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Abstract

Partial differential equation theory, especially the theory of reaction-diffusion equations, has long

been found extremely useful in the qualitative study of theoretical ecology. The interplay be-

tween partial differential equations and mathematical ecology not only benefits ecology greatly,

it is also one of the important sources from which many beautiful and challenging mathemati-

cal models have been derived and henceforth helps to develop the theory of partial differential

equations.

In this thesis, we are concerned with the mathematical study of a basic model proposed

by ecologists describing the ecological behaviors of phytoplankton in eutrophic environments.

The model is viewed by some ecologists as a very realistic model to describe the behavior of

phytoplankton. On the other hand, the model involves a nonlocal term and is mathematically

challenging, and not much mathematical research has been carried out on it. This thesis is an

attempt to further the understanding of this model. It consists of five chapters.

In Chapter 1, we collect some basic mathematical facts that the thesis will be based on.

These facts include the existence and uniqueness theorem of ordinary differential equations, the

definitions of Hölder spaces and Sobolev spaces and the embedding theorems, the Lp estimates

of partial differential equations, the principal eigenvalues and the maximum principles, as well

as topological degree theory and bifurcation theorems.

In Chapter 2, we first give a brief introduction on the biological background of our model

and its mathematical formulation. Then we recall the existing mathematical works on the model

and briefly outline the work we have done.
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In Chapter 3. We study the one species model:
ut = Jx(x, t) +

[
g
(
e−k0x−k

∫ x
0 u(s,t)ds

)
− d
]
u, 0 < x < h, t > 0,

J(x, t) = D(x)ux(x, t)− α(x)u(x, t) = 0, x = 0 or h, t > 0,

u(x, 0) = u0(x) 	 0, 0 ≤ x ≤ h,

where g(I) is a smooth function satisfying

g(0) = 0, g′(I) > 0 for I > 0,

and for any γ > 0 ∫ ∞
0

g(e−γx)dx <∞.

We prove there is a critical d∗ such that when 0 < d < d∗, the above equation has a unique

positive steady state u∗d, and when d ≥ d∗, it has no positive steady state. Moreover, when

0 < d < d∗, u∗d is the global attractor, when d ≥ d∗, 0 is the global attractor. We also prove in

this chapter that when the diffusion coefficient approaches zero the phytoplankton species will

behave like a δ-function, concentrating at the bottom of the water column; when the diffusion

coefficient is very large, the phytoplankton species will distribute evenly in the water column. We

aslo study in this chapter the behavior of the phytoplankton species when the depth of the water

column goes to infinite, and find that the distribution of the phytoplankton species converges to

that studied by Ishii and Takagi [40]. As a byproduct, we solved a problem left open in Hsu and

Lou [33].

In Chapter 4 and Chapter 5, we study the behavior of multiple species phytoplankton that live

in the same vertical water column:

(ui)t = (Di(x) (ui)x − αi(x)ui)x + (gi(I(x, t))− di)ui, i = 1, · · · , n, (0.0.1)

with zero-flux boundary conditions

Di(x)(ui)x(x, t)− αi(x)ui(x, t) = 0, x = 0, h, t ≥ 0, i = 1, · · · , n,

and initial conditions

ui(x, 0) = u0
i (x) 	 0, 0 ≤ x ≤ h, i = 1, · · · , n,
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gi(I) satisfies

gi(0) = 0, g′i(I) > 0 for I ≥ 0,

and there are positive constants ci, γi such that

gi(I) ≤ ciI
γi for any I ≥ 0,

I(x, t) = I0e
−k0x exp

(
−
∫ x

0

[k1u1(s, t) + · · ·+ knun(s, t)] ds

)
.

In Chapter 4, we study the existence of positive steady states for the two species model.

Among other things, we use the topological degree argument to find a group of sufficient condi-

tions under which the model has at least one positive steady state. We also study the necessary

conditions for the existence of positive steady states and show that the sufficient conditions are

not necessary.

In Chapter 5, we study the existence of positive steady state of the more than two species

model. As in Chapter 4, we find a group of sufficient conditions for the existence of the positive

steady state for the multiple species mode in terms of principal eigenvalues:

0 < di < −λ(i)
1 [−gi(κi(x))], i = 1, 2, · · · , n, (0.0.2)

where

κi(x) = e−k0x exp

(∑
j 6=i

∫ x

0

udj(y)dy

)
, i = 1, 2, · · · , n,

λ
(i)
1 (Ψ) is the principal eigenvalue of the eigenvalue problem

−Djφ
′′ + αiφ

′ + Ψφ = λφ, Djφ
′(0)− αjφ′(0) = Djφ

′(1)− αjuφ′(1) = 0,

and udj is the unique positive solution of the equation

−Dju
′′ + αju

′ =
[
gj

(
e−k0x−

∫ x
0 u(y)dy

)
− dj

]
u, Dju

′(0)− αju′(0) = Dju
′(1)− αju′(1) = 0.

Here we assume for simplicity, Dj(x) ≡ Dj, αj(x) ≡ αj for j = 1, · · · , n. The derivation of

this sufficient condition is more complicated, and cannot use the topological degree argument

in Chapter 4 directly. It is derived from a fixed point index calculation technique developed by

Dancer and Du in [14].
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A considerable part of Chapter 5 is devoted to the explanation of the rather implicit sufficient

condition (0.0.2). By developing an idea from Hsu and Lou [33], we use the fine properties

of the eigenvalues to find two groups of explicit conditions under which (0.0.2) is satisfied.

Interestingly, one group of conditions require the diffusions of the system to be sufficiently small,

as opposed to the situations that when the diffusions of the system is sufficiently large, the system

cannot have any positive steady states. This explains from one angle the famous paradox of

plankton.
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