x)ui)x + (gi(I(x, t))− di)ui, 0 < x < h, t > 0

D(0)(ui)x(0, t)− αi(0)ui(0, t) = Di(0)(ui)x(h, t)− αi(h)ui(h, t) = 0, t ≥ 0,

ui(x, 0) = u0
i (x) 	 0, 0 ≤ x ≤ h,

(4.1.1)

where gi ∈ C1([0,∞)) satisfies

gi(0) = 0 and gi is strictly increasing, (4.1.2)

I(x, t) = e−k0x exp

(
−
∫ x

0

[k1u1(s, t) + k2u2(s, t)] ds

)
, (4.1.3)

Di(x), αi(x) ∈ C1([0, h]) are positive functions. k0, k1, k2 are positive constants and d1, d2 ∈

(0,∞) are parameters.

For i = 1, 2, let

ui(x, t) = eRi(x)vi(x, t)

with

Ri(x) =

∫ x

0

αi(s)

Di(s)
ds.
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Then (4.1.1) becomes
(vi)t = e−Ri(x)(Di(x)eRi(x)(vi)x)x + (gi(I(x, t))− di)vi, 0 < x < h, t > 0,

(vi)x(0, t) = (vi)x(h, t) = 0, t ≥ 0,

vi(x, 0) = e−Ri(x)u0
i (x) =: v0

i (x) 	 0, 0 ≤ x ≤ h,

(4.1.4)

where

I(x, t) = e−k0x exp

(
−
∫ x

0

[k1e
R1(s)v1(s, t) + k2e

R2(s)v2(s, t)] ds

)
.

The corresponding steady state system is
− e−R1(x)(D1(x)eR1(x)v′1)′ = (g1(I(x))− d1)v1, 0 < x < h,

− e−R2(x)(D2(x)eR2(x)v′2)′ = (g2(I(x))− d2)v2, 0 < x < h,

v′i(0) = v′i(h) = 0, i = 1, 2,

(4.1.5)

where

I(x) = e−k0x exp

(
−
∫ x

0

[k1e
R1(s)v1(s) + k2e

R2(s)v2(s)] ds

)
.

We want to find sufficient conditions for (4.1.5) to have at least one positive solution.

For a function Ψ ∈ C([0, h]), Let λ(i)
1 (Ψ), i = 1, 2, be the first eigenvalue of the following

eigenvalue problem

−e−Ri(x)(Di(x)eRi(x)ϕ′)′ + Ψ(x)ϕ = λϕ, 0 < x < h, ϕ′(0) = ϕ′(h) = 0. (4.1.6)

Clearly λ(i)
1 (0) = 0, i = 1, 2.

Define

d∗i = −λ(i)
1 (−gi(e−k0x)).

Nonnegative solutions of (4.1.5) can be classified into three classes: The unique trivial solu-

tion (v1, v2) = (0, 0), which exists for all d1, d2 ∈ R. Two semitrivial solutions (v1, v2) = (0, v∗d2
)

and (v1, v2) = (v∗d1
, 0), the former exists for d2 ∈ (0, d∗2) and the latter exists for d1 ∈ (0, d∗1),

where v∗d1
, v∗d2

denote the unique positive steady state for the v1 and v2 equations respectively,

guaranteed by Theorem 3.2.1. The third class are positive solutions (v1, v2) with v1 > 0 and

v2 > 0 in [0, 1], which are the main interest here.
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A necessary condition for the existence of a positive solution to (4.1.5) can be easily observed.

Suppose that (v1, v2) is a positive solution of (4.1.5). Then from the equation for v1 we obtain

−d1 = λ
(1)
1 (−g1(e−k0x−

∫ x
0 [k1eR1(s)v1(s)+k2eR2(s)v2(s)]ds)) ∈ (−d∗1, 0).

That is d1 ∈ (0, d∗1). Similarly from the equation for v2 we deduce d2 ∈ (0, d∗2). Thus for (4.1.5)

to have a positive solution we necessarily have

0 < d1 < d∗1, 0 < d2 < d∗2. (4.1.7)

On the other hand, we have the following

Theorem 4.1.1 Let v∗di , di ∈ (0, d∗i ), i = 1, 2 be the unique positive solution of the problem − e
−Ri(x)(Di(x)eRi(x)v′)′ = [gi(e

−k0x−ki
∫ x
0 eRi(s)v(s) ds)− di]v, 0 < x < h,

v′(0) = v′(h) = 0.

If  0 < d1 < −λ(1)
1 [−g1(e−k0x−k2

∫ x
0 eR2(s)v∗d2

(s) ds)] =: d̃1,

0 < d2 < −λ(2)
1 [−g2(e−k0x−k1

∫ x
0 eR1(s)v∗d1

(s) ds)] =: d̃2,
(4.1.8)

then (4.1.5) has at least one positive solution.

To prove Theorem 4.1.1, let E = C([0, h]) and let P be the usual positive cone in E: P =

{v ∈ E : v(x) ≥ 0 in [0, h]}. We define

A(v1, v2) = (A1(v1, v2), A2(v1, v2)),

where

A1(v1, v2) = L1 ◦G1(d1, v1, v2), A2(v1, v2) = L2 ◦G2(d2, v1, v2),

G1(d1, v1, v2)(x) = [d∗1 − d1 + g1(e−k0x−
∫ x
0 (k1eR1v1+k2eR2v2)ds)]eR1(x)v1(x),

G2(d2, v1, v2)(x) = [d∗2 − d2 + g2(e−k0x−
∫ x
0 (k1eR1v1+k2eR2v2)ds)]eR2(x)v2(x),

and for i = 1, 2, Li is the solution operator for the problem

−(Di(x)eRi(x)v′)′ + d∗i e
Ri(x)v = fi(x), v′i(0) = v′i(h) = 0,
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namely v = Li(fi). It is easily seen that (v1, v2) solves (4.1.5) if and only if (v1, v2) = A(v1, v2).

By standard elliptic regularity theory we know that A : E × E → E × E is completely

continuous. Moreover, by the strong maximum principle and the fact that

d∗i − di + gi(e
−k0x−

∫ x
0 (k1eR1v1+k2eR2v2)ds) > 0 in [0, h],

we find that vi ∈ Ṗ := P \ {0} implies Ai(v1, v2) ∈ P ◦ := {v ∈ P : v(x) > 0 in [0, 1]}. Thus

we have
A(P × P ) ⊂ P × P, A(Ṗ × Ṗ ) ⊂ P ◦ × P ◦,

A(Ṗ × P ) ⊂ P ◦ × P, A(P × Ṗ ) ⊂ P × P ◦.

To use the topological degree (fixed point index) argument, we need some preparation.

Lemma 4.1.2 Let d̄1 ∈ (0, d∗1), d̄2 ∈ (0, d∗2) be two constants. Then there exist positive con-

stants C1 = C1(d̄1, d̄2), C2 = C2(d̄1, d̄2)such that for any nonnegative solution (v1, v2) of (4.1.5)

corresponding to (d1, d2) with d1 ≥ d̄1, d2 ≥ d̄2, one has the estimate

‖vi‖∞ ≤ Ci, i = 1, 2. (4.1.9)

Proof. Argue indirectly. Suppose there is a sequence of (d1, d2), say (d1n, d2n) and the cor-

responding nonnegative solutions v1n, v2n of (4.1.5) such that ‖v1n‖∞ + ‖v2n‖∞ →∞. Without

loss of generality, we assume ‖v1n‖∞ →∞. Set ṽ1n = v1n/‖v1n‖∞. Then ṽ1n satisfies

−eR1(x)(D1(x)eR1(x)ṽ′1n)′ = [g1(In(x))− d1n)]ṽ1n, ṽ′1n(0) = ṽ′1n(h) = 0, (4.1.10)

where

In(x) = e−k0x exp

(
−k1‖v1n‖∞

∫ x

0

eR1(s)ṽ1n(s) ds− k2

∫ x

0

eR2(s)v2n(s) ds

)
.

The right hand side of (4.1.10) is clearly uniformly bounded. By the standard elliptic regular-

ity, we may assume, by passing to a subsequence, ṽ1n → v0 in C1([0, h]). We may also assume

g1(In)→ g0 weakly in L2((0, h)), d1n → d0 ≥ d̄1. Moreover v0 satisfies (in the weak sense)

−e−R1(x)(D1(x)eR1(x)v′0)′ = [g0(x)− d0]v0, v′0(0) = v′0(h) = 0, ‖v0‖∞ = 1.
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By the maximum principle minx∈[0,h] v0(x) > c0 > 0 for some constant c0. Therefore

limn→∞ v1n(x) = ∞ uniformly, and g0(x) = limn→∞ g1(In(x)) = 0. It follows −d0 =

−λ1(0) = 0, contradicting d0 ≥ d̄1. The contradiction proves the lemma. �

We will use Theorem 1.3.2 to get sufficient conditions for the existence of positive steady

states. The Frechet derivative of A(v1, v2) with respect ot (v1, v2) at (v∗d1
, 0) and at (0, v∗d2

),

and the associated eigenvalue problems play a crucial role. We will denote these derivatives by

A′(v1,v2)(v
∗
d1
, 0) and A′(v1,v2)(0, v

∗
d2

), respectively, and the associated eigenvalue problems are

A′(v1,v2)(v
∗
d1
, 0)(m1,m2) = ξ(m1,m2), (4.1.11)

and

A′(v1,v2)(0, v
∗
d2

)(m1,m2) = η(m1,m2). (4.1.12)

A direct calculation show that η = 1 is an eigenvalue of (4.1.12) if and only if the following

problem has a solution (m1,m2) 6= (0, 0):
− e−R1(x)(D1(x)eR1(x)m′1)′ = [g1(σ2(x))− d1]m1, x ∈ (0, h),

− e−R2(x)(D2(x)eR2(x)m′2)′ = [g2(σ2(x))− d2]m2 − δ2(x), x ∈ (0, h),

m′1 = m′2 = 0, x = 0, h,

(4.1.13)

where

δ2(x) = g′2(σ2(x))σ2(x)v∗d2
(x)

∫ x

0

[k1e
R1(s)m1(s) + k2e

R2(s)m2(s)]ds,

σ2(x) = e−k0x−
∫ x
0 k2eR2(s)v∗d2

(s)ds.

Similarly, if we define

σ1(x) = e−k0x−
∫ x
0 k1eR1(s)v∗d1

(s)ds,

then ξ = 1 is an eigenvalue of (4.1.12) if and only if the following problem has a solution

(m1,m2) 6= (0, 0):
− e−R1(x)(D1(x)eR1(x)m′1)′ = [g1(σ1(x))− d1]m1 − δ1(x), x ∈ (0, h),

− e−R2(x)(D2(x)eR2(x)m′2)′ = [g2(σ1(x))− d2]m2, x ∈ (0, h),

m′1 = m′2 = 0, x = 0, h,

(4.1.14)
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where

δ1(x) = g′1(σ1(x))σ1(x)v∗d1
(x)

∫ x

0

[k1e
R1(s)m1(s) + k2e

R2(s)m2(s)]ds

The following lemma holds the key for solving (4.1.13) and (4.1.14).

