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Abstract

The invention of high-throughput genotyping technologies, in particular the single nu-

cleotide polymorphism (SNP) chip, has prompted a revolution in the field of genetics.

With the potential of genotyping literally hundreds of thousands of molecular markers at

an affordable price, the once distant prospect of establishing an individuals genetic value

without need of its pedigree has now become a reality. This thesis is primarily concerned

with the use of genotypic data for ’genomic selection’ - a novel and computationally inten-

sive method of selection that uses all available genotypic data to estimate an individuals

genetic potential. The efficiency of this method is considered within the broader context

of the genetic improvement of Pinus radiata.

We begin by introducing the reader to a basic application of SNP markers in an analysis

of population structure and linkage disequilibrium (LD) for three of the five native Pinus

radiata populations located on the west coast of California. We show that although these

populations are geographically distinct, estimates of genetic distance derived from marker

genotypes suggest that all three once belonged to the same population. Levels of LD are

shown to be orders of magnitude higher within genes than outside the genes.

We extend the use of SNP markers to the Bayesian estimation of quantitative trait loci

(QTL) effects and breeding values. By adopting a ’best case scenario’ approach, we

demonstrate that the detection and estimation of more than 10 individual QTL effects

remains a virtually impossible task, even in highly heritable traits and whilst assuming

complete LD between markers and QTL. In contrast, we show through simulation that

at moderate to high heritabilities genomic estimated breeding values (GEBVs) can be

estimated with very high accuracy (r > 0.70) even for traits with up to 1,000 QTL. We

show that further increases in the accuracy of selection can be made through the use of

clones in families, especially at lower heritabilities and for traits with large numbers of

QTL effects.

The importance of statistical methodology in the analysis of genotypic data is assessed

by comparing a non-linear Bayesian method called Bayes-A, with traditional best linear

unbiased prediction (BLUP). It is shown that whilst Bayes-A is superior in the estimation
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of GEBVs for traits with small numbers of QTL (≤ 10), genomic BLUP (G-BLUP) is

just as efficient for traits with large numbers of QTL (≥ 100). Bayes-A was shown to be

far more sensitive to fluctuations in population size than G-BLUP. Furthermore, in the

estimation of breeding values, a traditional pedigree based BLUP analysis (T-BLUP) was

inferior to both G-BLUP and Bayes-A.

Finally, put these results into perspective by providing an economic evaluation of genomic

selection within a typical tree improvement program. We show that whilst in theory

genomic selection offers large improvements in genetic gain, the sheer size of the Pinus

radiata genome and the notable absense of LD within it may make the implementation of

this method a challenge for some time yet.
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Chapter 1

Introduction

Pinus radiata is one of the most important industrial tree species in the world and

is currently the most extensively planted conifer species in Australia (Department of

Agriculture Fisheries and Forestry 2010). The economic importance of Pinus radiata

makes it a high priority for genetic improvement. So far, tree breeding has made an

important contribution to improving the economic value of Pinus radiata plantations. In

Australia, a genetic gain of around 30 per cent in growth rate has been achieved in the last

two generations of breeding and it is estimated that between $260 million and $510 million

of additional income has been gained from the corresponding increase in production levels

(Wu 2004) .

In Australia, tree improvement as an industry is still in its infancy. Although large scale

plantings of unimproved Pinus radiata seed in Australia started in the 1950s, initial

breeding of the species did not start till the 1960s and large scale plantings of improved

seed started as recently as the early 1970s (Wu et al. 2007). Despite a huge worldwide

plantation size of over 4 million hectares, there are only five small native populations of

Pinus radiata located in the state of California, USA (Burdon 2001). The genetic base of

the present Australian and New Zealand Pinus radiata plantations have been shown to

have originated from only two of the five native populations: Ano Nuevo and Monterey

(Wu et al. 2007).

A prerequisite for genetic improvement is an abundance of genetic variation from which

to begin selection. In this respect tree breeders can consider themselves fortunate, as

most tree species have avoided the levels of intensive domestication subjected to many

animal and crop species. In particular, outcrossing tree species such as Pinus radiata tend

1
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to maintain high levels of genetic variation since their sessile nature often leads to the

evolution of locally adapted ecotypes (Bradshaw 1972). Thus even though the five native

populations of Pinus radiata are small, considerably more genetic variation still exists

within both the unsampled parts Ano Nuevo and Monterey, as well as the three unused

populations of Cambria, Guadalupe Island and Cedros Island (Wu et al. 2007).

Despite the advantage of a solid genetic base, progress in Pinus radiata breeding is often

frustrated by its long generational intervals typical of forest tree species. This is because

traditional breeding methods require that an individual’s genetic merit be verified through

a complex evaluation of its pedigree and in particular its progeny. In dairy cows, for

example, young bulls are test mated at 12 months of age and may be proven as soon as 43

months later with an accuracy of approximately 75% (Schaeffer 2006). Individual Pinus

radiata trees on the other hand can take as long as 10 years to sexually mature and it is

the compounded cost of tree improvement over this period that often places pressure on

both cost effectiveness and maximisation of genetic gain.

It is therefore of no surprise that the incorporation of genetic marker technology in tree

breeding appeared at face value to offer significant potential to accelerate tree improvement.

Early application of genetic marker technology came in the form of marker assisted selection

(MAS) and allowed for the possibility of selecting desirable trees based on genotypes,

rather than phenotypes, and to select elite breeding trees in the seedling stage (Wu 2002).

Attempts to map Quantitative Trait Loci (QTL) through the use of individual marker-QTL

associations proved extremely difficult, not least because of the unwieldly size of the Pinus

radiata genome. Doubts were also emerging in the broader genetic community over the

ability to estimate genes of small effect with sufficient accuracy, given that the proportion

of variance explained by any one gene appeared in all likelihood to be small (Goddard &

Hayes 2007). Although other variations of MAS offered some limited success (eg. candidate

gene approach), most tree breeders had resigned to the fact that tree improvement would

continue to depend heavily on traditional pedigree based techniques for some time to come.

In what has become a highly influential paper, Meuwissen et al. (2001) proposed a different

approach called Genomic Selection (GS) . Genomic selection uses markers covering the

whole genome so that all genetic variance can be explained by the markers. In order to

do so, a sufficient density of markers is required so that each QTL can be expected to be

in Linkage Disequilibrium (LD) with at least one of the markers. This change in focus

from individual genes to whole genomes instigated what might now be referred to as a

2
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paradigm shift in genetic research. Single Nucleotide Polymorphisms (SNPs) soon became

the marker of choice, as they are relatively cheap to genotype and can be found in sufficient

numbers throughout both plant and animal genomes. The invention of GS also helped

prompt the revival of Bayesian methods as genetic researchers began to question whether

genotypic data was more effectively analyzed using non-linear systems of equations.

As the animal breeding industry begins to adopt a whole genome approach to selection, it is

paramount that the tree breeding industry understands the advantages and disadvantages

of potentially undergoing a similar transition. The primary objective of this thesis is

therefore to provide an in depth analysis of GS within the broader context of Pinus radiata

improvement.

In Chapter 2, we begin by introducing the reader to the Pinus radiata genome followed

by a review of contemporary genetic theory. In Chapter 3, the first of five experimental

chapters, we provide a preliminary analysis of population structure and LD in three of

the five native Pinus radiata populations. In Chapter 4 we demonstrate the mechanics of

GS and show, using Bayesian methodology, how it can be used to provide an accurate

evaluation of an individuals genetic merit without prior knowledge of its pedigree. Chapter

5 investigates the potential use of clones in GS as well as the effect of family size and

structure. In Chapter 6 we show how genomic estimated breeding values, or GEBVs, can

be accurately estimated using linear mixed models and compare the results to a traditional

pedigree based evaluation. Chapter 7 attempts to bring all of these ideas together in the

form of an economic evaluation of GS, looking specifically at the possible economic benefits

of introducing GS into current Pinus radiata breeding strategies. Finally, in Chapter 8, we

summarise the results of the thesis and provide a possible insight into the exciting future

of tree breeding.
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Chapter 2

Literature Review

2.1 Overview

Three topics will be reviewed in this chapter. Initially, the nature of conifer genomes is

discussed, with particular emphasis on Pinus radiata. Measures of the genetic structure

and relationships among populations are examined. These are applied in Chapter 3 to

three founder populations of Pinus radiata. Finally, methods for genetic evaluation are

discussed, beginning with classical methods and ending with methods which incorporate

very large numbers of genetic markers.

2.2 The conifer genome

2.2.1 Introduction

Conifers are the largest and most diverse group of cone-bearing gymnosperms in the world

(Farjon & Page 1999). The genomes of conifers are unique in terms of their unusually large

size and the repetitive nature of the DNA within it. The first section of this chapter will

highlight some of the more important genetic properties of conifers with special reference

to Pinus radiata and their implications for genetic improvement.
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2.2.2 Genome size and ploidy

Although polyploidy in plants is widespread, it is rather uncommon among gymnosperms.

There are only a few naturally occurring polyploids among conifers including two tetraploids

(Fitzroya cupressoides 2n=4x=44; Juniperus chinensis 2n=4x=44) and one hexaploid

(Sequoia sempervirens 2n=6x=66). Pinus radiata is a diploid species with a haploid

chromosome number of 12 (Ahuja & Neale 2005).

Genome size is the amount of DNA in an unreplicated gametic nucleus of an organism

and is commonly referred to as the C-value (Bennet & Smith 1976). The genome size of

conifers ranges from 6,500 Mb to 37,000 Mb and are amongst the largest genome sizes of

any animal or plant species (Ahuja & Neale 2005). The genome size of Pinus radiata, for

example, is estimated to be 26.5 Gb (Ahuja & Neale 2005) . An extensive database of

plant DNA C-values can be found online at URL: http://data.kew.org/cvalues/. The

reason why conifers have evolved to have such large genomes relative to other land plant

species is not fully understood. One plausible mechanism of genome expansion in conifers

is the amplification of transposable elements.

2.2.3 Transposable elements

2.2.3.1 Definition and function

Transposable elements are segments of DNA that can move around to different positions

in the genome of a single cell and were first discovered in maize (McClintock 1950). They

are divided into two classes according to the mechanism of transposition (Bennetzen 2000).

Class one are referred to as retrotransposons and move by way of an RNA intermediate

(Bennetzen 2000). Initially, retrotransposons copy themselves to RNA (via transcription).

Then, the RNA is copied into DNA by a reverse transcriptase and inserted back into the

genome.

Class two are commonly referred to as DNA transposons and use an enzyme called

transposase to make a staggered cut at the target site producing sticky ends, after which

the transposon is removed and ligated into the target site (Bennetzen 2000). Often during

this process transposons lose their gene for transposase, but as long as somewhere in the

genome their exists a transposon that can synthesize the enzyme, their inverted repeats

are recognised and they too can be moved to a new location.