Lemma 4.1.3 Let i ∈ {1, 2}. If ψ ∈ C2([0, h]) satisfies
− e−Ri(x)(Di(x)eRi(x)ψ′)′ = [gi(σi(x))− di]ψ

− g′i(σi(x))σi(x)v∗di(x)

∫ x

0

kie
Ri(s)ψ(s)ds, x ∈ (0, h),

ψ′(0) = ψ′(h) = 0,

(4.1.15)

then ψ ≡ 0.

Proof. We argue indirectly. Suppose ψ 6≡ 0 solves (4.1.15). We first claim that ψ(0) 6= 0.

Otherwise, define

ξ(x) =

∫ x

0

eRi(s)ψ(s)ds, η(x) = Di(x)eRi(x)ψ′(x)

Then (ξ(x), ψ(x), η(x)) is a solution of the ODE system
ξ′ = eRi(x)ψ,

ψ′ = D−1
i e−Ri(x)η,

η′ = −(x)[gi(σi(x))− di]eRi(x)ψ + g′i(σi(x))σi(x)v∗di(x)eRi(x)kiξ,

(4.1.16)

with the initial condition (ξ(0), ψ(0), η(0)) = (0, 0, 0). Clearly (ξ, ψ, η) ≡ (0, 0, 0) is the unique

solution of this initial value ODE problem. Hence ψ ≡ 0, contradicting our assumption that

ψ 6≡ 0.

Without loss of generality we may assume that ψ(0) > 0. Next we claim that ψ(x) changes

sign in (0, h). Otherwise ψ(x) ≥, 6≡ 0 in [0, h]. Multiplying the first equation in (4.1.15) by

eRi(x)v∗di and integrating it over [0, h], we deduce∫ h

0

eRi(x)ψ′(x)(v∗di)
′(x)dx =

∫ h

0

[gi(σi(x))− di]eRi(x)ψ(x)v∗di(x)dx

−
∫ 1

0

g′i(σi(x))σi(x)eRi(x)[v∗di(x)]2
∫ x

0

kie
Ri(s)ψ(s)dsdx.

(4.1.17)
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v∗di satisfies − e
−Ri(x)(Di(x)eRi(x)(v∗di)

′)′ = (gi(σi(x))− di)v∗di , 0 < x < h,

(v∗di)
′(0) = (v∗di)

′(h) = 0.
(4.1.18)

Multiplying the first equation of (4.1.18) by eRi(x)ψ and integrating it over [0, h], we deduce∫ h

0

eRi(x)ψ′(x)(v∗di)
′(x)dx =

∫ h

0

[gi(σi(x))− di]eRi(x)ψ(x)v∗di(x)dx. (4.1.19)

From (4.1.17) and (4.1.19) we readily have∫ h

0

g′i(σi(x))σi(x)eRi(x)[v∗di(x)]2
∫ x

0

kie
Ri(s)ψ(s)dsdx = 0.

But the integrand function in the last identity is clearly nonnegative and not identically zero in

[0, h]. Hence the integral should be positive. This contradiction shows that ψ(x) changes sign in

(0, h)

Let x0 ∈ (0, h) be the first zero of ψ(x), namely ψ(x) > 0 in [0, x0) and ψ(x0) = 0. We now

consider the eigenvalue problem

−e−Ri(x)(Di(x)eRi(x)φ′)′ = [gi(σi(x))− di]φ+ λφ, in (0, x0), φ′(0) = φ(x0) = 0. (4.1.20)

We claim that the first eigenvalue λ1 of this problem is positive. Indeed, let φ1 be a positive

eigenfunction corresponding to λ1. Multiplying the first equation in (4.1.20) (with λ = λ1,

φ = φ1)by eRi(x)v∗di and integrating it over [0, x0] we obtain

− eRi(x0)φ′1(x0)v∗di(x0) +

∫ x0

0

eRi(x)φ′1(x)(v∗di)
′(x)dx

=

∫ x0

0

[gi(σi(x))− di]eRi(x)φ1(x)v∗di(x)dx+ λ1

∫ x0

0

eRi(x)φ1(x)v∗di(x)dx.

On the other hand, multiplying (4.1.18) by eRi(x)φ1 and integrating it over [0, x0], we obtain∫ x0

0

eRi(x)φ′1(x)(v∗di)
′(x)dx =

∫ x0

0

[gi(σi(x))− di]eRi(x)φ1(x)v∗di(x)dx.

From the last two identities, we arrive at

λ1

∫ x0

0

eRi(x)φ1(x)v∗di(x)dx = −eRi(x0)φ′1(x0)v∗di(x0)
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Hence λ1 > 0 is clear, since v∗di(x0) > 0,
∫ x0

0
eRi(x)φ1(x)v∗di(x)dx > 0 and φ′1(x0) < 0 (by the

Hopf lemma).

To obtain the desired contradiction, we now multiply the first equation in (4.1.20) (with

λ = λ1, φ = φ1) by eRi(x)ψ and then integrate it over [0, x0]. Consequently we deduce∫ x0

0

eRi(x)φ′1(x)ψ′(x)dx =

∫ x0

0

[gi(σi(x))−di]eRi(x)φ1(x)ψ(x)dx+λ1

∫ x0

0

eRi(x)φ1(x)ψ(x)dx.

On the other hand, multiplying the first equation in (4.1.15) by eRi(x)φ1 and integrating it over

[0, x0], we deduce∫ x0

0

eRi(x)φ′1(x)ψ′(x)dx =

∫ x0

0

[gi(σi(x))− di]eRi(x)φ1(x)ψ(x)dx

−
∫ x0

0

g′i(σi(x))σi(x)v∗di(x)eRi(x)φ1(x)

∫ x

0

kie
Ri(s)ψ(s)dsdx.

From the last two equations we arrive at

λ1

∫ x0

0

eRi(x)φ1(x)ψ(x)dx = −
∫ x0

0

g′i(σi(x))σi(x)v∗di(x)eRi(x)φ1(x)

∫ x

0

kie
Ri(s)ψ(s)dsdx.

(4.1.21)

Since λ1 > 0 and ψ(x) > 0 in [0, x0), the left side of the above identity is positive. However, the

integrand function in the right side of (4.1.21) is nonnegative and hence the right side of (4.1.21)

is not positive. This contradiction completes the proof. �

Lemma 4.1.4 Problem (4.1.13) has a solution (m1,m2) 6= (0, 0) if and only if m1 6= 0 and

−e−R1(x)(D1(x)eR1(x)m′1) = [g1(σ2(x))− d1]m1, m′1(0) = m′1(h) = 0.

Moreover, with m1 given, m2 can be uniquely solved from the second equation in (4.1.13) to-

gethor with the Neumann boundary conditions.

Similarly, (4.1.14) has a solution (m1,m2) 6= (0, 0) if and only if m1 6= 0 and

−e−R2(x)(D2(x)eR2(x)m′2)′ = [g2(σ1(x))− d2]m2, m′2(0) = m′2(h) = 0.

Moreover, with m2 given, m1 can be uniquely solved from the first equation in (4.1.14) togethor

with the Neumann boundary conditions.
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Proof. We only consider the statement for (4.1.13); the proof of that for (4.1.14) is analogous.

Let (m1,m2) solves (4.1.13). If m1 = 0, then by Lemma 4.1.3 we deduce m2 = 0. Suppose now

m1 6= 0. Then we can apply the Fredholm alternative for compact operators and Lemma 4.1.31

to conclude that the second equation in (4.1.13) together with the Neumann boundary conditions

in uniquely solvable for any given m1. �

We are now ready to prove our main theorem in this Chapter, namely Theorem 4.1.1.

Proof of Theorem 4.1.1. We use the fixed point calculation technique of Theorem 1.3.2.

Define Ω = Λ× U × V with

U = {v1 ∈ P : ‖v1‖∞ < C}, V = {v2 ∈ P : ‖v2‖∞ < C},

where C > 0 is large enough such that (4.1.9) holds and ‖v∗d1
‖∞ < C.

Let B1 be a small ball in E containing v∗d1
. Since v∗d1

∈ P ◦, we may assume that B1 ⊂ P ◦.

Then by Theorem 1.3.2, we have

indexP×P (A(d2, ·), (v∗d1
, 0)) =

 0 if r(L) > 1,

degP (I − A1(·, 0), B1) if r(L) < 1,

where L = (A2)′v2
(v∗d1

, 0) and r(L) denotes the spectral radius of the linear operator L.

It is easily checked that r(L) > 1 if d2 < −λ(1)
1 (−g2(σ1(x))) = d̃2, and r(L) < 1 if

d2 > −λ(1)
1 (−g2(σ1(x))) = d̃2. Thus

indexP×P (A(d2, ·), (v∗d1
, 0)) =

 0 if d2 < d̃2,

degP (I − A1(·, 0), B1) if d2 > d̃2.

We show next that

degP (I − A1(·, 0), B1) = 1.

Since (v∗d1
, 0) is the only fixed point of A1(·, 0) in B1 ∩ P ◦, we clearly have

degP (I − A1(·, 0), B1) = indexP (A1(·, 0), v∗d1
).

We will use a homotopy argument to A1(λ, v1, 0) = L1 ◦ G1(λ, v1, 0) with λ ∈ [d∗1, d
∗
1 + 1].

By Theorem 3.2.1 we know that for λ ∈ [d1, d
∗
1) the equation A1(λ, v, 0) = v has exactly two
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solutions in P : The trivial solution v = 0 and the unique positive solution v = vλ > 0. For

λ ∈ [d∗1, d
∗
1 +1], there is one solution in P : v = 0. Moreover, one easily sees that 0 is a linearized

stable fixed point of A1(λ, ·, 0) when λ > d∗1, and it is a linearized unstable fixed point when

λ < d∗1. It follows that

indexP (A1(λ, ·, 0), 0) =

 0 for λ < d∗1,

1 for λ > d∗1.

ChooseC0 > 0 large enough such that ‖vλ‖∞ < C0 for λ ∈ [d1, d
∗
1), and denote PC0 := {v ∈ P :

‖v‖∞ < C0}. Then by the homotopy invariance property of the topological degree, we find that

degP (I −A1(λ, ·, 0), PC0) is well defined and its value does not depend on λ for λ ∈ [d1, d
∗
1 + 1]

By the additivity of the topological degree we have

degP (I − A1(λ, ·, 0), PC0) =indexP (A1(λ, ·, 0), 0) + indexP (A1(λ, ·, 0), vλ)

=indexP (A1(λ, ·, 0), vλ)

for λ ∈ [d1, d
∗
1), and

degP (I − A1(λ, ·, 0), PC0) = indexP (A1(λ, ·, 0), 0) = 1

for λ ∈ (d∗1, d
∗
1 + 1]. It follows that

indexP (A1(λ, ·, 0), vλ) = 1

for λ ∈ [d1, d
∗
1). Taking λ = d1 we obtain

degP (I − A1(·, 0), B1) = indexP (A1(λ, ·, 0), v∗d1
) = 1.