6
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2.2.3.2 Retrotransposons in conifers

There are two subclasses of retrotransposon in the genome of eukaryotes, one that consists

of long terminal repeats (LTRs) and one that lacks terminal repeats (non-LTRs). A further

two distinct groups of LTR retrotransposon exist: the Ty1-copia and Ty3-gypsy, both

of which are widely distributed in plants and animals and do not code for any known

proteins (Ahuja & Neale 2005). The first variety of LTR retrotransposon, Ty1-copia, have

been detected in several conifers including Pinus coulteri, Picea glauca, and Pinus elliotii.

So far only one Ty3-gypsy-like retrotransposon, IFG, has been isolated in Pinus radiata

(Ahuja & Neale 2005).

2.2.3.3 The C-value paradox

Transposable elements are regularly spoken of in terms of their partial explanation of

the C-value paradox in eukaryotes. The C-value paradox refers to the discrepancy that

exists in nature between the large size of eukaryotic genomes and the relatively small

number of genes that they contain. Today it is widely accepted that differential amounts

of non-coding, repetitive, DNA account for a major fraction of eukaryotic genome size

variation (Gregory & Herbert 1999, Petrov 2001).

Of all the different kinds of non-coding repetitive DNA, transposable elements are thought

to make up the major type of identified non-genic DNA in all plant species (Bennetzen

2000). Although the role that these transposable elements have played in their evolution is

not fully understood, they are credited with many quantum jumps in genome size observed

among many crop species. For example, evidence suggests that there has been an explosion

of retrotransposon activity in the genomes of maize (66%) and barley (55%) during the

last several million years (Sanmiguel & Bennetzen 1999, Jaaskelainen et al. 1998).

2.2.3.4 Transposable elements and genetic map length

Complementary to the C-value paradox described above, another discrepancy exists

between the amount of nuclear DNA in eukaryotes and the total length of their genetic

maps (Fu et al. 2002). To account for this discrepancy, Thuriaux (1977) hypothesised that

meiotic recombination may largely be restricted to genes. More specifically, he predicted

that recombination within genes, expressed as the ratio of genetic to physical map length

(cM/Kb), should be much higher than the genome’s average. Levels of intragenic
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recombination in maize appear to support this prediction. For example, recombination

within the bronze (bz ) locus has been found to be at least 100 times higher than the maize

genome’s average (Dooner 1986).

Thuriaux also hypothesized that repetitive DNA should not contribute significantly to

genetic map length. Fu et al. (2002) measured recombination across adjacent homozygous

genetic intervals on either side of the bronze (bz ) locus and found that recombination

was almost 2 orders of magnitude higher on the distal side, which is gene-dense and lacks

retrotransposons, than in the proximal side which is gene-poor and contains a large cluster

of methylated retrotransposons.

If these trends were also to apply to higher order plants such as conifers, the implications

for linkage mapping in conifers such as Pinus radiata could be profound. For example

most genomic studies in conifers have adopted a candidate gene approach where only

specific genes are targeted for investigation. Although it has not yet been established that

such recombination ’hotspots’ exist in pines, we do know that approximately 75% of the

conifer genome is comprised of ubiquitous transposable elements (Ahuja & Neale 2005).

Thus if recombination in pines is in fact restricted to genic regions, modelling LD using a

candidate gene approach may very well over-estimate the average genome wide decay in

LD.

2.2.4 The mating habits of Pinus radiata

Mating systems determine the distribution of genotypes within populations and influence

the degree of differentiation amongst populations. Mating systems can be grouped into 5

categories: predominantly selfing, predominantly outcrossing, mixed selfing and outcrossing,

apomictic, and haploid selfing (Brown 1990). Although the mating systems of conifers are

known to be dynamic and vary both among and between species, the mating systems of

conifers generally fall into the mixed mating category (Mitton 1990), and Pinus radiata is

no exception.

The importance of the mating system has to do with its effect on gene flow and its ability

to alter the genotypic proportions within a population. For example, outcrossing within a

species tends to promote gene flow and brings genotypic proportions to Hardy-Weinberg

equilibrium (HWE) . A number of important deductions in genetics can be made about

a population in HWE, many of which are described in the following section. Selfing on

the other hand reduces gene flow and brings genotypic distributions to an equilibrium
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described by Wright’s equilibrium law (Wright 1931). It reduces heterozygosity by half

each generation thereby reducing the rate of recombination and gene flow, and permitting

higher levels of differentiation among populations (Mitton 1990). Selfed genotypes exhibit

lower germinability, slower growth rates, and higher mortality.

2.3 Population structure and genetics

2.3.1 Hardy-Weinberg Equilibrium

A population with constant gene and genotype frequencies is said to be in Hardy-Weinberg

equilibrium (HWE) (Falconer & Mackay 1996). In theory, only a large random mating

population in the absence of selection, mutation and migration can be assumed to be

in HWE. By examining the relationship between gene and genotype frequencies in a

population it is possible to determine the extent to which a population deviates from this

equilibrium state.

For a population to be in HWE with respect to two alleles the following condition must

be met: If the gene frequencies of the two alleles among the parents are p and q, then

the genotype frequencies P , H and Q among the progeny are p2, 2pq, and q2 (Falconer &

Mackay 1996). If the genes in question are A1 and A2, then since each individual contains

two genes, the frequency of A1 genes in the population is 1
2
(2P +H) and the relationship

between gene frequency and genotype frequency among individuals counted is:

p = P +
1

2
H

q = Q+
1

2
H

If a population can be assumed to be in HWE, a number of useful deductions about

the population can be made. For example, it is often useful to know the frequency of

heterozygotes among a population, which is given by 2q(1 − q). If we are interested in

estimating the frequency of a particular recessive abnormality among normal individuals,

we can calculate this as the ratio of genotype frequencies Aa/(AA+ Aa), where a is the

recessive allele, or:
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H ′ =
2q(1− q)

(1− q)2 + 2q(1− q)
=

2q

1 + q

In the field of human genetics, the importance of testing for HWE has recently received a

great deal of attention due to the growing concern about the lack of replication of proposed

disease-gene associations (Hirschhorn & Altshuler 2002, Ioannidis et al. 2003). Empirical

evidence suggests that in about 10% of case controlled studies in the field, the distribution

of genotypes in the healthy control group show statistically significant deviations away

from the HWE expected frequencies (Hosking et al. 2004). Although there is no empirical

evidence to date to suggest that HWE deviations may cause serious bias when estimating

the magnitude of genetic associations in gene-disease association studies, a meta analysis

of 591 studies found that six of 23 gene-disease associations for which there was formally

significant evidence lost their significance after exclusion of HWE-violating studies or

adjustment for HWE deviations (Trikalinos et al. 2006). Significant departures from HWE

may also point toward genotyping error or other biases (Mitchell et al. 2003), and on this

basis alone experimental populations should be formally tested for HWE prior to further

experimentation.

2.3.2 Linkage-Disequilibrium

Linkage Disequilibrium refers to the nonindependence of alleles at different sites Pritchard

& Przeworski (2001). The extent of LD in a given population is crucially important

to association studies as it determines the physical distance over which marker by trait

associations will exist, and thus the marker density that is required (Neale & Savolainen

2004). The extent of LD in a species depends on the population recombination rate 4Ner,

the product of the effective population size Ne and the recombination rate per base pair

r. Selfing species have low population recombination rates and therefore show high rates

of LD. For example, the selfing crop species soybean shows little decline in LD over a

distance of ∼ 50 Kb or more (Zhu et al. 2002). In outcrossing species LD declines much

more rapidly than in selfers due to higher recombination rates. For example LD in Pinus

taeda has been shown to decay on average within 1500 bp, within the length of an average

sized gene.
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2.3.2.1 Pair-wise measures of LD

Let us assume that allele A1 at locus 1 and allele B1 at locus 2 are at frequencies πa and

πb, respectively. If locus 1 and locus 2 are independent, then we would expect to see

the A1B1 haplotype at frequency πaπb. On the other hand, if alleles A1 and B1 tend to

be observed together, the A1B1 haplotype frequency would be seen to be either higher

(coupling) or lower in value (repulsion) than πaπb. The two loci are then said to be in LD.

If we denote the frequency of the A1B1 haplotype as PA1B1 , then the precise amount of

disequilibrium D can be measured as DA1B1 = PA1B1 − πA1B1 , or more generically:

DAiBj
= PAiBj

− πAiBj
(2.1)

Although there are many ways in which LD between loci can originate (including selection,

migration, mutation and drift), the expected dynamics of LD in present and future

generations depend on the recombination fraction between loci, c (Lynch & Walsh 1998).

When two loci are in complete linkage this quantity takes on a minimum value of zero,

whilst free recombination between loci is denoted by c = 0.5. Without other competing

forces such as migration, the frequency of a haplotype AiBj in generation t is PAiBi
(t) and

the probability that a haplotype (gamete) is passed on to the next generation without

recombination is (1− c)PAiBj
(t) (Lynch & Walsh 1998). Thus:

PAiBj
(t+ 1) = (1− c)PAiBj

(t) + cπAi
πBj
−→

DAiBj
(t+ 1) = (1− c)DAiBj

(t) −→

DAiBj
(t) = (1− c)tDAiBj

(0)

So even in the case of unlinked genes (c = 0.5), a maximum of half of the disequilibrium is

removed each generation. With less frequent recombination as well as the possible effects

of selection, migration, mutation and drift, the time taken to achieve linkage equilibrium

can be quite long (Lynch & Walsh 1998).

One problem with using the D statistic as a measure of LD is that it is heavily dependent

on the frequencies of the individual alleles and is therefore not particularly useful for

comparing the extent of LD among multiple pairs of loci. An alternative measure of LD,
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r2, was proposed by Hill & Robertson (1968) and scales D by each allele frequency making

it less sensitive to differences in allele frequency:

r2 =
D2

πA1πA2πB1πB2

Yet another commonly used measure of LD is Lewontin’s normalised coefficient D’ (Lewon-

tin 1964). To calculate D’, the value of D is standardised by the maximum value it can

obtain:

D′ =
|DAB|
Dmax

such that the frequencies of the gametes are constrained by Dmax, where:

Dmax =

[
min[πA1πB2 ,−(1− πA2)(1− πB1)];D < 0

min[πA1(1− πB1),−(1− πA2)πB2 ];D > 0

]

The statistic r2 is generally preferred over D’ as a measure of LD because for a genome scan

exploiting LD, it is better able to predict the density of markers necessary for detecting

QTL. This is because r2 represents the proportion of variation caused by alleles at a QTL

that is explained by the markers. In fact, it is possible to show that in order to achieve

roughly the same power of detection at the marker locus as we would have if we could

test the QTL itself, the sample size must be increased by a factor of 1/r2 (Pritchard &

Przeworski 2001). Thus for small values of r2, there is little power to detect association at

the marker locus.