The proof of Theorem 4.1.1 is complete. �

Before ending this chapter, we give some discussion on condition (4.1.8). The condition is

rather implicit. We have showed that d1 ∈ (0, d∗1) and d2 ∈ (0, d∗2) is necessary for (4.1.5) to have

a positive solution. Condition (4.1.8) is more restrictive than this necessary condition. Indeed

we have

Proposition 4.1.5 For fixed d1 ∈ (0, d∗1), if δ > 0 is small enough, then (4.1.5) has no positive

solution if d2 /∈ (δ, d∗2 − δ).
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Proof. Otherwise, we can find dn2 ↓ 0 or dn2 ↑ d∗2 and a positive solution (vn1 , v
n
2 ) with

d2 = dn2 . In the first case we define v̂n2 = vn2 /‖vn2 ‖∞ and

fn = exp

(
−k0x− k1

∫ x

0

eR1(s)vn1 (s)ds− k2

∫ x

0

eR2(s)vn2 (s)ds

)
,

and as before find that by passing to a subsequence ûni → v̂i in C1([0, 1]) for i = 1, 2, fn → f

and g2(fn)→ g2(f) weakly in L2([0, 1]), and v̂2 is a positive solution to

−e−R2(x)(D2(x)eR2(x)v̂′2)′ = g2(f)v̂2, v̂′(0) = v̂′(h) = 0. (4.1.22)

Multiplying the first equation in (4.1.22) by eR2(x) and integrating the resultant equation over

[0, h] we get ∫ h

0

g2(f)(x)eR2(x)v̂2(x) dx = 0.

Since û > 0 in [0, h] and g(f) ≥ 0 in [0, h], the above identity implies g2(f) = 0 a.e. in [0, h]. It

follows that f(x) = 0 a.e. in [0, h].

Now define v̂n1 = vn1 /‖vn1 ‖∞ and we obtain from the equation for vn1 that

−e−R1(x)(D1(x)eR1(x)(v̂n1 )′)′ = [g1(fn)− d1]v̂n1 , (v̂n1 )′(0) = (v̂n1 )′(h) = 0.

As before by elliptic regularity and passing to a subsequence, v̂n1 → v̂1 inC1([0, h]) and g1(fn)→

g1(f) = 0 weakly in L2([0, h]), and v̂1 is a positive solution to

−e−R1(x)(D1(x)eR1(x)v̂′1)′ = −d1v̂1, v̂′1(0) = v̂′1(h) = 0.

This implies d1 = 0, a contradiction to our assumption d1 ∈ (0, d∗1).

Next we consider the case dn2 → d∗2. We define v̂n1 , v̂n1 and fn as above. By the same argument

we know that by passing to a subsequence, v̂n1 → v̂1 and v̂n2 → v̂2 in C1([0, h]), fn → f and

gi(fn)→ gi(f) in L2([0, h]), and v̂2, v̂1 are positive solutions to

−e−R2(x)(D2(x)eR2(x)v̂′2) = [g2(f)− d∗2]v̂2, v̂′2(0) = v̂′2(h) = 0, (4.1.23)

and

−e−R1(x)(D1(x)eR1(x)v̂′1)′ = [g1(f)− d1]v̂1, v̂′1(0) = v̂′1(h) = 0, (4.1.24)

80



respectively.

Let us now look at the sequence {‖vn1 ‖∞}. If this sequence is not bounded, then by passing

to a subsequence we have {‖vn1 ‖∞} → ∞ and hence vn1 = ‖vn1 ‖∞v̂n1 → ∞ uniformly in [0, h].

This implies that f ≡ 0 and (4.1.24) becomes

−e−R1(x)(D1(x)eR1(x)v̂′1)′ = −d1v̂1, v̂′1(0) = v̂′1(h) = 0,

which implies d1 = 0, a contradiction. Thus {‖vn1 ‖∞} is bounded. For the same reason, {‖vn2 ‖∞}

is bounded. So we may assume that

‖vn1 ‖∞ → σ1 ≥ 0, ‖vn2 ‖∞ → σ2 ≥ 0.

It then follows that

fn(x)→ e−k0x−
∫ x
0 (k1σ1eR1 v̂1+k2σ2eR2 v̂2)ds uniformly in [0, h].

Thus

f(x) = e−k0x−
∫ x
0 (k1σ1eR1 v̂1+k2σ2eR2 v̂2)ds ≤ e−k0x

with equality holding if and only if σ1 = σ2 = 0. It follows that g2(f(x)) ≤ g2(e−k0x) with

equality holding for all x ∈ [0, h] if and only if σ1 = σ2 = 0. Form this and (4.1.23) we deduce

d∗2 = −λ(2)
1 (g2(f)) ≤ −λ(2)

1 (−g2(e−k0x)),

with equality holding if and only if σ1 = σ2 = 0. Thus in view of the definition of d∗2, we

necessarily have σ1 = σ2 = 0 and thus f(x) = e−k0x. We now use (4.1.24) and find

d1 = −λ(1)
1 (−g1(f)) = −λ(1)

1 (−g1(e−k0x)).

That is, d1 = d∗1, a contradiction to our assumption on d1. �

On the other hand, we can find (d1, d2) such that (4.1.8) is satisfied, and hence (4.1.5) has a

positive solution. We will leave the detailed discussion to the next chapter, where we treat the

general multiple species model.
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Chapter 5

The more than two species case

5.1 The multi-species case

In this Chapter, we study an n-species reaction-diffusion-advection system proposed by Huisman

et al. in [37] modeling the growth of competitive phytoplankton species in a vertical water

column

(ui)t = Di(ui)xx − αi(ui)x + [gi(I(x, t, u))− di]ui, 0 < x < h, t > 0, i = 1, 2, · · · , n,

(5.1.1)

with no-flux boundary conditions

Di(ui)x(0, t)− αiui(0, t) = Di(ui)x(L, t)− αiui(h, t) = 0, t ≥ 0, i = 1, 2, · · · , n, (5.1.2)

and initial conditions

ui(x, 0) = u0
i (x) ≥6≡ 0, 0 ≤ x ≤ h, i = 1, 2, · · · , n. (5.1.3)

Here ui is the population density of the phytoplankton species i, Di > 0 is the diffusion coef-

ficient caused by the water turbulence, αi ∈ R1 is the sinking (αi > 0) or buoyant (αi < 0)

velocity, di > 0 is the loss rate, L > 0 is the depth of the water column. The light distribution

function I(x, t, u) takes the form

I(x, t, u) = I0e
−k0x exp

(
−

n∑
j=1

kj

∫ x

0

uj(s, t)ds

)
,
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where I0 > 0 is the incident light intensity, k0 > 0 is the background turbidity, ki is the absorption

coefficient of the phytoplankton species i. The term gi(I) represents the specific growth rate of

the phytoplankton species i, which is a function of the light intensity I(x, t, u). In this model

ample nutrient supply is assumed so that the phytoplankton growth is only limited by the light

intensity. gi(i = 1, 2, · · · , n) are smooth functions satisfying gi(0) = 0, g′i(I) > 0 for I > 0,

there exist constants σi > 0 such that gi(I) ≤ σiI for small I > 0.
(5.1.4)

Under assumption (5.1.4), we have∫ ∞
0

gi
(
e−σx

)
dx <∞ for any constant σ > 0.

Before continuing our discussion, we do some rescaling to simplify our system (5.1.1)-

(5.1.3). Replacing x with hx, ui(·) with k−1
i ui(L·), Di with L2Di, αi with Lαi, ki with kiL

and gi(I0·) with gi(·), we may assume that ui satisfies the modified system

(ui)t = Di(ui)xx − αi(ui)x + [gi(I(x, t, u))− di]ui, 0 < x < 1, t > 0, i = 1, 2, · · · , n,

(5.1.5)

with no-flux boundary conditions

Di(ui)x(0, t)− αiui(0, t) = Di(ui)x(1, t)− αiui(1, t) = 0, t ≥ 0, i = 1, 2, · · · , n, (5.1.6)

and initial conditions

ui(x, 0) = u0
i (x) ≥6≡ 0, 0 ≤ x ≤ 1, i = 1, 2, · · · , n, (5.1.7)

with

I(x, t) = I(x, t, u) = e−k0x exp

(
−
∫ x

0

[
n∑
j=1

uj(s, t)]ds

)
.

Through the change of variables

ui(x, t) = vi(x, t)e
(αi/Di)x,

we arrive at an equivalent system

(vi)t = Di(vi)xx+αi(vi)x+[gi(I(x, t))− di] vi, 0 < x < 1, t > 0, i = 1, 2, · · · , n, (5.1.8)
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with homogeneous Neumann boundary conditions

(vi)x(0, t) = (vi)x(1, t) = 0, t ≥ 0, i = 1, 2, · · · , n, (5.1.9)

and initial conditions

vi(x, 0) = v0
i (x) ≥6≡ 0, 0 ≤ x ≤ 1, i = 1, 2, · · · , n, (5.1.10)

where

I(x, t) = e−k0x exp

(
−
∫ x

0

[
n∑
j=1

e(αj/Dj)svj(s, t)]ds

)
.

In the rest of this chapter, as mentioned in Chapter 2, among other things we use the fixed

index calculation technique developed by Dancer and Du in [14] to obtain a group of sufficient

conditions for the existence of positive steady states for (5.1.1)-(5.1.3), or equivalently (5.1.5)-

(5.1.7), then we use the fine properties of certain eigenvalues to find more explicit sufficient

condition for the existence of positive steady state solutions. For the purpose of clarity, we will

only treat the n = 3 case in detail. The extension to n ≥ 3 is given in Section 5.4.

The main structure of the chapter is as following. Section 5.2 is devoted to the study of

the existence and nonexistence of positive steady state of our system. In Section 5.3 we use

fixed point index calculation to prove a group of explicit conditions for the existence of positive

solutions, on which Section 5.2 is based. In the final section, Section 5.4, we extend the results

for the three species case to the general n(≥ 3) species case.
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5.2 Existence and non-existence of positive steady state solu-

tions

In this section, we consider the positive steady-state solutions of (5.1.8)-(5.1.10) (n = 3). That

is we study the positive solutions of the system

−D1v
′′
1 − α1v

′
1 = [g1(I(x))− d1]v1, 0 < x < 1,

−D2v
′′
2 − α2v

′
2 = [g2(I(x))− d2]v2, 0 < x < 1,

−D3v
′′
3 − α3v

′
3 = [g3(I(x))− d3]v3, 0 < x < 1,

v′i(0) = v′i(1) = 0, i = 1, 2, 3,

(5.2.1)

where

I(x) = e−k0x exp

(
−
∫ x

0

[
v1(y)e(α1/D1)y + v2(y)e(α2/D2)y + v3(y)e(α3/D3)y

]
dy

)
. (5.2.2)

We first find a necessary condition for (5.2.1) to have a positive solution. For that, we denote

by λ(i)
1 (Ψ), i = 1, 2, 3 the principal eigenvalue of the eigenvalue problem −Diφ

′′ − αiφ′ + Ψ(x)φ = λφ, 0 < x < 1,

φ′(0) = φ′(1) = 0.