2.3.2.2 Chromosome Segment Homozygosity

Chromosome segment homozygosity (CSH) is an alternative multi-locus definition of LD

first described by (Hayes et al. 2003). The CSH has the same value as r2 and reflects the

probability that two chromosome segments of the same size and location drawn at random

from the population are identical by descent (IBD). The probability that two chromosome

segments are identical by state (IBS) is a function of the marker homozygosities. When

the past effective population size (Ne) is not known, CSH is can be derived from the

haplotype homozygosity (HH), the combined probability that the two haplotype segments

are IBD and IBS:
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HH = CSH +
(HomA − CSH)(HomB − CSH)

1− CSH

where HomA and HomB are the individual marker homozygosities of markers A and B. If

both (Ne) and the recombination rate (c) of the chromosome segments are known, CSH

can be calculated as:

E(CSH) = E(r2) =
1

4×Ne × c+ 1

2.3.3 F statistics

There are many ways to define population structure. The most commonly used measures of

population structure are Wright’s F statistics (Wright 1922), which describe the deviation

in heterozygosity of a pre-defined population from its Hardy-Weinberg expectations.

Although population determination is usually based on geographical origin of samples or

phenotypes, in many cases the genetic structure of populations is not always reflected

in the geographical proximity of individuals (Evanno et al. 2005). Deciding what counts

as a population is therefore a fundamental prerequisite of any inference on the genetic

structure of populations (Evanno et al. 2005).

Wright’s F statistics, written as FST , FIT and FIS, each look at different levels of population

structure. FIT is the inbreeding coefficient of an individual I relative to the total population

T , FIS is the inbreeding coefficient of an individual I relative to the subpopulation S and

FST is the average inbreeding of the sub-population S relative to the total population T

(Falconer & Mackay 1996). FST is related to the other two indices in the following way:

(1− FST ) =
(1− FIT )

(1− FIS)

Wright’s FST statistic can also be described in terms of the divergence of sample allele

frequencies between populations. Say we wanted to compare a given number of populations

r, with sample allele frequencies p̃i(i = 1, 2, ..., r), for a particular allele A. FST can then

be defined as:

FST =

∑
i(p̃i − p̄)2/(r − 1)

p̄(1− p̄)
=

s2

p̄(1− p̄)
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where p̄ =
∑

i p̃i/r is the average sample frequency of the allele over all samples and s2 is

the sample variance. So as the sample allele frequencies between populations diverge, so

does the sample variance and thus the value of FST .

2.3.4 Genetic distance

As with Wright’s FST statistic, genetic distance is a measure of genetic similarity between

populations. It is generally seen as being a reflection of the time since the populations

being compared diverged from a single ancestral population.

In the traditional measure of genetic distance, populations are represented as points

in a multidimensional space and the genetic distance between any two populations is

represented by the geometric distance between the points (Weir 1996). However, this

interpretation of genetic distance pays little attention to the relationship between the

distance measure and the evolutionary process. Furthermore, the absolute values of these

measures hold no particular biological meaning and only the relative values are important

for comparing the genetic similarities between populations (Nei 1978).

Although a number of different measures of genetic distance exist in the literature, only

Nei’s genetic distance will be described here.

2.3.4.1 Nei’s genetic distance

Of all the different measures of genetic distance, Nei’s genetic distance has become the

most widely used (Weir 1996). In contrast to the traditional geometric measure of genetic

distance, Nei (1978) proposed a new measure of genetic distance based on the number

of codon substitutions per locus that have occured following the divergence of the two

populations in question. In this interpretation of genetic distance, the absolute value of

this measure has a clear biological meaning and can theoretically be applied to any pair of

taxa provided enough data are available.

Nei (1978) defined the normalized identity between two randomly mating diploid popula-

tions as:

Ij =

∑
xijyij√∑
x2
ij

∑
y2
ij
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where xi and yi are the frequencies of the ith allele at the jth locus in populations X

and Y respectively. The normalized identity of genes between populations X and Y with

respect to all loci is then defined as:

I =
Jxy√
JxJy

where Jxy, Jx, and Jy are the arithmetic means of
∑
xiyi,

∑
x2
i and

∑
y2
i over all loci,

respectively. Nei’s distance is then defined as:

D = −logeI

and was later corrected for sampling bias (Weir 1996).

2.4 Traditional methods of genetic evaluation

2.4.1 Overview

Genetic evaluation is vital to tree improvement. It allows us to identify and select

genetically superior individuals from their contemporaries, and use them as parents for

the next generation. Traditionally, selection in tree improvement has been based on the

estimation of breeding values (BVs) using phenotypic records of individual trees and their

relatives. This section examines the genetic and statistical methodologies traditionally

used in the derivation of such BVs, from the classical ’Fisherian’ model to Best Linear

Unbiased Prediction (BLUP).

2.4.2 Classical genetic theory and the infinitesimal model

In an attempt to explain the genetic variation observed in quantitative traits, Fisher

proposed a model where quantitative traits are determined by an infinite number of

unlinked and additive loci, each with an infinitesimally small effect (Fisher 1918). This

model is known as the ’infinitesimal’ model. The infinitesimal model has been exceptionally

sucessful for both animal and plant breeding and forms the basis for breeding value

estimation theory.
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In this classical quantitative genetics framework, an observed phenotype (y) is regarded as

the sum of genetic and environmental effects plus an interaction between genotype and

environmental values,

yij = µ+ gi + eij

where yij is the phenotype of individual i observed in environment j, µ refers to fixed

environmental effects of individual i; gi is the sum of the additive (ga), dominance (gd) and

epistatic (ge) genetic values of the genotype of individual i; and eij is the sum of random

environmental effects affecting individual i in environment j.

An individual’s breeding value (BV) represents that part of the total genetic variance

that is transmitted from parents to progeny (the additive genetic component). As each

parent only contributes a sample half of its genes to its progeny, it can also only transmit

one-half of its additive genetic value. An individuals breeding value is therefore calculated

as the sum of the additive genetic value of both parents. In most animal and tree breeding

programs the additive genetic value is the only component that can be selected for and

thus is the main component of interest.

2.4.3 Best Linear Unbiased Prediction

Best Linear Unbiased Prediction (BLUP) is a statistical methodology developed by

Henderson (1949) which allows for the simultaneous estimation of both fixed effects and

random effects such as breeding values. BLUP is the most widely accepted method for

genetic evaluation in both animal and plant breeding due largely to its desirable statistical

properties. For example, BLUP estimates have the minimum least squared error in the

class of linear estimators whilst being unbiased (Robinson 1991). BLUP is a general

method of estimating the random effects in a mixed linear model such as:

y = Xβ +Zu+ e (2.2)

where y is a vector of trait values, β is a vector of fixed effects with incidence matrix X,

u is a vector of random effects with incidence matrix Z and e is the vector of residuals

such that:
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E

yu
e

 =

Xβ0
0


also referred to as the 1st moment, and

V ar

yu
e

 =

 V ZG R

GZ
′

G 0

R 0 R



where G and R are both known positive definite matrices, and V = ZGZ ′ +R. The 2nd

moment, V , describes the variance covariance structure of y, where G = Aσ2
a and is a

dispersion matrix of random effects other than errors and, for a single trait, R = Iσ2
e, the

dispersion matrix of error terms.

The BLUP of u, û, and best linear unbiased estimator (BLUE) of b, b̂, are solutions to

the mixed model equations:

[
X
′
R−1X X

′
R−1Z

Z
′
R−1X Z

′
R−1Z +G−1

][
b̂

û

]
=

[
XR−1y

Z
′
R−1y

]
(2.3)

2.4.4 The linear mixed model

The basic mixed model used in both animal and plant breeding incorporates information

from all relatives with or without phenotypic records to estimate BVs. We replace G in

Equation 2.3 by Aσ2
a, where σ2

a is the additive genetic variance and A is the numerator

relationship matrix. Since R is a function of an identity matrix, it can be factorized from

both sides of the equation to give:

[
X ′X X ′Z

Z ′X Z ′Z +A−1λ

][
b̂

û

]
=

[
X ′y

Z ′y

]

where λ = σ2
e

σ2
a
.

The numerator relationship matrix, or NRM, describes the covariances between relatives

due to the laws of inheritance. It is often expressed as A = TDT ′, where T is a lower
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triangular matrix and D is a diagonal matrix. Element lij in matrix L represents the

relationship between two related individuals i and j, and is calculated using Wright’s

coefficient of inbreeding (F) (Wright 1922). The diagonal matrix D contains the variance

matrix of Mendelian sampling component, which is equal to either 1
2
, 3

4
or 1, when both or

one or no parents are known and inbreeding is ignored (Mrode & Thompson 2005).

For large populations it is often computationally infeasible to calculate A−1 using conven-

tional means. In 1976, Charles R. Henderson showed that it is possible to calculate A−1

without setting up A itself. In his now famous 1976 paper, Henderson describes methods

for computing a lower triangular matrix, L, defined such that LL′ = A, with the object

of computing A−1 = L′−1L−1. He goes on to show how A−1 can be extracted directly

from a list of sires and dams and the diagonal elements of L.

For a non-inbred population, Henderson’s equations work extremely well as A−1 can be

found without having to calculate either A or L. However, for an inbred population

the diagonal elements of either L or A must first be found and stored in the memory, a

potentially time consuming task when dealing with large pedigrees. Quaas (1976) found a

way to refine Henderson’s equations so that the diagonal elements of either an L or A

matrix could be found without needing to store L or A in memory. This was achieved by

calculating one column of L at a time, a process which has a computation time proportional

to n2, where n is the size of the data set (Mrode & Thompson 2005). Further adjustments

to this algorithm have since been made by Meuwissen & Luo (1992).

2.4.5 Estimating variance components

The choice of method for estimating variance components depends largely on the design

and nature of the experiment. Whilst a standard analysis of variance (ANOVA) has the

useful feature that the estimators for the variance components are unbiased regardless

of whether the data are normally distributed (Lynch & Walsh 1998), ANOVA also has

a number of limitations which typically make it unsuitable for the estimation of genetic

variance components. Firstly, it is a basic requirement of any analysis of variance that all

observations be independent of each other (Samuels & Witmer 2003), a condition that

typically cannot be met in genetic field trials where observations commonly yield records

on a variety of related individuals. Secondly, sample sizes must be well balanced, with the

number of observations for each set of conditions being roughly equal (Lynch & Walsh

1998). However in field situations, unpredictable events leading to individual mortality
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can often turn a carefully crafted balanced design into an extremely unbalanced one.

Maximum likelihood (ML) and restricted maximum likelihood (REML) estimators do not

require a balanced experimental design and their estimates can be easily be obtained for

any arbitrary pedigree of individuals (Lynch & Walsh 1998). The ML principle is largely

attributed to Sir Ronald Fisher and was introduced into variance component-estimation by

Hartley & Rao (1967). It states that parameters chosen for a model should be those that

yield the highest probability of observing precisely what was observed (O’Hagan & Forster

2002). A distinct advantage of ML estimators is their efficiency since they simultaneously

utilize all of the available data and account for any nonindependence.

However one drawback with variance-component estimation via the usual maximum

likelihood approach is that all fixed effects are assumed to be known without error (Lynch

& Walsh 1998). For example, applying ML to the estimation of the mean and residual

variance of a set of observations, the maximum likelihood estimator of σ2 would be obtained

by assuming that the mean µ (the fixed effect) is estimated without error, giving us:

σ̂2 = V

where:

V =
1

n

n∑
i=1

(yi − ȳ)2

n is equal to the number of sampled individuals, yi is the phenotypic value of the ith

individual and ȳ is the estimated mean. Since most fixed effects have some degree of

error associated with them in practice, ML estimators tend to yield biased estimates

of variance components (Lynch & Walsh 1998). In this case, observed deviations of

individual phenotypic values from an estimated population mean tend to be smaller that

their deviations from the true parametric mean, leading to a downwardly biased estimate

of the residual variance.

REML eliminates this bias by accounting for the error in the estimation of the fixed

effects. The expected amount by which the estimated variance of the observations σ̂2

underestimates the true variance σ2 would in this case be equal to the sampling variance

of the mean, σ2/n = (ȳ − µ)2 (Lynch & Walsh 1998). Thus an improved estimator of the

true variance σ2 would be V + σ2

n
. However since we don’t know σ2 with certainty, σ̂2 is
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instead calculated iteratively replacing σ2 with the maximum likelihood estimate of V ,

V + (V/n), and all further instances of V adjusted in the same way so that:

σ̂2(t+ 1) = V +
σ̂2(t)

n
(2.4)

For a complex pedigree analysis with multiple fixed effects and unbalanced data, REML

accounts for the bias by way of a linear transformation of the observation vector y thereby

removing the fixed effects from the analysis altogether (Lynch & Walsh 1998). In the case

of a single fixed effect this constituted using y∗ = yi − ȳ (see Equation 2.4.5), however in

this case a transformation matrix K is applied to the mixed linear model (see Equation

2.2) such that:

y∗ = Ky = K(Xβ +Zu+ e)

where KX = 0. Thus:

y∗ = KZu+Ke

2.4.6 Bayesian estimation

The Bayesian method is an alternative basis for statistical inference that is becoming

more common in genetics (O’Hagan & Forster 2001). Whereas the classical, or frequentist

approach, uses data to provide an estimated value (or confidence interval) for the parameter,

the Bayesian method assumes some prior information about the parameter which is then

modified on the basis of data (Weir 1996). For example, suppose there is some initial

information, or prior probability Pr(B), of event B. Assume another event A occurs

and that Pr(B) is conditional on event A. The posterior probability of event B, given

that event A has already occurred, is Pr(B|A). The formal definition of the conditional

probability of B, given A, is:

Pr(B|A) =
Pr(A ∩B)

Pr(A)
=
Pr(A|B)

Pr(A)
Pr(B)

where Pr(A ∩B) is the joint probability that both events have occurred. This equation is

known as Bayes theorem, and can alternatively be expressed in the following form:
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Pr(Bs|A) =
Pr(A|Bs)Pr(Bs)∑
r Pr(A|Br)Pr(Br)

In genetics, Bayes theorem is often used in the estimation of marker effects and breeding

values. In this context we are not dealing with discrete events, but rather we are dealing

with discrete data in the form of allelic states and the estimation of marker effects

(parameters) with continuous distributions. To restate the theorem in terms of random

variables instead of events, we replace event B by parameter φ, and event A by data

(counts) {n} (Weir 1996). The probabilities Pr(B) and Pr(B|A) are then replaced by

prior and posterior probability density functions π(φ), π(φ|{n}), and the sum is replaced

by an integral:

π(φ|{n}) =
Pr({n}|φ)π(φ)∫
Pr({n}|φ)π(φ)dφ

In this form of Bayes theorem, density π(φ) represents prior information about φ.

2.4.7 Stochastic integration methodology

The recent revival of Bayesian methodology for the analysis of complicated statistical

models can be attributed in large part to the rapid development of stochastic integra-

tion methodology, such as Markov-Chain Monte-Carlo (MCMC) theory and its various

adaptations. The essential principle behind MCMC is Markov-Chain theory.

2.4.7.1 Markov-Chain theory

A Markov-Chain describes the process of moving between individual states contained

within a specified state space E. In the following step of a Markov-Chain Xt+1, the

probability of adopting any future state X is dependent only on the current state of the

chain Xt, and is completely independent of the previous state of the chain Xt−1. The

transition kernel P of a Markov-Chain is a matrix of values that denote the probabilities

of moving from one state to another and the transition probability P (i, j) is defined as:

P (i, j) = P (Xt+1 = i|Xt = j)
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where i, j ∈ E.

Whilst the transition kernel of a Markov-Chain ensures that previous movements in

the chain do not bias its future trajectory, its existence implies that the states are not

completely independent draws. The initial states in an MCMC analysis are therefore

discarded as burn-in b.

Central to the theory of Markov-Chains is the concept of ergodicity. In order for a Markov-

Chain to be useful in a statistical context it must satisfy certain conditions. Firstly, an

ergodic Markov-Chain must be recurrently non-null, that is, the probabilty of adopting the

same state more than once within a finite number of steps must be equal to 1. Secondly, the

chain must be aperiodic such that it can only move one step at a time. Thirdly, the chain

must be irreducible so that any set of states must be able to be reached from any other

state in a finite number of moves. Ergodicity is an essential property of Markov-Chains

and ensures that the frequency of all states will tend over time towards a unique limiting

distribution π, independent of the intitial distribution. Thus all regions of a state space

are visited with similar frequency and all regions will be revisited if given enough time.

2.4.7.2 Monte-Carlo integration

A major drawback to the Bayesian approach is that obtaining the posterior distribution

often requires the integration of high-dimensional functions that are computationally very

difficult. Using a procedure known as Monte-Carlo integration, posterior distributions

required in Bayesian analysis can be computed without the need for direct integration. To

illustrate how this works, suppose we wish to compute the following basic integral:

∫ b

a

h(x)dx

Monte-Carlo integration involves the decomposition of the function h(x) into the product

of a function f(x) and a probability density p(x), such that:

∫ b

a

h(x)dx =

∫ b

a

f(x)p(x)dx = Ep(x)[f(x)]

The mean of a large number x1, ..., xn of independent and identically distributed (iid) random

variables sampled from the probability density p(x) then serves as an approximation of
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f(x), so that:

∫ b

a

h(x)dx = Ep(x)[f(x)] ' 1

n

n∑
i=1

f(xi)

2.4.7.3 Markov-Chain Monte-Carlo

MCMC extends the Monte-Carlo integration method so that it can be used even in

situations where generating independent samples from p(x) is infeasible. Instead, samples

can be drawn from a Markov-Chain provided we can find a suitable transition kernel whose

stationary distribution π is close to our target distribution f(x). Thus, another important

concept in Markov-Chain theory is that of reversibility. Given a particular stationary

distribution π, a Markov-Chain is reversible with respect to π if we can find a transition

kernel P , such that:

πipij = πjpji

for all ij (Tanner 1996).

For a reversibile Markov-Chain, π will be its limiting distribution. The task is therefore to

find a reversible Markov-Chain with a suitable transition kernel.

2.4.7.4 The Gibbs Sampler

The Gibbs sampler is a variant of MCMC used to generate a series of random variables

indirectly from some marginal distribution, without having to calculate the density (Casella

& George 1992). The principle behind this mechanism is similar to Monte-Carlo integration,

described above. In a bi-variate case with two random variables (X, Y ), the Gibbs sampler

generates a representative sample from f(x) by sampling instead from the conditional

distributions f(x | y) and f(y | x). By sampling in this way, a random sequence of variables

(called a ”Gibbs sequence”) is generated with the expectation that its distribution will

eventually converge to the true marginal of X, f(x), as k →∞. By averaging the final

conditional densities of each Gibbs sequence it becomes possible to closely approximate

f(x), such that:
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f̂(x) =
1

n

n∑
i=1

f(x | yi)

2.4.7.5 The Metropolis-Hastings algorithm

When sampling from the conditionals f(x | y) and f(y | x) is not possible, the Metropolis

Hastings algorith allows us to sample from a Markov-Chain with a different pre-specified

candidate distribution (Metropolis et al. 1954, Hastings 1970). Markov samples drawn

from this candidate distribution are modified using an accept-reject step. The accept-reject

step effectively filters the chain to concentrate sampling on those parts of the candidate

distribution that are most similar to the target distribution f(x). Selecting an appropriate

candidate density makes the Metropolis-Hastings algorithm more involved than the Gibbs

sampler, but also has the advantage of being more general. It is particularly helpful for

sampling parameters that lack closed, easily recognizable forms for their full conditional

distributions (Kass et al. 1998).

2.5 Marker Assisted Selection

2.5.1 Overview

The discovery that there are only between 20,000 and 25,000 genes in the human genome

led to the inevitable conclusion that there must be a finite number of loci underlying the

variation of quantitative traits. These loci have been termed Quantitative Trait Loci or

simply, QTL. There is some evidence that suggests that the distribution of individual

QTL effects is such that there are a small number of genes with large effects, and a large

number of genes with small effect (Hayes & Goddard 2001).

In recent years, advances in molecular genetics such as the discovery of genetic markers,

have provided us with the necessary tools to be able to select directly on marker genotypes.

However as with pedigree based selection methods, marker assisted selection (MAS) has

evolved significantly since its inception. Early research restricted itself to the mapping

of QTL predominantly within candidate genes. This approach was supplemented with

the integration of marker information into mixed models using BLUP so that BVs could

be estimated using both marker and pedigree information (Fernando & Grossman 1989).
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As the price of genotyping genetic markers reduced, the QTL mapping approach was

expanded to include the mapping of QTL in inter-genic regions of the genome. More

recently, whole genome selection has allowed for the estimation of genomic estimated

breeding values (GEBVs) without any need for pedigree information (Goddard & Hayes

2007).

In this section we begin by defining the many different kinds of genetic markers available

for use in MAS. We examine some of the more common forms of MAS and the underlying

statistical theory. Then, we discuss the benefits and caveats of MAS with respect to the

genetic improvement of Pinus radiata.

2.5.2 The ’evolution’ of genetic markers

Molecular markers are polymorphisms or variations in the DNA sequence. Many different

types of molecular markers exist but only the most commonly used markers will be described

here. Historically, restriction fragment length polymorphisms (RFLP’s), also known as

restriction enzymes or restriction endonucleases, were the first DNA-based genetic markers

(Botstein et al. 1980). Restriction enzymes are naturally occurring enzymes produced

by bacteria as protection against bacterial viruses. They allow bacteria to monitor the

origin of incoming DNA and to destroy it if it is recognised as foreign (Primrose et al.