It is well known (see [6]) that λ(i)
1 (Ψ) is a continuous function of Ψ in C([0, 1]) and λ(i)

1 (Ψ1) ≥

λ
(i)
1 (Ψ2) for Ψ1 ≥ Ψ2 and equality holds only if Ψ1 ≡ Ψ2.

Define

d∗i = −λ(i)
1

(
−gi

(
e−k0x

))
, i = 1, 2, 3. (5.2.3)

Then if (5.2.1) has a positive solution (v1, v2, v3), we have

−di = −λ(i)
1 (gi(I(x))) ∈ (−d∗i , 0).

We thus obtain a necessary condition for (5.2.1) to have a positive solution:

di ∈ (0, d∗i ), i = 1, 2, 3. (5.2.4)
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Moreover, for a generic triple di ∈ (0, d∗i ), i = 1, 2, 3, (5.2.1) generally does not have a

positive solution if the diffusion coefficients Di, i = 1, 2, 3 are large, as can be seen from the

following theorem.

Theorem 5.2.1 (i) If there is an i ∈ {1, 2, 3} such that di >
∫ 1

0
gi(e

−k0x)dx, then there exists

a constant D > 0, such that if min{D1, D2, D3} ≥ D then (5.2.1) has only the trivial

solution.

(ii) If di ∈ (0,
∫ 1

0
gi(e

−k0x)dx] for all i = 1, 2, 3, then there exists a positive constant D such

that if min{D1, D2, D3} ≥ D, (5.2.1) has no positive solution except possibly when the

following exceptional situation occurs:

there exists a constant c ≥ 0 such that

c1 = c2 = c3 = c,

where ci is uniquely determined by

di =

∫ 1

0

gi(e
−(k0+ci)x)dx. (5.2.5)

Proof. Denote by (v1D, v2D, v3D) ∈ C([0, 1]) × C([0, 1]) × C([0, 1]) a positive solution

of (5.2.1) with D = (D1, D2, D3). Suppose there is a sequence of D = (D1, D2, D3), say

Dn = (D1n, D2n, D3n), such that min{D1n, D2n, D3n} → ∞ and that (5.2.1) has a positive

solution with D = Dn. Set vin = viDn and ṽin = vin/‖vin‖∞, i = 1, 2, 3. Then we have

− ṽ′′1n −
α1

D1n

ṽ′1n =
1

D1n

[g1 (In(x))− d1] ṽ1n,

− ṽ′′2n −
α2

D2n

ṽ′2n =
1

D2n

[g2 (In(x))− d2] ṽ2n,

− ṽ′′3n −
α3

D3n

ṽ′3n =
1

D3n

[g3 (In(x))− d3] ṽ3n,

(ṽ′1n, ṽ
′
2n, ṽ

′
3n)(0) = (ṽ′1n, ṽ

′
2n, ṽ

′
3n)(1) = 0,

(5.2.6)

where

In(x) = e−k0x−
∫ x
0 [‖v1n‖∞ṽ1n(s)e(α1/D1n)s+‖v2n‖∞ṽ2n(s)e(α2/D2n)s+‖v3n‖∞ṽ3n(s)e(α3/D3n)s]ds. (5.2.7)
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The right hand side of the equations in (5.2.6) is clearly bounded. By the standard elliptic regu-

larity and Sobolev embedding, subject to a subsequence, ṽin → vi0 in C1([0, 1]) and

v′i0(x) = lim
n→∞

v′in(x) = lim
n→∞

(
− 1

Din

∫ x

0

[gi (In(s))− di] ṽin(s)ds− αi
Din

ṽin(x)

)
= 0, i = 1, 2, 3.

Hence ṽin → 1 in C1([0, 1]), i = 1, 2, 3.

Now multiplying the equation for ṽin by e(αi/Din)x and integrating over [0, 1] we deduce∫ 1

0

gi

(
e−k0x−

∫ x
0 [v1n(s)e(α1/D1n)s+v2n(s)e(α2/D2n)s+v3n(s)e(α3/D3n)s]ds

)
ṽin(x)e(αi/Din)xdx

= di

∫ 1

0

ṽin(x)e(αi/Din)xdx.

(5.2.8)

From (5.2.8) we have

di

∫ 1

0

ṽin(x)e(αi/Din)xdx ≤
∫ 1

0

gi

(
e−‖vin‖∞ṽin(s)e(αi/Din)s]ds

)
ṽin(x)e(αi/Din)xdx. (5.2.9)

We claim ‖vin‖∞ is bounded away from ∞ for each i = 1, 2, 3. Otherwise, subject to a

subsequence, one can let n → ∞ in (5.2.9) and deduce di ≤ 0, which is impossible. Hence we

can assume, subject to a subsequence, ‖vin‖∞ → τi ∈ [0,∞) as n→∞.

Now letting n→∞ in (5.2.8) we deduce

di =

∫ 1

0

gi
(
e−(k0+ci)x

)
dx, i = 1, 2, 3, (5.2.10)

where vjn → τj ∈ [0,∞), j = 1, 2, 3, and ci = τ1 + τ2 + τ3, i = 1, 2, 3.

From the above discussion, conclusion (ii) of the theorem follows readily. From (5.2.10), we

have di ≤
∫ 1

0
gi
(
e−k0x

)
dx and hence conclusion (i) of the theorem also follows. �

From Theorem 5.2.1 we find that when the diffusion coefficients are very large, the phyto-

plankton species can not coexist generically. To see this point more clearly, we look at the widely

used nonlinearity

gi(I) =
miI

δi + I
, i = 1, 2, 3,

where mi, δi are positive constants. In this case (5.2.10) becomes

mi

di
ln

(
δi + 1

δi + e−(k0+c)

)
= k0 + c, i = 1, 2, 3. (5.2.11)
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Clearly (5.2.11) implies rather severe restrictions on the parameters. For example even under

the restriction δ1 = δ2 = δ3 = δ, we still need

m1

d1

=
m2

d2

=
m3

d3

to guarantee (5.2.11).

From the above discussion, we notice that even in the two species case, when the diffusion

coefficients are large, phytoplankton species can hardly coexist.

In sharp contrast, when the diffusion coefficients of the system are small, we will prove

coexistence of the three phytoplankton is possible.

For that, we consider the equation, for each i ∈ {1, 2, 3},
−Div

′′ − αiv′ =
[
gi

(
e−k0x−

∫ x
0 v(s)e(αi/Di)sds

)
− di

]
v, 0 < x < 1,

v′(0) = v′(1) = 0.
(5.2.12)

From [23] (see [22] for the case αi = 0), (5.2.12) has a positive solution if and only if di ∈ (0, d∗i ),

where d∗i is defined by (5.2.3); moreover, the positive solution is unique. We denote by vdi the

positive solution corresponding to di(∈ (0, d∗i )).

By using topological degree argument, we can prove the following

Theorem 5.2.2 Suppose that

0 < d1 < −λ(1)
1 [−g1(σd2d3(x))] ,

0 < d2 < −λ(2)
1 [−g2(σd1d3(x))] ,

0 < d3 < −λ(3)
1 [−g3(σd1d2(x))] ,

(5.2.13)

where

σd2d3(x) = e−k0x−
∫ x
0 [e(α2/D2)yvd2 (y)+e(α3/D3)yvd3 (y)]dy, x ∈ [0, 1],

σd1d3(x) = e−k0x−
∫ x
0 [e(α1/D1)yvd1 (y)+e(α3/D3)yvd3 (y)]dy, x ∈ [0, 1],

σd1d2(x) = e−k0x−
∫ x
0 [e(α1/D1)yvd1 (y)+e(α2/D2)yvd2 (y)]dy, x ∈ [0, 1].

Then (5.2.1) has at least one positive solution.
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The proof of this theorem will be given in section 3 of this chapter. We notice that condition

(5.2.13) is rather implicit. Our next theorem gives a specific range of parameters for which

(5.2.13) is satisfied.

Theorem 5.2.3 Suppose α1, α2, α3 ∈ R1 and at least two of the three αi(i = 1, 2, 3) are nonpos-

itive. Then there exist suitable (D1, D2, D3) and (d1, d2, d3) such that (5.2.13) holds, and hence

there is at least one positive solution to (5.2.1).

The range of (D1, D2, D3) and (d1, d2, d3) where (5.2.13) holds will become clear in the

proof.

Proof. Let α be a nonpositive constant, D be a positive parameter, π(x) be a continuous,

strictly increasing function on [0, 1]. Denote by λD(π(x)) the principal eigenvalue of the eigen-

value problem −Dϕ
′′ − αϕ′ + π(x)ϕ = λϕ, 0 < x < 1,

ϕ′(0) = ϕ′(1) = 0.

By the same technique as used in the proof of Theorem 3.6 of [33], we can prove λD(π(x)) is

strictly increasing as a function of D ∈ (0,∞), moreover,

lim
D→0

λD(π(x)) = π(0), lim
D→∞

λD(π(x)) =

∫ 1

0

π(x) dx. (5.2.14)

Consider the equation
−Dv′′ − αv′ =

[
g
(
e−k0x−

∫ x
0 v(s)e(α/D)s ds

)
− d
]
v, 0 < x < 1,

v′(0) = v′(1) = 0,
(5.2.15)

where g satisfies the conditions for gi, i = 1, 2, 3 in (5.1.4).

By Theorem 3.1 of [33], d ∈
(
0,−λD

(
−g
(
e−k0x

)))
is a necessary and sufficient condition

for (5.2.15) to have a positive solution vD,d, moreover the positive solution is unique. Clearly if

0 < d < g
(
e−k0

)
, then (5.2.15) has a unique positive solution for any D ∈ (0,∞) and α ∈ R1.
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Multiplying (5.2.15) by e(α/D)x and integrating the resultant equation over [0, 1], we have

d

∫ 1

0

e(α/D)xv(x)dx =

∫ 1

0

g
(
e−k0x−

∫ x
0 e(α/D)sv(s)ds

)
e(α/D)xv(x)dx

≤
∫ 1

0

g
(
e−

∫ x
0 e(α/D)sv(s)ds

)
e(α/D)xv(x)dx

≤
∫ ∫ 1

0 e
(α/D)xv(x)dx

0

g
(
e−s
)
ds ≤ C :=

∫ ∞
0

g(e−s)ds.

(5.2.16)

Define

cd = sup
α∈R1,D>0

∫ 1

0

e(α/D)xvD,α(x)dx. (5.2.17)

We show that

cd → 0 as d→ g(1). (5.2.18)

Assume (5.2.18) does not hold. Then there exists Dn > 0, αn ∈ R1 and dn → g(1) such that∫ 1

0

vn(x)e(αn/Dn)xdx→ I∗ > 0.

It follows from (5.2.16) that

g(1)I∗ ≤
∫ I∗

0

g
(
e−s
)
ds = g

(
e−s∗

)
I∗ for some s∗ ∈ (0, I∗),

which is impossible.

We are now ready to complete the proof of the theorem. Without loss of generality, we may

assume α2 ≤ 0, α3 ≤ 0. We first fix D1 > 0 and choose d2 such that

0 < d2 < g2 (1) .

Let cd2 be a constant given by (5.2.17), but with (D,α, d, g) in (5.2.15) replaced by (D2, α2, d2, g2).

Choose

d1 ∈
(
0, g1

(
e−k0−cd2

))
.

By (5.2.17) we have

0 < d1 < −λD1

[
−g1

(
e−k0x−

∫ x
0 vD2,d2

(s)e(α2/D2)sds
)]
.
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Now by (5.2.14), we have

lim
D2→0

λD2

[
−g2

(
e−k0x−

∫ x
0 vD1,d1

(s)e(α1/D1)sds
)]

= −g2(1).

We can choose D2 sufficiently small such that

0 < d2 < −λD2

[
−g2

(
e−k0x−

∫ x
0 vD1,d1

(s)e(α1/D1)sds
)]
.

Choose ε > 0 such that

0 < d1 < −λD1

[
−g1

(
e−k0x−

∫ x
0 vD2,d2

(s)e(α2/D2)sds−ε
)]
,

0 < d2 < −λD2

[
−g2

(
e−k0x−

∫ x
0 vD1,d1

(s)e(α1/D1)sds−ε
)]
.

By (5.2.17) and (5.2.18), we can choose d3 > 0 such that g3(1) − d3 > 0 is small enough such

that ∫ 1

0

vD3,d3(x)e(α3/D3)xdx ≤ ε. (5.2.19)

Hence

0 < d1 < −λD1

[
−g1

(
e−k0x−

∫ x
0 vD2,d2

(s)e(α2/D2)sds−
∫ x
0 vD3,d3

(s)e(α3/D3)sds
)]
, (5.2.20)

0 < d2 < −λD2

[
−g2

(
e−k0x−

∫ x
0 vD1,d1

(s)e(α1/D1)sds−
∫ x
0 vD3,d3

(s)e(α3/D3)sds
)]
. (5.2.21)

Finally by (5.2.14) again, we can choose D3 small enough such that

0 < d3 < −λD3

[
−g3

(
e−k0x−

∫ x
0 vD1,d1

(s)e(α1/D1)sds−
∫ x
0 vD2,d2

(s)e(α2/D2)sds
)]
.

Note that (5.2.17), (5.2.19) and hence (5.2.20) and (5.2.21) are not affected by the choice of D3.

The proof is complete.

�

Theorem 5.2.3 tells us that if at least two of the three species are buoyant, when the death

rates and the turbulence diffusions of the species are sufficiently small, the three species can

coexist in the same water column.

91



Theorem 5.2.4 Suppose D1, D2, D3 are fixed. We can choose suitable α1, α2, α3 and d1, d2, d3

such that (5.2.13) holds, and hence there exists at least one positive solution to (5.2.1).

Proof. Let π(x) be any continuous strictly increasing function on [0, 1]. Let λα be the principal

eigenvalue of the eigenvalue problem−Dϕ
′′ − αϕ′ + π(x)ϕ = λϕ, 0 < x < 1,

ϕ′(0) = ϕ′(1) = 0.

By the same technique as in the proof of Theorem 3.2 of [33], λα(π(x)) is strictly increasing as

a function of α ∈ (−∞,∞), moreover,

lim
α→−∞

λα(π(x)) = π(0), lim
α→∞

λα(π(x)) = π(1). (5.2.22)

We also have the same cd as in (5.2.17) with cd independent of α ∈ R1, D > 0:

cd = sup
α∈R1,D>0

∫ 1

0

e(α/D)xv(x)dx

and

cd → 0, as d→ g(1).

We can now begin to choose suitable α1, α2, α3 and d1, d2, d3 such that (5.2.13) holds. Choose

α2 and d1 such that 0 < d1 < g1

(
e−k0

)
. Let cd1 be a constant chosen according to (5.2.17).

Choose d2 ∈
(
0, g2

(
e−k0−cd1

))
. Now we can choose α1 sufficiently negative to ensure

0 < d1 < −λα1

[
−g1

(
e−k0x−

∫ x
0 vα2,d2

(s)e(α2/D2)sds
)]
,

0 < d2 < −λα2

[
−g2

(
e−k0x−

∫ x
0 vα1,d1

(s)e(α1/D1)sds
)]
.

Choose ε > 0 such that

0 < d1 < −λα1

[
−g1

(
e−k0x−

∫ x
0 vα2,d2

(s)e(α2/D2)sds−ε
)]
,

0 < d2 < −λα2

[
−g2

(
e−k0x−

∫ x
0 vα1,d1

(s)e(α1/D1)sds−ε
)]
.

(5.2.23)

Choose d3 > 0 such that g3(1)− d3 > 0 is small enough such that∫ 1

0

vα3,d3(s)e(α3/D3)sds ≤ ε. (5.2.24)
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By (5.2.23) and (5.2.24) we have

0 < d1 < −λα1

[
−g1

(
e−k0x−

∫ x
0 vα2,d2

(s)e(α2/D2)sds−
∫ x
0 vα3,d3

(s)e(α3/D3)sds
)]
,

0 < d2 < −λα2

[
−g
(
e−k0x−

∫ x
0 vα1,d1

(s)e(α1/D1)sds−
∫ x
0 vα3,d3

(s)e(α3/D3)sds
)]
.

(5.2.25)

Finally choose α3 negative enough such that

0 < d3 < −λα3

[
−g
(
e−k0x−

∫ x
0 vα1,d1

(s)e(α1/D1)sds−
∫ x
0 vα2,d2

(s)e(α2/D2)sds
)]
. (5.2.26)

Note that (5.2.25) still holds. The proof is complete. �

Remark 5.2.5 In Theorem 5.2.3, we assume that at least two of the three αi, i = 1, 2, 3, are

nonpositive. We guess it is purely technical. It would be interesting to find conditions that do not

require the signs of these αis.

5.3 The proof of Theorem 5.2.2

In this section, we use topological degree (fixed point index) theory to prove Theorem 5.2.2.

Similar techniques have been used in [14] and [16] in treating classic competition or predator-

prey systems. Here we need some a prior estimates specific to our nonlocal problem.

We begin by proving the following boundedness lemma.

Lemma 5.3.1 Let t ∈ [0, 1]. Fix d = (d1, d2, d3), di ∈ (0, d∗i ) (i = 1, 2, 3). Suppose that

(v1, v2, v3) is a nonnegative solution of

−D1v
′′
1 − α1v

′
1 + d∗1v1 = t[g1(I(x)) + d∗1 − d1]v1, 0 < x < 1,

−D2v
′′
2 − α2v

′
2 + d∗2v2 = t[g2(I(x)) + d∗2 − d2]v2, 0 < x < 1,

−D3v
′′
3 − α3v

′
3 + d∗3v3 = t[g3(I(x)) + d∗3 − d3]v3, 0 < x < 1,

(v′1, v
′
2, v
′
3)(0) = (v′1, v

′
2, v
′
3)(1) = (0, 0, 0).

(5.3.1)

Then there exists a constant B = Bd dependent on d, but independent of t such that

‖v1‖∞ + ‖v2‖∞ + ‖v3‖∞ ≤ Bd.
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Proof. Argue indirectly. Assume (v1n, v2n, v3n) is a sequence of nonnegative solutions to

(5.3.1) with t = tn satisfying

‖v1n‖∞ + ‖v2n‖∞ + ‖v3n‖∞ →∞ as n→∞.

Without loss of generality, we assume ‖v1n‖∞ →∞ as n→∞. Setting ṽ1n := v1n/‖v1n‖∞, we

have  −D1ṽ
′′
1n − α1ṽ

′
1n + d∗1ṽ1n = tn[g1(In(x)) + d∗1 − d1]ṽ1n,

ṽ′1n(0) = ṽ′1n(1) = 0,

where

In(x) = exp

(
−k0x−

∫ x

0

[e(α1/D1)yv1n(y) + e(α2/D2)yv2n(y) + e(α3/D3)yv3n(y)]dy

)
.

Note that [g1(In(x)) + d∗1 − d1]ṽ1n is bounded in C([0, 1]) with respect to n. By the standard

elliptic regularity and Sobolev embedding theorems, subject to a subsequence, ṽ1n → v0 in

C1([0, 1]). We may also assume g1(In)→ g0 weakly in L2([0, 1]) and tn → t0 ∈ [0, 1]. Then v0

satisfies  −D1v
′′
0 − α1v

′
0 + d∗1v0 = t0[g0(x) + d∗1 − d1]v0,

v′0(0) = v′0(1) = 0, v0(x) ≥ 0, ‖v0‖∞ = 1.

By the strong maximum principle we have

v0(x) > 0 in [0, 1],

and hence

v1n(x) = ‖v1n‖∞ṽ1n(x)→∞ uniformly in [0, 1].

Thus

g0(x) = lim
n→∞

g1

(
e−k0x−

∫ x
0 [e(α1/D1)yv1n(y)+e(α2/D2)yv2n(y)+e(α3/D3)yv3n(y)]dy

)
= 0.

Therefore  −D1v
′′
0 − α1v

′
0 + d∗1v0 = t0[d∗1 − d1]v0,

v′0(0) = v′0(1) = 0, v0(x) > 0, ‖v0‖∞ = 1.
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This implies

t0[d∗1 − d1] = λ
(1)
1 (d∗1) = d∗1.

From d1 ∈ (0, d∗1) we then have

t0 =
d∗1

d∗1 − d1

> 1,

a contradiction. The contradiction finishes the proof. �

Let

K = {v ∈ C([0, 1]) : v(x) ≥ 0 in [0, 1]},

E = C([0, 1])× C([0, 1])× C([0, 1]) and C = K ×K ×K,

Clearly K is a cone in C([0, 1]).

Let Li (i = 1, 2, 3) be the solution operator of

−Div
′′ − αiv′ + d∗i v = fi(x) (fi ∈ C([0, 1])), v′(0) = v′(1) = 0;

Gi(di, v1, v2, v3) (i = 1, 2, 3) be the operator defined by

Gi(di, v1, v2, v3) = [gi(I) + d∗i − di] vi.

Let

Ω = {(v1, v2, v3) ∈ C : ‖v1‖+ ‖v2‖+ ‖v3‖ ≤ Bd + 1}.