2001). Restriction enzymes recognise specific sequences in the incoming DNA and cleave

the DNA into fragments, either at specific sites or more randomly. In molecular biology,

they are often used to produce recombinant DNA molecules as they can produce ’sticky

ends’ which can be easily ligated (joined) (Primrose et al. 2001).

Another important class of markers is referred to as simple sequence repeats (SSRs) which

are essentially multiple copies of a sequence of base pairs arranged in a head to tail

fashion. For example, an SSR sequence may look like 5′ ...CACACACA...3
′

which can be

notated as (CA)n where n denotes the number of repeats. When the number of base pairs

that are repeated is small (< 4), it is called a microsatellite. When the number of base

pairs is larger (> 4), it is called a minisatellite. More recently however, it is the Single

Nucleotide Polymorphism (SNP) that has received the most attention. SNPs are point

mutations in the genome. For example, the two following sequences 5′ ...CGAATCT...3
′
and

5′ ...CGAGTCT...3
′

differ at only one base position and it is therefore classified as a SNP.

They are fast becoming the marker of choice as they are commonly found throughout the

genome and are becoming increasingly cheaper to discover and genotype. Illumina R© are
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now able to deliver over 777,000 SNPs with a median spacing of less than 3 Kb, in the form

of the BovineHD Genotyping BeadChip. More information on this chip and others

can be found online (URL: http://www.neogen.com/GeneSeek/SNP_Illumina.html).

2.5.2.1 Haplotypes and the genotype phasing problem

In diploid species there are two near identical copies of each chromosome. If the genotype

of an individual includes allele information from both chromosome copies, for example

{A,C}, then a haplotype can be defined as any number of consecutive alleles residing on

the same chromosome. For example, a haplotype on one chromosome could be the three

consecutive alleles {ATT}. The difficulty in reconstructing haplotype information comes

from the fact that the common techniques for SNP typing do not provide the information

seperately for each of the two chromosome copies (Rastas et al. 2005). Thus, the genotype

{A,C}, {T,T}, {G,T} could theoretically result from either of the two haplotype pairs:

{ATG,CTT} and {ATT,CTG}. This is known as the genotype phasing problem. The

process of haplotyping can be defined as the reconstruction of gametes n from diploid

genotypes 2n.

A number of approaches have been developed to infer haplotypes from genotypes using

both statistical and rule based methodology (Tier 2006). Rule based methods include, for

example, the use of parsimony to resolve gene sequences which was first described by Clarke

(1990). Such methods are generally based on minimising the numbers of recombinations

or haplotypes in the population, however more recently, rule based methods for haplotype

inference have been developed that do use recombination (Wang et al. 2007, Cox et al. 2002).

Statistical based methods use either maximum likelihood (ML) or Bayesian methodology

such as the EM algorithm (Excoffier et al. 2005) and the Gibbs sampler (Stephens et al.

2001). The accuracy of the EM algorithm is likely to decrease significantly when used

in large problems due to an increased diversity of haplotypes in the population and a

corresponding reduction in their frequency. Bayesian methods can resolve many of the

difficulties faced by the EM algorithm, particularly those relating to the numbers of

loci, missing data and modelling evolutionary history. Salem et al. (2005) presents a

comprehensive review of haplotyping software packages many of which are available online

(URL: http://www.nslij-genetics.org/soft).
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2.5.2.2 DNA microarrays and SNP chips

DNA microarrays consist of thousands of microscopic spots, or features, robotically spotted

(printed) on solid supports (glass, plastic or silicon) with the identity of each feature

defined by its location (Tillib & Mirzabekov 2001). Each feature contains huge numbers

of synthesized DNA strands called DNA oligonucleotides, or primers.

The use of DNA microarray technology for the analysis of gene expression levels has

been well established (Lockhart et al. 1996, Lipshutz et al. 1999). In gene expression

studies, synthetic primers are used as probes specifically designed to hybridise to a targeted

complementary gene sequence. For example, to compare specific gene expression levels in

two different cell samples, mRNA sequences from both samples are converted to equivalent

cDNA sequences using a reverse transcriptase and then labeled with a sample specific

fluroescent dye. Equal amounts of both cDNA samples are then mixed together and

washed over a microarray with each feature containing complementary oligonucleotide

primers. The amount of cDNA sample bound to a feature is measured by the fluorescence

intensities and colours emitted when it is excited by a laser. The relative expression levels

of the genes in both samples is then estimated and compared.

Another application of microarray-based technology is the analysis of point mutations and

SNPs in the genomic DNA of different organisms. DNA microarrays designed to detect

the expression of SNP alleles are called SNP arrays, or SNP chips. The principle behind

the SNP chip is the same as the DNA microarray with each array containing a target

nucleic acid sequence as well as one or more labelled allele specific probes. However used

on its own, the DNA-chip based method returns a poor signal/noise ratio in allele specific

hybridization with a limited specificity of discrimination between completely matched and

mis-matched oligonucleotides (Tsuchihashi & Dracopoli 2002).

Arrayed primer extension (APEX), is a preferred method in which oligonucleotides cor-

responding to sequences preceeding a SNP are arrayed on a solid surface and hybridized

to PCR products containing the SNP sequences (Gut 2001). Each oligonucleotide on

the array acts as a primer for a primer extension reaction with a DNA polymerase and

four differently fluorescently labeled dideoxynucleotides. The flurorescence emission of

the incorporated nucleotide identifies the next base on the hybridized template. The use

of enzymatic discrimination rather than differentiation by hybridization, dramatically

increases the signal/noise ratio and increases the specificity of genotyping.
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2.5.3 The candidate gene approach

The candidate gene approach assumes that a molecular polymorphism within the candidate

gene is related to phenotypic variation. In other words, it attempts to determine whether

one allele of a candidate gene is more frequently seen in individuals harbouring that

trait, than those that don’t. The candidate gene approach consists of three chronological

steps. First, candidate genes are proposed based on molecular and physiological studies or

based on linkage data of the locus being characterised (Pflieger et al. 2001). A molecular

polymorphism must then be identified so that statistical correlations between candidate

gene polymorphisms and phenotypic variation can be calculated in a set of genetically

unrelated individuals. The final step is the validation step. If a statistical correlation has

been found, complementary experiments may then be conducted to confirm the actual

involvement of the candidate gene in the trait variation, although this is not always

practical. In reality, absolute validation is rarely achievable especially for complex traits.

For monogenic traits, genetic transformation can be a good way to establish a biological

link between gene and phenotype, but even this does not prove causation (Pflieger et al.

2001).

There are two fundamental problems associated with the candidate gene approach. Firstly,

there are often a large number of candidate genes affecting a trait so many genes must be

sequenced in many individuals. The cost of carrying out so many association studies in a

large sample of trees, for example, is both expensive and time consuming. Secondly, there

is always a chance that the true causative mutation(s) may lie in a gene that would not

intuitively have been selected as a candidate gene.

Despite these drawbacks, the candidate gene approach has been sucessfully used to

characterise disease resistance genes and has led to the isolation of many new putative

functional resistance genes (R-genes). For example, over 16,000 putative R-genes have

now been identified and numerous co-segregations between major R-genes and resistance

QTLs have been observed (Pflieger et al. 2001). A database containing 16,864 R-genes is

available online (URL: http://prgdb.cbm.fvg.it/).

2.5.4 Marker Assisted Selection using BLUP

The idea of applying BLUP to MAS was first proposed by Fernando & Grossman (1989)

in what was largely a generalisation of the method proposed by Soller (1978). The method
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allows for the simultaneous evaluation of fixed effects, additive effects of a single QTL

linked to one marker, and additive effects for alleles at the remaining QTL using all known

relationships as well as phenotypic information.

If we consider a number of related individuals, the covariance of the vector of additive

genetic effects is Aσ2
u, where A is the numerator relationship matrix and σ2

u is the polygenic

variance. With QTL effects treated as random, the covariance of the matrix of QTL effects

is Gσ2
v, where G is the genomic relationship matrix and σ2

v is the QTL variance. The

variance of the error term is σ2
e .

Using both phenotypic and marker information, BLUP is obtained using the following

model:

yi = x
′

iβ + vpi + vmi + ui + ei

where yi is the phenotypic value of individual i, x
′
i is a vector of known constants, β

is a vector of unknown fixed effects, vpi and vmi are both vectors of additive effects of

marker-QTL alleles inherited from the paternal and maternal parents respectively, ui is

a vector of residual additive effects of alleles at remaining QTL, unlinked to the marker

locus, and ei is a vector of random errors.

Thus, to estimate b, v and u Fernando & Grossman (1989) proposed solving for b̂, û and

v̂ in the following set of equations:

X
′X X ′Zu X ′Zv

Z ′uX Z ′uZu +A−1λ Z ′uZv

Z ′vX Z ′vZu Z ′vZv +G−1γ


 b̂û
v̂


X

′y

Z ′uy

Z ′vy



where X is a matrix of vectors xi, Zu is a matrix relating individuals to polygenic effects,

Zv is a matrix relating individuals to QTL effects, λ = σ2
e

σ2
u

and γ = σ2
e

σ2
v
. The covariance

matrix of vi values, G, depends on both relationship and marker information and can

be constructed using a recursive algorithm presented by Fernando & Grossman (1989).

An algorith is also given to obtain its inverse, G−1, whilst A−1 can be obtained using

Henderson’s rules (Section 2.4.4).
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2.5.4.1 Calculating the genomic relationship matrix (GRM), G

Van Raden (2008) proposed three different methods to obtain genomic relationship matrix,

G, for large numbers of genotypes. Each method requires a predefined matrix M ,

specifying which marker alleles each individual inherited. The dimensions of M are n×m,

where n is the number of individuals and m is the number of loci. Furthermore, a second

matrix P is obtained which contains allele frequencies expressed as a difference from 0.5

and multiplied by 2, such that column i of P is 2(pi − 0.5). Subtraction of P from M

then gives Z, and sets the mean values of each column of Z to 0.

The first method to obtain G uses the formula:

G =
ZZ ′

2
∑
pi(1− pi)

where the division by 2
∑
pi(1−pi) scales G to be analogous to the numerator relationship

matrix A. The second method weights markers by the reciprocals of their expected

variance instead of summing expectations across loci and then dividing. In this method,

G = ZDZ ′, where D is diagonal with:

Dii =
1

m[2pi(1− pi]

The third and final method for obtaining G adjusts for mean homozygosity by regressing

MM ′ on A to obtain G using the model:

MM ′ = g011′ + g1A+E

where g0 is the intercept and g1 is the slope. Matrix E includes differences of true from

expected fractions of DNA in common plus measurement error.

2.5.5 The QTL mapping approach

The QTL mapping approach works under the assumption that the QTL are not known.