Define the operator A : Ω→ E by

A(v1, v2, v3) = (A1(v1, v2, v3), A2(v1, v2, v3), A3(v1, v2, v3)) for any (v1, v2, v3) ∈ C,

where

Ai(v1, v2, v3) = Li ◦Gi(di, v1, v2, v3), i = 1, 2, 3.

Then it is easy to see that (v1, v2, v3) solves (5.2.1) if and only if it is a fixed point of A. Clearly

A : Ω→ C is a completely continuous operator. Its derivative operator at v = (v1, v2, v3) is

A′i(v)h = Li ◦G′i(v)h (i = 1, 2, 3), h = (h1, h2, h3)T ,

95



where (h1, h2, h3)T denotes the transpose of the row matrix (h1, h2, h3) and
G′ivj(v)h = δij (gi(I(x)) + d∗i − di)hj − g′i(I(x))I(x)vi

∫ x

0

3∑
j=1

e(αj/Dj)yhj(y)dy,

h′j(0) = h′j(1) = 0, i, j = 1, 2, 3,

where δij = 1, for i = j; δij = 0, for i 6= j.

For di ∈ (0, d∗i ) (i = 1, 2, 3), we have the following result.

Lemma 5.3.2

degC(I − A,Ω, 0) = 1. (5.3.2)

Proof. In fact, for t ∈ [0, 1], (v1, v2, v3) = tA(v1, v2, v3) ((v1, v2, v3) ∈ Ω) is equivalent to

−D1v
′′
1 − α1v

′
1 + d∗1v1 = t[g1(I(x)) + d∗1 − d1]v1, 0 < x < 1,

−D2v
′′
2 − α2v

′
2 + d∗2v2 = t[g2(I(x)) + d∗2 − d2]v2, 0 < x < 1,

−D3v
′′
3 − α3v

′
3 + d∗3v3 = t[g3(I(x)) + d∗3 − d3]v3, 0 < x < 1,

(v′1, v
′
2, v
′
3)(0) = (v′1, v

′
2, v
′
3)(1) = (0, 0, 0).

(5.3.3)

By Lemma 5.3.1, there is no nonnegative solution of (5.3.3) satisfying

‖v1‖+ ‖v2‖+ ‖v3‖ = Bd + 1. (5.3.4)

This implies for any (v1, v2, v3) satisfying (5.3.4), t ∈ [0, 1], we have

v 6= tAv.

By the homotopy invariant property of the topological degree, we have

degC(I − A,Ω, 0) = degC(I,Ω, 0) = 1.

�

By the strong maximum principle, nonnegative solutions of (5.2.1) can be classified into three

classes:

(I) The unique trivial solution (v1, v2, v3) = (0, 0, 0), which exists for all d1, d2 and d3.
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(II) Three semitrivial solutions (v1, v2, v3) = (vd1 , 0, 0) for d1 ∈ (0, d∗1), (v1, v2, v3) = (0, vd2 , 0)

for d2 ∈ (0, d∗2) and (v1, v2, v3) = (0, 0, vd3) for d3 ∈ (0, d∗3).

(III) Semitrivial solutions of (5.2.1) which have exactly one component identically zero.

Let (v1, 0, 0) be the nonnegative solution of (5.2.1) and ξ be a number such that there are

positive hi ∈ k, i = 1, 2, 3 such that

A′(v1,0,0)(h1, h2, h3)T = ξ(h1, h2, h3)T . (5.3.5)

Clearly if di ∈ (0, d∗i ), we have ξ > 0 if it exists. That is we want to find (h1, h2, h3) 6= (0, 0, 0)

such that

−D1h
′′
1 − α1h

′
1 + (1− ξ−1)d∗1h1 = ξ−1 [g1(σ1(x))− d1]h1

− ξ−1g′1(σ1(x))σ1(x)v1(x)

∫ x

0

3∑
j=1

e(αj/Dj)yhj(y)dy, x ∈ (0, 1),

−D2h
′′
2 − α2h

′
2 + (1− ξ−1)d∗2h2 = ξ−1 [g2(σ1(x))− d2]h2, x ∈ (0, 1),

−D3h
′′
3 − α3h

′
3 + (1− ξ−1)d∗3h3 = ξ−1 [g3(σ1(x))− d3]h3, x ∈ (0, 1),

h′1 = h′2 = h′3 = 0, x = 0, 1,

(5.3.6)

where

σi(x) = e−k0x−
∫ x
0 e(αi/Di)yvi(y)dy, i = 1, 2, 3.

For later use, we need to calculate ξ. First we find the condition needed for ξ = 1. That is we

need to solve

−D1h
′′
1 − α1h

′
1 = [g1(σ1(x))− d1]h1

− g′1(σ1(x))σ1(x)v1(x)

∫ x

0

3∑
j=1

e(αj/Dj)yhj(y)dy, x ∈ (0, 1),

−D2h
′′
2 − α2h

′
2 = [g2(σ1(x))− d2]h2, x ∈ (0, 1),

−D3h
′′
3 − α3h

′
3 = [g3(σ1(x))− d3]h3, x ∈ (0, 1),

h′1 = h′2 = h′3 = 0, x = 0, 1.

(5.3.7)

Similar as in Chapter 3 we can prove the following
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Lemma 5.3.3 Let i ∈ {1, 2, 3}, h ∈ C2([0, 1]) satisfy
−Dih

′′ − αih′ = [gi(σi(x))− di]h− g′i(σi(x))σi(x)vi(x)

∫ x

0

e(αi/Di)yh(y)dy,

h′(0) = h′(1) = 0.

(5.3.8)

Then h ≡ 0.

Denote by vdi (0 < di < d∗i , i = 1, 2, 3) the unique positive solution of the problem
−Div

′′ − αiv′ =
[
gi

(
e−k0x−

∫ x
0 e(αi/Di)yv(y)dy

)
− di

]
v, 0 < x < 1,

v′(0) = v′(1) = 0.
(5.3.9)

Let

σdi(x) = e−k0x−
∫ x
0 e(αi/Di)yvdi (y)dy, i = 1, 2, 3.

Then it is clear that
0 < −λ(i)

1 [−gi (σd1(x))] < −λ(i)
1

[
−gi

(
e−k0x

)]
= d∗i (i = 2, 3),

0 < −λ(j)
1 [−gj (σd2(x))] < −λ(j)

1

[
−gj

(
e−k0x

)]
= d∗j (j = 1, 3),

0 < −λ(k)
1 [−gk (σd3(x))] < −λ(k)

1

[
−gk

(
e−k0x

)]
= d∗k (k = 1, 2).

Lemma 5.3.4 Suppose d1 ∈ (0, d∗1), d2 ∈ (0, d∗2), d3 ∈ (0, d∗3),

di 6= −λ(i)
1 [−gi (σd1(x))] (i = 2, 3),

dj 6= −λ(j)
1 [−gj (σd2(x))] (j = 1, 3),

dk 6= −λ(k)
1 [−gk (σd3(x))] (k = 1, 2).

Then (vd1 , 0, 0), (0, vd2 , 0), (0, 0, vd3) are all isolated solutions of (5.2.1) and

indexC (A, (vd1 , 0, 0))

=

 0, if d2 ∈ (0,−λ(2)
1 [−g2 (σd1(x))]) or d3 ∈ (0,−λ(3)

1 [−g3 (σd1(x))]),

1, if d2 ∈ (−λ(2)
1 [−g2 (σd1(x))] , d∗2) and d3 ∈ (−λ(3)

1 [−g3 (σd1(x))] , d∗3);

indexC (A, (0, vd2 , 0))

=

 0, if d1 ∈ (0,−λ(1)
1 [−g1 (σd2(x))]) or d3 ∈ (0,−λ(3)

1 [−g3 (σd2(x))]),

1, if d1 ∈ (−λ(1)
1 [−g1 (σd2(x))] , d∗1) and d3 ∈ (−λ(3)

1 [−g3 (σd2(x))] , d∗3);
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indexC (A, (0, 0, vd3))

=

 0, if d1 ∈ (0,−λ(1)
1 [−g1 (σd3(x))]) or d2 ∈ (0,−λ(2)

1 [−g2 (σd3(x))]),

1, if d1 ∈ (−λ(1)
1 [−g1 (σd3(x))] , d∗1) and d2 ∈ (−λ(2)

1 [−g2 (σd3(x))] , d∗2).

Proof. We only prove the conclusion holds for (vd1 , 0, 0). The proofs for (0, vd2 , 0) and

(0, 0, vd3) are similar. Suppose that (vd1 , 0, 0) is not an isolated solution, then there exists

a sequence {(v1n, v2n, v3n)} of nonnegative solutions for (5.2.1), such that (v1n, v2n, v3n) →

(vd1 , 0, 0) as n → ∞. As (vd1 , 0, 0) is the unique type II solution of (5.2.1) with the second and

the third components identically zero, we may assume that ‖v2n‖∞ > 0 (or ‖v3n‖∞ > 0).

Set ṽ2n = v2n

‖v2n‖∞ . We then have−D2ṽ
′′
2n − α2ṽ

′
2n = [g2(In(x))− d2]ṽ2n, 0 < x < 1,

ṽ′2n(0) = ṽ′2n(1) = 0, 0 < ṽ2n ≤ 1, ‖ṽ2n‖∞ = 1,
(5.3.10)

where

In(x) = exp

(
−k0x−

∫ x

0

[e(α1/D1)yv1n(y) + e(α2/D2yv2n(y) + e(α3/D3)yv3n(y)]dy

)
.

The right hand side of (5.3.10) is bounded. By the standard Lp theory of elliptic regularity

and Sobolev embedding theorems, we may assume, by passing to a subsequence, ṽ2n → v0 in

C1([0, 1]). Moreover, v0 satisfies−D2v
′′
0 − α2v

′
0 = [g2(e−k0x−

∫ x
0 e(α1/D1)yvd1 (y)dy)− d2]v0, 0 < x < 1,

v′0(0) = v′0(1) = 0, 0 ≤ v0 ≤ 1, ‖v0‖∞ = 1.

By the strong maximum principle v0 > 0 in [0, 1]. Hence d2 = −λ(2)
1 [−g2 (σd1(x))], a contra-

diction. Thus (vd1 , 0, 0) is an isolated solution.

By Lemma 5.3.3, it is easy to check that
−D2h

′′
2 − α2h

′
2 + (1− ξ−1)d∗2h2 = ξ−1 [g2(σ1(x))− d2]h2, x ∈ (0, 1),

−D3h
′′
3 − α3h

′
3 + (1− ξ−1)d∗3h3 = ξ−1 [g3(σ1(x))− d3]h3, x ∈ (0, 1),

h′2 = h′3 = 0, x = 0, 1

(5.3.11)
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has an eigenvalue ξ > 1 if and only if

d2 ∈ (0,−λ(2)
1 [−g2 (σd1(x))]) or d3 ∈ (0,−λ(3)

1 [−g3 (σd1(x))]);

and (5.3.11) has the eigenvalue ξ < 1 if and only if

d2 ∈ (−λ(2)
1 [−g2 (σd1(x))] , d∗2) and d3 ∈ (−λ(3)

1 [−g3 (σd1(x))] , d∗3).

Now a use of Theorem 1.3.2 completes the proof of this lemma. �

Next we consider semitrivial solutions of (5.2.1) which have exactly one component identi-

cally zero. For i = 1, 2, 3, we denote by Ti the set of semitrivial solutions which have the ith

component zero and the other two components positive.

For simplicity, we also write w0 = (0, 0, 0), w1 = (vd1 , 0, 0), w2 = (0, vd2 , 0), w3 =

(0, 0, vd3). Then evidently the set

M =

(
3⋃
i=1

Ti

)⋃(
3⋃
i=0

{wi}

)

contains all the nonnegative solutions of (5.2.1) which are not positive.

Lemma 5.3.5 T1 is a compact set in C if w2 and w3 are both isolated in Ω; T2 is a compact set

in C if w3 and w1 are both isolated in Ω; T3 is a compact set in C if w1 and w2 are both isolated

in Ω.

Proof. We only give the proof for T3, the cases for T1 and T2 are similar.

We first prove that w0 = (0, 0, 0) is isolated. Otherwise, let {(v1n, v2n, v3n)} be a sequence

of nonnegative solutions of (5.2.1) that converges to (0, 0, 0). Then, by choosing a subsequence,

we may assume that v1n > 0 for all n = 1, 2, · · · . Set ṽ1n = v1n/‖v1n‖∞. Then ṽ1n satisfies −D1ṽ
′′
1n − α1ṽ

′
1n = [g1(In(x))− d1] ṽ1n,

ṽ′1n(0) = ṽ′1n(1) = 0,
(5.3.12)

where

In(x) = e−k0x exp

(
−
∫ x

0

[e(α1/D1)yv1n(y) + e(α2/D2)yv2n(y) + e(α3/D3)yv3n(y)]dy

)
.
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Clearly g1(In(x))→ g1(e−k0x) in L2([0, 1]). The right hand side of (5.3.12) is bounded. Thus

by elliptic regularity we may assume, by passing to a subsequence, that ṽ1n → v0 in C1([0, 1]).

Moreover v0 satisfies  −D1v
′′
0 − α1v

′
0 = [g1(e−k0x)− d1]v0,

v′0(0) = v′0(1) = 0, 0 ≤ v0 ≤ 1, ‖v0‖∞ = 1.

By the strong maximum principle, we have v0(x) > 0 for x ∈ [0, 1]. This implies

d1 = −λ(1)
1 [−g1(e−k0x)] = d∗1,

contradicting to d1 ∈ (0, d∗1). Hence w0 = (0, 0, 0) is isolated.

Now supposew1 andw2 are also isolated. Let (v1n, v2n, 0) ∈ T3. By Lemma 5.3.1, {(v1n, v2n, 0) ∈

T3} is precompact. Subject to a subsequence, we may assume (v1n, v2n, 0) → (v1, v2, 0). Now

that w0, w1, w2 are all isolated, hence v1 6≡ 0, v2 6≡ 0. By the strong maximum principle

v1 > 0, v2 > 0. Hence (v1, v2, 0) ∈ T3. Thus T3 is compact. �

Let E1 = C([0, 1]) × C([0, 1]), E2 = C([0, 1]) and E = E1 × E2, C1 = K ×K, C2 = K

and C = C1 × C2, where K is the set of positive functions in C([0, 1]). Then E is an ordered

Banach space with positive cone C.

Define S : Ω→ C by

S((v1, v2), v3) = (S1((v1, v2), v3), S2((v1, v2), v3)) = ((A1(v1, v2, v3), A2(v1, v2, v3)), A3(v1, v2, v3)).

In order to use Theorem 1.3.2, we choose a neighbourhood U ⊂ C1 ∩ Ω of T3 ∩ C1 such that

(vd1 , 0), (0, vd2) 6∈ Ū . Now S1(v1, v2, 0) = (v1, v2) with (v1, v2) ∈ Ū if and only if (v1, v2, 0) ∈

T3.

Fix d1 ∈ (0, d∗1), d1 6= −λ(1)
1 [−g1 (σdi(x))] (i = 2, 3); d2 ∈ (0, d∗2), d2 6= −λ(2)

1

[
−g2

(
σdj(x)

)]
(j =

1, 3) and d3 ∈ (0, d∗3), d3 6= −λ(3)
1 [−g3 (σdk(x))] (k = 1, 2), then degC1

(I − S1|C1 , U, 0) is de-

fined and moreover
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Lemma 5.3.6

degC1
(I − S1|C1 , U, 0)

=


1, if d1 ∈ (0,−λ(1)

1 [−g1 (σd2(x))]) and d2 ∈ (0,−λ(2)
1 [−g2 (σd1(x))]),

−1, if d1 ∈ (−λ(1)
1 [−g1 (σd2(x))] , d∗1) and d2 ∈ (−λ(2)

1 [−g2 (σd1(x))] , d∗2),

0, if [d1 + λ
(1)
1 [−g1 (σd2(x))]] · [d2 + λ

(2)
1 [−g2 (σd1(x))]] < 0.

Proof. By Theorem 2.1 in [23], (0, 0), (vd1 , 0) and (0, vd2) are the only semitrivial solutions

to the equation in C1:


−D1v

′′
1 − α1v

′
1 = [g1(σ12(x))− d1]v1, 0 < x < 1,

−D2v
′′
2 − α2v

′
2 = [g2(σ12(x))− d2]v2, 0 < x < 1,

v′i(0) = v′i(1) = 0, i = 1, 2,

(5.3.13)

where σ12(x) = exp
(
−k0x−

∫ x
0

[e(α1/D1)yv1(y) + e(α2/D2)yv2(y)]dy
)
. Now choose neighbor-

hoods U0, U1, U2 of (0, 0), (vd1 , 0), (0, vd2) in C1 respectively, such that Ū0, Ū1, Ū2 and Ū are

disjoint. It is clear that (5.3.13) does not have any nonnegative solutions in Ω̄ ∩ C1. Therefore

degC1
(I − S1|C1 ,Ω ∩ C1, 0), degC1

(I − S1|C1 , U, 0) and
∑2

i=0 degC1
(I − S1|C1 , Ui, 0) are all

defined and

degC1
(I − S1|C1 ,Ω ∩ C1, 0) = degC1

(I − S1|C1 , U, 0) +
2∑
i=0

degC1
(I − S1|C1 , Ui, 0).

It is clear that degC1
(I − S1|C1 , U0, 0) = 0. By Lemma 5.3.2, degC1

(I − S1|C1 ,Ω ∩ C1, 0) = 1.

We thus have

degC1
(I − S1|C1 , U, 0) = 1−

2∑
i=1

degC1
(I − S1|C1 , Ui, 0).

A use of Lemma 5.3.4 then finishes the proof. �

We call this degree the face index of T3 and denote it by indexf (A, T3). This is well defined

because this degree does not depend on the particular choice of the neighbourhood U . Thus we
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have

indexf (A, T3)

=


1, if d1 ∈ (0,−λ(1)

1 [−g1 (σd2(x))]) and d2 ∈ (0,−λ(2)
1 [−g2 (σd1(x))]),

−1, if d1 ∈ (−λ(1)
1 [−g1 (σd2(x))] , d∗1) and d2 ∈ (−λ(2)

1 [−g2 (σd1(x))] , d∗2),

0, if [d1 + λ
(1)
1 [−g1 (σd2(x))]] · [d2 + λ

(2)
1 [−g2 (σd1(x))]] < 0.

(5.3.14)

Similarly, we have the results for T1 and T2:

indexf (A, T1)

=


1, if d2 ∈ (0,−λ(2)

1 [−g2 (σd3(x))]) and d3 ∈ (0,−λ(3)
1 [−g3 (σd2(x))]),

−1, if d2 ∈ (−λ(2)
1 [−g2 (σd3(x))] , d∗2) and d3 ∈ (−λ(3)

1 [−g3 (σd2(x))] , d∗3),

0, if [d2 + λ
(2)
1 [−g2 (σd3(x))]] · [d3 + λ

(3)
1 [−g3 (σd2(x))]] < 0.

(5.3.15)

indexf (A, T2)

=


1, if d1 ∈ (0,−λ(1)

1 [−g1 (σd3(x))]) and d3 ∈ (0,−λ(3)
1 [−g3 (σd1(x))]),

−1, if d1 ∈ (−λ(1)
1 [−g1 (σd3(x))] , d∗1) and d3 ∈ (−λ(3)

1 [−g3 (σd1(x))] , d∗3),

0, if [d1 + λ
(1)
1 [−g1 (σd3(x))]] · [d3 + λ

(3)
1 [−g3 (σd1(x))]] < 0.

(5.3.16)

For any (v̄1, v̄2, 0) ∈ T3, we can easily show that r(S ′2(v̄1, v̄2, 0)|C2) > 1 if and only if

d3 < −λ(3)
1 [−g3(σ̄(x))] , where

σ̄(x) = e−k0x−
∫ x
0 [e(α1/D1)y v̄1(y)+e(α2/D2)y v̄2(y)]dy, x ∈ [0, 1],

and r(A′2(v̄1, v̄2, 0)|C2) < 1 if and only if d3 > −λ(3)
1 [−g3(σ̄(x))]. Therefore, by Theorem 1.3.2,

we have

degC (I − A,U × C2(ε), 0))

=

 0, if d3 < −λ(3)
1 [−g3(σ̄(x)] , for any (v̄1, v̄2, 0) ∈ T3,

indexf (A, T3), if d3 > −λ(3)
1 [−g3(σ̄(x)] , for any (v̄1, v̄2, 0) ∈ T3.
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Since the above degree does not depend on the particular choices of U and ε, we call this degree

the index of T3 and denote it by indexC(A, T3). We can define indexC(A, T1) and indexC(A, T2)

similarly. So we have

indexC(A, T3)

=

 0, if d3 < −λ(3)
1 [−g3(σ̄(x)] , for any (v̄1, v̄2, 0) ∈ T3,

indexf (A, T3), if d3 > −λ(3)
1 [−g3(σ̄(x)] , for any (v̄1, v̄2, 0) ∈ T3;

(5.3.17)

indexC(A, T2)

=

 0, if d2 < −λ(2)
1 [−g2(σ̂(x))] , for any (v̂1, 0, v̂3) ∈ T2,

indexf (A, T2), if d2 > −λ(2)
1 [−g2(σ̂(x))] , for any (v̂1, 0, v̂3) ∈ T2;

(5.3.18)

indexC(A, T1)

=

 0, if d1 < −λ(1)
1 [−g1(σ̃(x)] , for any (0, ṽ2, ṽ3) ∈ T1,

indexf (A, T1), if d1 > −λ(1)
1 [−g1(σ̃(x)] , for any (0, ṽ2, ṽ3) ∈ T1,

(5.3.19)

where
σ̂(x) = e−k0x−

∫ x
0 [e(α1/D1)y v̂1(y)+e(α3/D3)y v̂3(y)]dy,

σ̃(x) = e−k0x−
∫ x
0 [e(α2/D2)y ṽ2(y)+e(α3/D3)y ṽ3(y)]dy.