To find the QTL, DNA markers are used to find associations between allelic variation at

marker loci, and variation in the quantitative trait. If an association is found, the marker
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can be assumed to be either linked to, or on the same chromosome as, the QTL. Without

an adequate number of markers per chromosome, the association between markers and

QTL will only persist within families and for a limited number of generations due to

recombination. Furthermore, unless a huge number of progeny per full-sib or half-sib family

are used, the QTL are mapped to very large confidence intervals on the chromosome. This

can be seen in Darvasi and Soller’s formula for estimating the 95% CI for QTL location

(Darvasi & Soller 1997):

CI =
γ

kNδ2

where γ is the size of the genome in centi-morgans, N is the number of individuals

genotyped, δ is the allele substitution effect and k is the number of informative parents

per individual (1 or 2 for half-sib and full-sib family designs respectively). For example,

the genome size for Pinus radiata is approximately 20 Morgans, thus for a given allele

substitution effect of 0.5, and a QTL segregating on a chromosome within a half-sib family

of 1000 individuals, the 95% CI would be 8 cM.

One of the problems associated with such a large confidence interval is that there is

an average of 80 genes located within such intervals and each one of these genes would

have to be investigated in turn. Moreover, the linkage between marker and QTL are not

sufficiently close to ensure that marker-QTL allele relationships persist across the popula-

tion. Instead, marker-QTL phase within each family must be established to implement

MAS. This is especially true for outbreeding species such as Pinus radiata, where breeding

populations are likely to be in linkage equilibrium (Brown 1990). In such situations,

correlations among QTL alleles and marker alleles would have to be determined separately

for each pedigree of interest requiring a large amount of resources.

It should also be noted that the statistical interpretation of QTL in most cases is somewhat

subjective and the need to establish reliable common guidelines for acceptance of evidence

of QTL is paramount (Carson et al. 1996). Population size has been shown to be the

most critical factor in QTL detection as it is becoming increasingly clear that many

forest tree QTL studies carried out to date have used excessively small samples. Beavis

(1994) estimated the power of QTL detection for differing sample size and heritability and

concluded that extreme caution should be used in the interpretation of QTL evidence for

sample populations of less than 1,000 individuals. Under such conditions, non-existent
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QTL may be found, real QTL may be overlooked, and estimates of size of detected QTL

effects may be considerably inflated leading to overestimates of potential genetic gains.

One way to validate the existence of putative QTL in trees is through the alignment of

genetic maps across species (Chagne et al. 2003). For example, the alignment of genetic

maps between Pinus taeda and Pinus pinaster served to validate wood density and cell

wall chemistry QTLs and to co-localise positional candidate genes controlling these traits

(Chagne et al. 2003).

2.6 Genomic Selection

As quantitative traits are affected by many genes, the benefit of MAS is limited by the

proportion of the genetic variance explained by the QTL. As an alternative to MAS,

Meuwissen et al. (2001) proposed a method called Genomic Selection (GS). Genomic

selection involves the simultaneous selection of large numbers of densely packed SNPs

covering the entire genome, so that all genes are expected to be in LD with at least one

SNP marker (Goddard & Hayes 2007). This way all QTL affecting the trait are used to

calculate GEBVs.

2.6.1 Simultaneous selection on QTL markers

The simplest way to deduce the genotype of each individual at each QTL is to treat the

markers themselves as if they were QTL and estimate the effects of the marker alleles or

genotypes. Treating the markers themselves as if they were QTL relies on the markers

being able to explain a large proportion of the QTL variance and is therefore heavily

dependant on the presence of LD between the markers and QTL. However, the high density

of SNP markers required to assure linkage between markers and QTL using this approach,

may limit its application to species with high levels of LD and smaller genome sizes. For

example, for a species such as Pinus radiata where LD is known to break down within the

length of an average sized gene (∼ 1500 bp), the necessary density of SNP markers would

be as many as 17.6 million evenly spaced markers.
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2.6.2 Simultaneous selection on haplotypes

Selection on haplotypes has been shown to be an effective alternative, with Hayes et al.

(2007) showing that the proportion of QTL variance explained by a haplotype of the

surrounding markers increases from 0.2 for the nearest marker, to 0.58 for a six marker

haplotype. This is because two randomly selected chromosome segments with identical

haplotypes are more likely to be identical by descent (IBD), than identical by state (IBS),

and will therefore be more likely to carry the same QTL alleles. As the probability of

two identical haplotypes being IBD increases, so does the proportion of QTL variance

explained by the haplotypes, as marker haplotypes are more likely to be associated with

unique QTL alleles. Marker haplotype information is therefore used to infer the probability

that two individuals carry the same QTL allele at a putative QTL position.

Furthermore, if two individuals are IBD at a point on the chromosome carrying a QTL,

their phenotypes will also be correlated. Based on the marker haplotypes, the probability

that two individuals are IBD at a particular point can then be calculated and stored in an

IBD matrix (G). Then, if a phenotypic correlation between the two individuals can be

shown to be proportional to G, this would constitute evidence for a QTL at this position.

However, as a consequence of there being many more haplotypes present in a population

than genotypes, there is less data available to estimate each haplotype effect, thus reducing

the accuracy with which each haplotype effect is estimated. Despite this, the increase

in QTL variance explained from using marker haplotypes has been shown to outweigh

the decrease in accuracy resulting from estimating a greater number of haplotypes effects

(Hayes et al. 2007, Grapes et al. 2004).

2.6.3 Estimating QTL effects

The primary challenge in simultaneously selecting on individual markers or haplotypes is

in being able to accurately estimate each individual effect. This is because the number of

effects to estimate will almost always be greater than the number of records (Goddard

& Hayes 2007). Estimating a large number of QTL marker effects in a data set of

limited size leads to the problem of there not being enough degrees of freedom to fit all

of the effects simultaneously via ordinary least squares (OLS). Another alternative is to

derive the estimates using BLUP and assume that the QTL effects are drawn from a

normal distribution with constant variance across chromosome segments (Schaeffer 2006).

Although the BLUP method is capable of returning better estimates than OLS, both of
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these methods attempt to estimate the value of all QTL, even those with an intangible or

zero effect. The cumulative effect of assigning an estimated value to markers with zero

effect adds noise to the overall analysis and reduces the overall accuracy of prediction

(Goddard & Hayes 2007).

The Bayesian approach to GS provides greater flexibility by using an explicit prior for the

variance of QTL effects. This way, the variance of the distribution from which the QTL

are drawn varies for different QTL. It has been shown using simulated data that even in

cases where the chosen prior is known to differ from the distribution used to simulate the

data itself, the Bayesian approach of adopting an explicit prior still returns more accurate

estimates than those derived using BLUP or OLS.

2.6.4 Method Bayes-A

The application of Bayes theorem to the estimation of marker effects requires firstly

estimating the variance of the marker effects which differ for every locus. These variances

are estimated by the chosen distribution of variance of marker effects p(σ2
gi), where σ2

gi is

the genetic variance of the ith locus. Meuwissen et al. (2001) suggested using a scaled

inverted chi-square distribution such that p(σ2
gi) = χ−2(v, S), where S is a scale parameter

and v is the number of degrees of freedom.

The choice of a scaled inverted chi-square distribution here is very deliberate. Having

taken into account prior knowledge of the genetic system, the ultimate aim is to be able to

sample from the resulting Bayesian posterior distribution. Meuwissen et al. (2001) showed

that the expectation and variance of the genetic variance due to QTL (unconditional

on segregation) are equal to V (σ2
gi|s = 0) = 0.001 and E(σ2

gi|s = 0) = 1.675× 10−4 and

that by adopting a scaled inverted chi-square prior (with S = 0.0020 and v = 4.012), the

resulting posterior distribution will also be a scaled inverted chi-square distribution with

the same mean and variance. Since the posterior is conditional on the unknown QTL

effects, variances σ2
gi can therefore be sampled from the conditional posterior distribution

by a Gibbs sampler, from which the estimated marker effects are then derived. This

method is now known as Bayes-A.
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2.6.5 Method Bayes-B

Meuwissen et al. (2001) recognised that the prior distribution used in method Bayes-A

naively assumed that all chromosome segments have an effect, whereas in reality most

chromosome segments would not contain any QTL at all. This is reflected in the fact that

the prior density of method Bayes-A does not have a density peak at σ2
gi = 0, instead

having a density peak slightly greater than zero. In fact, the probability that σ2
gi = 0 in

method Bayes-A is infinitesimal.

Method Bayes-B addresses this issue by using a prior that has a high density peak, π,

at σ2
gi = 0 whilst still having an inverted Chi-square distribution for σ2

gi > 0. Thus, for

Bayes-B:

Pr(σ2
gi = 0) = π

Pr(σ2
gi ∼ χ−2(v, S)) = 1− π

where S is a scale parameter and v is the number of degrees of freedom. However, for

Bayes-B both the choice of scale parameter and the number of degrees of freedom of the

chi-square distribution is different to Bayes-A since the mean and variance of σ2
gi must now

factor in the probability that the QTL is not segregating. The expectation and variance

of the genetic variance due to QTL (conditional on segregation) are shown to be equal

to V (σ2
gi|s = 1) = 0.00315 and E(σ2

gi|s = 1) = 0.019 resulting in a prior distribution

approximated by ∼ χ−2(4.2339; 0.0429).

Method Bayes-B is also different to Bayes-A in that it typically uses both the Metropolis-

Hastings algorithm and a Gibbs sampler (Hastings 1970), although non-MCMC based

algorithms have also been developed (Meuwissen et al. 2009).

2.6.6 Taking the good with the bad

Despite their many advantages, the Bayesian methods described above are not without

their recognised flaws. Both Bayes-A and Bayes-B have been criticised for their failure to

allow the conditional Bayesian estimation process to proceed far away from the designated

prior (Gianola et al. 2009). It can be shown that in Bayes-A the fully conditional
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posterior distribution of marker effects, [σ2
gi|v + 1, (vS2 + g2

i )/(v + 1)], moves only a

single degree of freedom away from the prior distribution [σ2
gi|v, S2], despite the scale

parameter S being modified from S2 into (vS2 + g2
i /(v + 1). In other words the formal

process of “Bayesian learning”, that is, the process of modifying prior expectations about

a variable on the basis of incoming data, is to a certain extent being stifled by the

parameters set in the prior distribution. Moreover, it can be said that for any parameter θ

of a model, Bayesian learning should be such that the posterior coefficient of variation,

CV =
√
V ar(θ|DATA)/E(θ|DATA), tends to 0 asymptotically as DATA accrue (Gianola

et al. 2009). However in the case of Bayes-A, the ratio of the posterior CV to the prior

CV (ie. CV (σ2
gi|DATA)/CV (σ2

gi)), rapidly increases to 1 as the degrees of freedom of the

prior v, increases, demonstrating the extent to which the prior distribution dominates

inference.

It should therefore be of no surprise that whilst other methods of exploiting genomic

information in genetic evaluation are also being developed, as yet there is no clear consensus

about what is universally the best method. There is, however, a general appreciation that

finding individual QTL in quantitative traits is much more difficult than many expected.

2.6.7 Genomic Selection in practice

Genomic selection is in the process of revolutionizing domestic animal breeding practice.

Initial simulation studies evaluating the prospects of GS in animal breeding schemes have

been very positive (Calus et al. 2008, Dekkers 2007, Long et al. 2007, Muir 2007, Schaeffer

2006, Solberg et al. 2008). Thus far, empirical results of GS in animal models have all

but confirmed positive theoretical expectations (Lee et al. 2008, Legarra et al. 2008) with

accuracies of GEBVs shown to be 2 to 20% greater than those of estimates using pedigree

information (Hayes et al. 2009a). In fact, at least two dairy breeding companies are already

marketing bull teams for commercial use based on their GEBV only, at 2 years of age

(Hayes et al. 2009a).

Although empirical GS results from plant breeding programs are not yet available, simula-

tion studies involving the application of GS for the improvement of crops such as maize

and barley have given plenty of reasons for optimism. For example, Bernado & Yu (2007)

showed that GS produced up to 43% greater genetic gain than marker-assisted recurrent

selection for polygenic traits of low heritability in maize (Zea mays L.). Furthermore,

Zhong et al. (2009) showed using empirical barley (Hordeum vulgare L.) marker data
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and simulated phenotypes, that GEBV accuracy was similar to that of phenotype-based

estimates.

By replacing time-intensive phenotypic evaluation of highly complex traits with GEBVs,

GS can shorten breeding cycle length and thereby increase gains per unit time (Heffner

et al. 2010). In fact a study on bi-parental populations suggested that GS gains per year

could approach 1.5 times that of phenotypic selection in a case where three cycles of GS

could be completed to each phenotypic selection cycle (Lorenzana & Bernado 2009). The

allure of GS for forest tree breeders is in its ability to shorten the breeding cycle since

long generation times and late expressing complex traits are often a challenge.

Unfortunately, the outbred nature of most tree species means that LD typically only

extends to short ranges, typically less that 200 bp in natural populations of Populus

and Pinus (Ingvarsson 2008, Neale & Savolainen 2004). In such populations, prohibitive

numbers of markers would be required to perform GS with a suitable selection accuracy

and it is on these grounds that GS has previously been dismissed by tree breeders as a

realistic alternative tool for genetic improvement.

However it has been suggested that by decreasing the effective population size (Ne) to

below 60, one could artificially increase the amount LD in a breeding population enough to

achieve a selection accuracy similar to that of phenotypic BLUP (Grattapaglia & Resende

2010). This could be achieved in elite breeding populations of forest trees that often have

Ne ranging from 20 to 100. The marker density required in such a scenario would be

around 2 to 3 markers/cM and currently available genotyping technologies for forest trees

already provide such marker densities (Grattapaglia & Resende 2010). For larger effective

population sizes, 10 to 20 markers/cM would be necessary to consider GS requiring the

development of genotyping arrays with somewhere between 20,000 and ≥ 50,000 markers

(Grattapaglia & Resende 2010). Whilst cost may continue to be a significant hurdle in

the short term, there does not appear to be any technical limitations with respect to

genotyping density in the implementation of GS, at least in the main forest tree species

where advanced breeding programs are currently carried out.
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Chapter 3

An analysis of population structure

and Linkage Disequilibrium in three

native populations of Pinus radiata

3.1 Overview

In this chapter we present a preliminary exploratory analysis of SNP data sampled from

3 mainland Californian populations of Pinus radiata. We begin by presenting a basic

description of the data followed by an analysis of population divergence and structure as

well as Linkage Disequilibrium (LD).

3.2 Introduction

Pinus radiata is one of the most widely planted and commercially valuable timber pines in

the world with an estimated timber resources of 86 thousand hectares in Australia and 1.6

million hectares in New Zealand (Department of Agriculture Fisheries and Forestry 2010).

Although Monterey pine has a widespread fossil record in coastal California (Axelrod

1967), today it is considered a rare endemic of California and survives naturally in only

three mainland areas: Ano Nuevo-Swanton, Monterey-Carmel and Pico-Creek Cambria

(Griffin & Critchfield 1976).
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In recent years mainland Pinus radiata populations have been under threat from land

conversion, urbanization, genetic contamination from non-local plantings and the spread of

the lethal pitch canker fungal disease (Millar 1999). The conservation of these populations

is of great importance to forest industries as they contain diverse and largely unexplored

germplasm (Millar 1999). The exploration and characterisation of genetic diversity within

and between these populations will assist in the development of effective conservation

strategies.

An investigation into the present day genetic constitution of these mainland Pinus radiata

populations must be considered within the context of the history of the species in this

region. Evidence to date suggests that the three mainland Californian population and

the two island populations (Cedros and Guadalupe) have existed in isolation for only a

short time period relative to the continent long history. As recently as 12,000 years ago

(late Pleistocene), the Californian coastal strip was inhabited by a single forest of similar

composition. Thus, it is only in this most recent geological epoch (Holocene) that a drier

and more intemperate climate has disrupted the continuity of the forest and its species in

this area (Axelrod 1999).

However, during the Holocene period, the genetic constitution of these populations has

changed. For example, substantial divergence between mainland and island populations

has already been shown to exist. In a study using 91-98 RAPD markers, Wu et al.

(1999) examined levels of population differentiation between two mainland Pinus radiata

populations (Ano Nuevo and Cambria) and Guadalupe Island. FST values as high as

0.26±0.03 were found.

We would expect a greater amount of divergence between mainland and island populations

for two reasons. Firstly, genetic distance is to a large extent related to spatial structure.

That is, most plants have limitations in the distances that propagules disperse. Relatives

will tend to mate in close proximity leading to a build-up of genetic isolation by distance

(Rogers et al. 2006). The island and mainland populations are separated by a large

expanse of water, far greater in distance than the distances within the mainland or island

populations themselves (see Section 3.1). Secondly, genetic structure is also a function

of population size. Island populations tend to be small and small populations are more

susceptible to rapid and erratic changes in gene frequency through random genetic drift

(Falconer & Mackay 1996). This eventually leads to an increase in homozygosity due to

inbreeding and a proliferation of rare alleles. This is less likely to occur in the larger

mainland populations.
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Population divergence has also been detected between mainland populations although it

is considerable less when compared to the islands. Although there is a clear geographic

boundary between all three mainland populations, it is still unclear whether these popula-

tions represent distinct genetic groups and thus an analysis of population structure within

these populations is warranted.

3.3 Materials and Methods

3.3.1 Plant material and SNP sequencing

DNA sequencing and SNP genotyping was conducted at Ensis Genetics laboratories in

Canberra, A.C.T. Plant material used for initial sequence analysis was collected from 200

trees in a provenance trial near Batlow, N.S.W. The trial was established in 1980 from

seed collected from the three native Californian populations (Moran et al. 1988). This

initial sample used for sequence analysis consisted of 91 individuals from the Monterey

population, 82 from Ano Nuevo and 27 from Cambria for a total of 200 trees. The plant

material used for DNA extraction consisted of megagametophytes and needle tissue.

Figure 3.1 – Location of current Pinus radiata populations
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3.3.2 SNP genotyping and candidate gene selection

SNP genotyping procedures were conducted on a larger sample of 447 trees, including the

initial sample of 200 trees used for sequence analysis and additional 247 trees from the

three native mainland populations: Monterey (119), Ano Nuevo (73) and Cambria (55)

from the same provenance trial.

A total of 23 genes were previously selected based on their demonstrated involvement in

the determination of wood properties. Within these 23 genes, 29 regions were isolated

for further analysis. Single nucleotide polymorphisms (SNPs) were selected from the 29

regions prior to genotyping. Genotype data were collected for 149 SNPs. For a more

detailed description of DNA sequencing and SNP genotyping procedures refer to Dillon

et al. (2010).

3.3.3 Population structure and genetic differentiation

Population pairwise FST scores between all three main populations were calculated using

the Arlequin (version 3.0) software package (Excoffier et al. 2005). Analysis parameters

were set to: No. of steps in Markov chain = 10,000; No. of dememorization steps = 10,000.

Hardy-Weinberg proportions were also calculated using the arlequin software package.

We estimated the number of populations (K, or clusters) from the data using the struc-

ture (version 2.0) software package (Evanno et al. 2005). The statistic ∆K was used to

detect the number of clusters present in the SNP data. Within structure, we chose the

admixture model and the option of correlated allele frequencies between populations. The

degree of admixture (alpha) was inferred from the data. Lambda, the parameter of the

distribution of allelic frequencies, was set to 1, as advised in the manual. The length of

the burn-in and MCMC (Markov Chain Monte Carlo) was set to 10,000. The number of

possible populations tested within structure was 12.

The model choice criterion used in structure to detect the true number of populations

K is an estimate of the posterior probability of the data for a given K, Pr(X|K). In the

structure output this value is called ’LnP (D)’ and is obtained by first computing the

log likelihood of the data at each step of the MCMC (Evanno et al. 2005). The average

of these values is then computed and half of their variance is subtracted from the mean.

What remains is ’LnP (D)’, the model choice criterion. The maximal value of LnP (D)
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returned by structure is commonly used to identify the true number of populations

(K), (Evanno et al. 2005).

However, there is some debate as to whether the Bayesian algorithm implemented in the

software structure can detect the true number of clusters (K) in a sample of individuals

when patterns of dispersal among populations are not homogeneous. Evanno et al. (2005)

found that in most cases the maximal value of the ’log probability of data’ does not

accurately estimate the number of clusters, K. In fact, once the real K is reached, LnP (D)

plateaus or continues to increase slightly at larger values of K and the variance between

replicates also increases.

To avoid this problem, Evanno et al. (2005) use an ad hoc statistic ∆K which is based

on the rate of change in the log probability of data between successive K values and is

calculated as:

∆K =
m(|L”(K)|)
s[L(K)]

where m(|L”(K)|) is the mean of the absolute values of the second order rate of change

of LnP (D) and s[L(K)] is the standard deviation of LnP (D). Using this statistic they

were able to accurately detect the uppermost hierarchical level of structure in the data by

identifying a break in the slope of LnP (D).

We estimate ∆K by first plotting the mean difference between successive likelihood vales

of K, such that L′(K) = L(K)− L(K − 1). This corresponds to the rate of change of the

likelihood function with respect to K (Figure 3.2). The absolute value of the difference

between successive values of L′(K) was then plotted to give the second order rate of change

of L(K) with respect to K. Finally, the mean of the absolute values of the second order

rate of change of LnP (D) was divided by the standard deviation of LnP (D) giving a

graph of ∆K vs K (Figure 3.3).