Lemma 5.3.7 Suppose indexC (A,wi) and indexC (A, Ti) (i = 1, 2, 3) are well defined, and

3∑
i=1

indexC (A,wi) +
3∑
i=1

indexC (A, Ti) 6= 1.

Then (5.2.1) has at least one positive solution.

Proof. Suppose that (5.2.1) has no positive solution and indexC (A,wi) (i = 0, 1, 2, 3) and

indexC (A, Tj) (j = 1, 2, 3) are well defined. Then by the additivity of the degree

degC (I − A,Ω, 0) =
3∑
i=0

indexC (A,wi) +
3∑
j=1

indexC (A, Tj) .
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It follows from Lemma 5.3.2 and indexC (A, (0, 0, 0)) = 0 that

1 =
3∑
i=1

indexC (A,wi) +
3∑
i=1

indexC (A, Ti) .

This leads to a contradiction. �

Before going further, we prove the following comparison lemma.

Lemma 5.3.8 Suppose that vdi (0 < di < d∗i , i = 1, 2, 3) is the unique positive solution of

(5.3.9). Then for any (v1, v2, v3) ∈ T1 ∪ T2 ∪ T3, we have∫ x

0

e(αi/Di)yvi(y)dy ≤
∫ x

0

e(αi/Di)yvdi(y)dy for any x ∈ [0, 1], i = 1, 2, 3. (5.3.20)

Proof. We prove the case for i = 1. The proofs for i = 2 and i = 3 are similar. Note that

vd1 satisfies
−Div

′′
d1
− α1v

′
d1

=

[
g1

(
exp

[
−k0x−

∫ x

0

e(α1/D1)yvd1(y)dy

])
− d1

]
vd1 , 0 < x < 1,

v′d1
(0) = v′d1

(1) = 0.

For any (v1, v2, v3) ∈ T1 ∪ T2 ∪ T3, v1 satisfies
−D1v

′′
1 − α1v

′
1 ≤

[
g1

(
exp

[
−k0x−

∫ x

0

e(α1/D1)yv1(y)dy

])
− d1

]
v1, 0 < x < 1,

v′1(0) = v′1(1) = 0.

Choose θ(x) > v1(x) for all x ∈ [0, 1]. It is not difficulty to prove that the parabolic problem
vt = D1v

′′ + α1v
′ +

[
g1

(
exp

[
−k0x−

∫ x

0

e(α1/D1)yv(y)dy

])
− d1

]
v,

vx(0, t) = vx(1, t) = 0, v(x, 0) = θ(x)

(5.3.21)

has a unique positive solution v(x, t) for all t ≥ 0. We may now find a small δ > 0 such that

v1(x) < v(x, t) for all x ∈ [0, 1] and t ∈ [0, δ). Note that v1(x, t) ≡ v1(x) satisfies
(v1)t ≤ D1(v1)xx + α1(v1)x =

[
g1

(
exp

[
−k0x−

∫ x

0

e(α1/D1)yv1(y)dy

])
− d1

]
v1,

(v1)x(0, t) = (v1)x(1, t) = 0, v1(x, 0) = v1(x).

(5.3.22)
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By Lemma 4.1 of [23] we have∫ x

0

e(α1/D1)yv1(y)dy <

∫ x

0

e(α1/D1)yv(y, t)dy for all t ≥ 0 and x ∈ (0, 1]. (5.3.23)

By Theorem 2.2 of [23] we have

lim
t→∞

v(x, t) = vd1(x) uniformly for x ∈ [0, 1].

Then (5.3.20) follows by letting t→∞ in (5.3.23). �

We are now ready to prove Theorem 5.2.2.

Proof. [Proof of Theorem 2.2] From (5.2.13), we have

0 < di < −λ(i)
1 [−gi(σd1(x))], i = 2, 3,

0 < dj < −λ(j)
1 [−gj(σd2(x))], j = 3, 1,

0 < dk < −λ(k)
1 [−gk(σd3(x))], k = 1, 2.

By Lemma 5.3.4 we have wi, i = 1, 2, 3 are all isolated. Therefore indexC (A,wi) , i = 1, 2, 3

are all well-defined and

indexC (A,wi) = 0, i = 1, 2, 3.

Moreover, by Lemma 5.3.5 T1, T2 and T3 are all compact sets hence indexC (A, Ti) , i = 1, 2, 3

are all well-defined.

For any (v1, v2, v3) ∈ T1 ∪ T2 ∪ T3, we have by Lemma 5.3.8

0 ≤
∫ x

0

e(αi/Di)yvi(y) ≤
∫ x

0

e(αi/Di)yvdi(y), x ∈ [0, 1], i = 1, 2, 3. (5.3.24)

Hence

d3 < −λ(3)
1 [−g3(σd1d2(x))] ≤ −λ(3)

1 [−g3(σ̄(x))] , for any (v̄1, v̄2, 0) ∈ T3.

Thus, (5.3.17) implies

indexC (A, T3) = 0.

In the same way, we have

indexC (A, T1) = indexC (A, T2) = 0.
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Therefore,
3∑
i=1

indexC (A,wi) +
3∑
i=1

indexC (A, Ti) = 0 6= 1.

It follows from Lemma 5.3.7 that (5.2.1) has at least one positive solution.

The proof of Theorem 5.2.2 is now complete. �

5.4 The n-species case

Our methods for the three-species system can be generalized to the general n-species (n ≥ 3)

case. We only list the important results and give necessary explanations. The proofs of these

results are simple extensions of those of the three species case.

Theorem 5.4.1 If (5.1.8) has a positive steady state solution, then

di ∈ (0, d∗i ) where d∗i = −λ(i)
1 [−gi(e−k0x)], i = 1, 2, · · · , n.

Theorem 5.4.2 (i) If there is an i ∈ {1, 2, · · · , n} such that di >
∫ 1

0
gi(e

−k0x)dx, then there

exists a constant D > 0, such that if min{D1, D2, · · · , Dn} ≥ D then (5.1.8) has only the

trivial steady state solution.

(ii) If di ∈ (0,
∫ 1

0
gi(e

−k0x)dx] for all i = 1, 2, · · · , n, then there exists a positive constant

D such that if min{D1, D2, · · · , Dn} ≥ D, (5.1.8) has no positive steady state solution

except possibly when the following exceptional situation occurs:

there exists a constant c ≥ 0 such that

c1 = c2 = · · · = cn = c,

where ci is uniquely determined by

di =

∫ 1

0

gi(e
−(k0+ci)x)dx, i = 1, 2, · · · , n. (5.4.1)

107



Theorem 5.4.3 Suppose that

0 < di < −λ(i)
1 [−gi(κi(x))], i = 1, 2, · · · , n, (5.4.2)

where

κi(x) = e−k0x exp

(∑
j 6=i

∫ x

0

e(αj/Dj)yvdj(y)dy

)
, i = 1, 2, · · · , n,

and vdj is the unique positive solution of the equation

−Djv
′′ − αjv′ =

[
gj

(
e−k0x−

∫ x
0 e(αj/Dj)yv(y)dy

)
− dj

]
v, v′(0) = v′(1) = 0, j = 1, 2, · · · , n.

Then (5.1.8) has at least one positive steady state solution.

Theorem 5.4.4 Suppose that α1, α2, · · · , αn ∈ R1 and at least n− 1 of the αi(i = 1, 2, · · · , n)

are nonpositive. Then we can choose suitable (D1, D2, · · · , Dn) and (d1, d2, · · · , dn) such that

(5.4.2) holds, and hence there is at least one positive steady state solution to (5.1.8).

Proof. We use induction to prove the theorem. Without loss of generality, we may assume

αj ≤ 0, j = 2, 3, · · · , n.

By Theorem 5.2.3, Theorem 5.4.4 is valid for n = 3. Suppose Theorem 5.4.4 is valid for

m(≥ 3), we show it is also valid for m + 1. Theorem 5.4.4 is valid for m means there exist

suitable (D1, · · · , Dm) and (d1, · · · , dm) such that

0 < di < −λDi

[
−gi

(
exp

[
−k0x−

∑
j=1,··· ,m,j 6=i

∫ x

0

vDj ,dj(s)e
(αj/Dj)sds

])]
, i = 1, · · · ,m.

(5.4.3)

Choose ε > 0 such that

0 < di < −λDi

[
−gi

(
exp

[
−k0x−

∑
j=1,··· ,m,j 6=i

∫ x

0

vDj ,dj(s)e
(αj/Dj)sds− ε

])]
, i = 1, · · · ,m.

By (5.2.17) and (5.2.18) we can choose dm+1 > 0 such that gm+1(1)−dm+1 > 0 is small enough

such that ∫ 1

0

vDm+1,dm+1(x)e(αm+1/Dm+1)xdx ≤ ε for any Dm+1 > 0.
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Thus for any Dm+1 > 0 we have for all i = 1, · · · ,m,

0 < di < −λDi

[
−gi

(
exp

[
−k0x−

∑
j=1,··· ,m+1,j 6=i

∫ x

0

vDj ,dj(s)e
(αj/Dj)sds

])]
. (5.4.4)

By (5.2.14), with D1, · · · , Dm, d1, · · · , dm, dm+1 fixed, we have

lim
Dm+1→0

−λDm+1

[
−gm+1

(
exp

[
−k0x−

∑
j=1,··· ,m

∫ x

0

vDj ,dj(s)e
(αj/Dj)sds

])]
= gm+1(1).

Note that dm+1 ∈ (0, gm+1(1)). We can choose Dm+1 sufficiently small such that

0 < dm+1 < −λDm+1

[
−gm+1

(
exp

[
−k0x−

∑
j=1,··· ,m

∫ x

0

vDj ,dj(s)e
(αj/Dj)sds

])]
.

Since (5.4.4) is not affected by the choice of Dm+1, we have for all i = 1, · · · ,m+ 1,

0 < di < −λDi

[
−gi

(
exp

[
−k0x−

∑
j=1,··· ,m+1,j 6=i

∫ x

0

vDj ,dj(s)e
(αj/Dj)sds

])]
. (5.4.5)

The proof is complete. �

Similarly we can extend Theorem 5.2.4 to obtain

Theorem 5.4.5 Suppose D1, D2, · · · , Dn are fixed. We can choose suitable α1, α2, · · · , αn and

d1, d2, · · · , dn such that (5.4.2) holds, and hence there exists at least one positive steady state

solution to (5.1.8).
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