3.3.4 Linkage Disequilibrium

The extent of LD between pairs of loci in this sample was assessed. In this analysis,

we used two commonly used measure of disequilibrium, the standardized disequilibrium

coefficient D′ and the squared correlation of allele frequencies r2. Both algorithms were

written in Fortran.
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We looked for evidence of increased LD between SNPs contained within genes at the

inter -population level. This base analysis consisted of a comparison of mean D′ and r2

values among SNPs within gene regions, to mean D′ and r2 values among a random sample

of SNPs sourced from outside the gene. For consistency, we checked that these results did

not deviate considerably at the intra-population level by running the same analysis on

four genes within the three populations. Finally, we ran an algorithm to calculate and

compare the mean D′ value of a particular SNP relative to all other SNPs within its gene

with the mean D′ value of that SNP relative to every other SNP outside its gene.

All of the 149 SNPs genotyped were polymorphic at the inter -population level with 22% of

the SNPs having a minor allele frequency (MAF) of 1% or less. This constituted a count of

around 5 or less of one of the two homozygotes. At the intra-population level the number

of individuals was naturally fewer and hence the number of genotypes also reduced. As a

result, 52% of the SNPs had a MAF of 1% or less in the Ano Nuevo population, 50% of

the SNPs had a MAF of 1% or less in the Monterey population and 65% had a MAF of 1%

or less in the Cambria population. These SNPs were excluded from the intra-population

level LD analysis.

3.4 Results

3.4.1 Population structure and divergence

Results for pairwise genetic distance are summarized in Table 3.1 below. All Markov chains

were found to have converged using a burn-in length of 10,000. Ano Nuevo and Cambria

are the most genetically dissimilar with around 11% (FST = 0.109) of the total variance in

allelic frequencies being due to genetic differences. However, despite the fact that Monterey

is geographically closer to Ano Nuevo, FST estimates indicate that Monterey is genetically

most closely aligned with Cambria (FST = 0.035).

Table 3.1 – Matrix of pairwise FST values.

Ano Nuevo Monterey Cambria
Ano Nuevo 0.000
Monterey 0.074 0.000
Cambria 0.109 0.035 0.000
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Approximately one-fifth (21.77%) of all loci within the Ano Nuevo population were

in Hardy-Weinberg proportions compared to approximately 25.5% at Monterey and

33.57% at Cambria. Observed heterozygosity values were calculated from Hardy-Weinberg

proportions, were larger than expected in all three populations (Table 3.2).

Table 3.2 – Observed vs expected heterozygosity values.

Ano Nuevo Monterey Cambria
Observed 0.28 0.31 0.31
Expected 0.27 0.29 0.30

Figure 3.2 shows a plot of LnP (D) vs number of ancestral clusters (K). As expected, the

maximal value of LnP (D) was found to continue to increase slightly after the true number

of populations was reached, making it difficult to infer the true number of populations K

from the graph. As reported in the literature, the variance also increases with larger values

of K. Figure 3.3 shows that the best number of populations for analysis with structure

is 2. The overall proportion of membership estimated from observed allele frequencies in

structure suggests a greater admixture within Monterey than Ano Nuevo and Cambria.

On average, each individual has inherited around 35% of its genome from ancestors in the

Ano Nuevo population, 39% from Cambria and 25% from Monterey.

Figure 3.2 – The model choice criterion LnP (D), used in structure, plotted against the
number of ancestral clusters (K). The mean likelihood LnP (D) can be seen to increase over
12 runs for each value of K. The increasing variance for each run is shown through the
widening error bars.
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Figure 3.3 – The ad hoc statistic δK, used by Evanno et al. (2005), plotted against the
number of ancestral clusters (K). δK is calculated as δK = m|L′′(K)|/s[L(K)]. The modal
value of this distribution represents the true uppermost level of structure, here 2 clusters.

3.4.2 Linkage Disequilibrium

At the inter-population level we found that LD between SNPs was on average, noticeably

higher within genes than between them. This can be seen by comparing the mean D′ and

r2 values between SNPs within genes and the mean D′ and r2 values between a random

selection of SNPs in the broader population (Figure 3.4). Some exceptions included; Pt.

lim 1 transcription factor, proline rich protein, phenylcoumaran benzylic ether reductase

and At. dehydrin 2.

A comparative analysis on an individual SNP level also shows marked differences in LD

on the inter and intragenic levels. Individual SNP loci pairs were found to have D′ values

between 10 and 100 times greater when both SNP were located within the same gene

region (Figure 3.5).

Linkage disequilibrium within genes remained constant at the intra-population level despite

the fact that a considerable number of SNPs were lost in the data checking process (Figure

3.6).
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Figure 3.4 – The mean D′ and r2 values for all SNPs within gene regions. The last category
was included for the purpose of comparison and is the mean D′ and r2 value of 10 SNPs
randomly selected from the broader population

Figure 3.5 – Top line: The mean D′ value of an individual SNP relative to all other SNPs
within its gene region. Bottom line: The mean D′ value of an individual SNP relative to all
other SNPs outside its gene region.
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Figure 3.6 – A comparison between populations of mean D′ values within four gene regions

3.5 Discussion

In the following section we discuss in further detail the meaning of the FST results outlined

above, and attempt to place the results into a historical context in terms of recent expansion

of the Pinus radiata population. Linkage disequilibrium results are also discussed in greater

detail.

3.5.1 Population structure and divergence

Observed diversity reported in Section 3.4.1 was larger than the expected diversity within

all three populations. This suggests a recent increase in heterozygotes and a decrease in

homozygotes, possibly a consequence of population expansion facilitated by disassortative

mating habits (Falconer & Mackay 1996). Although we cannot know for sure whether recent

population expansion has influenced the observed SNP frequencies in these populations,

Pinus radiata is well suited for rapid population expansion as it is a wind pollinated

outcrossing species with monoecious flowers (individual flowers are either male or female,

but both sexes can be found on the same plant). This bisexual mode of reproduction is a

well known example of disassortative mating and leads to a rapid increase in gene diversity

(Falconer & Mackay 1996).

48



Chapter 3 Population structure and Linkage Disequilibrium

According to fossil records, a forest similar in composition appears to have occupied the

Californian coast into the late Pleistocene, as recently as 12,000 years ago (Axelrod 1981).

This forest appears to have shifted further north and further south along the outer coast

in response to alternating glacial-interglacial climates and may have been broken into

discontinuous patches and disrupted floristically by the hot dry climate of the Xerothermic

period (Axelrod 1981). Genetic distance reported in this study are compatible with this

interpretation, with FST values showing only small amounts of divergence and high levels

of admixture between the three mainland populations.

Furthermore, a clustering of the SNP data using structure shows that there may only

be two effective mainland populations, not three. The low level of divergence found

between the Monterey and Cambria populations (FST=3.5%) is also indicative that these

two populations although geographically separate, have not evolved sufficiently to be

considered as two genetically separate groups. Interestingly, although the Monterey

population is geographically closer to Anu Nuevo, it shows a greater affinity with Cambria.

This breakdown in linearity between physical distance and genetic divergence could be for

a variety of reasons. Firstly, it is possible that Ano Nuevo became geographically isolated

far sooner than did the Monterey and Cambria populations and gene flow may have been

restricted between Ano Nuevo and a combined Monterey/Cambria population for some

time. Secondly, perhaps this relationship reflects a unique diversity within Anu Nuevo

due to an influx of alleles through hybridization with another overlapping species. For

example, it has already been established that Pinus radiata has a propensity to hybridize

with Pinus attenuata on the coast bordering the Santa Cruz Mountains near Ano Nuevo

(Axelrod & Hill 1988).

This history of expansion and contraction is still apparent today. The relatively low number

of loci in Hardy-Weinberg proportions suggests that selection, mutation or migration

continues to have an effect on allele frequencies across all three populations.

3.5.2 Linkage Disequilibrium

Intragenic LD in this study was found to be low to moderate with D’ values ranging from 0

to 0.6 with an average of 0.28 (Figure 3.5). Further analysis showed that these levels of LD

were consistent within populations. Intragenic LD was significantly higher than intergenic

LD as shown by the marked increase in D’ values for SNP pairs located within the same

gene. Although we do not know the relative distances between genes, these results were
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expected given the closer proximity of SNP loci within genes, the trend toward low LD

generally observed in conifers, and the vast expanse of the Pinus radiata genome (Ahuja

& Neale 2005)

It is worth noting here that most if not all genomic studies in Pinus radiata undertaken to

date have adopted a candidate gene approach where only specific areas of the genome are

targeted for investigation. This is an important point as there is growing evidence in other

species that recombination rates vary dramatically across genomic regions. For example, in

maize, recombinations events appear to be restricted to genic regions, a consequence of the

extensive retrotransposon makeup of the genome. Fu et al. (2002) show that recombination

within the bronze (bz ) locus is at least 100 times higher than the maize genomes average

due to the abundance of retrotransposon families flanking either side of the gene. Although

the occurrence of such recombination ’hotspots’ in pines has not yet been established, it

is well known that approximately 75% of the conifer genome is comprised of ubiquitous

transposable elements (Ahuja & Neale 2005). Thus if recombination is in fact restricted

to genes in pines, modelling LD using a candidate gene approach is almost certain to

overestimate average genome wide decay.

3.6 Conclusions

1. Levels of genetic divergence between mainland populations was found to be low.

2. Of the three populations examined, genetic divergence levels at Ano Nuevo were most

divergent from the population mean, whilst Cambria and Monterey populations were the

most genetically similar.

3. The Monterey population had the greatest level of admixture.

4. Intragenic LD was found to be low to moderate but at least two orders of magnitude

higher than intergenic LD.
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Chapter 4

Bayesian estimation of marker

effects and genomic breeding values

4.1 Overview

In this chapter we determine the accuracy of Bayes-A in the estimation of individual

marker effects and genomic breeding values. In a pool of 3135 SNP markers, we simulate

marker effects for only 1, 10, 100 or 1,000 of those markers, and leave the remaining

markers ’dormant’. In attempting to retrieve those marker effects we highlight the inherent

statistical difficulties involved in individual marker estimation.

4.2 Introduction

Genomic selection (GS), as described by Meuwissen et al. (2001), predicts breeding values

from large numbers of markers spread out over the entire genome. In GS it is assumed that

all Quantitative Trait Loci (QTL) are in Linkage Disequilibrium (LD) with at least one of

the markers whose effects can explain most or all of the genetic variance (Goddard & Hayes

2007). The primary challenge in using this approach is in being able to accurately estimate

the individual effects of such a large number of markers. Estimating large numbers of

marker effects in a data set of limited size leads to the problem of insufficient degrees of

freedom to fit all of the effects simultaneously via ordinary least squares (OLS).
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A number of methods have been suggested to avoid this problem (Meuwissen et al. 2001).

Genomic BLUP, or G-BLUP, applies the BLUP approach to the estimation of allelic

effects and assumes that the variance of the prior distribution is equal for all markers.

Bayes-A extends this method by estimating the variance of each marker seperately, using

an inverse Chi-squared prior for the estimation of these variances. This avoids the

unrealistic assumption of all marker effects having equal variance. Using only genotypic

data, Meuwissen et al. (2001) demonstrated that genomic estimated breeding values

(GEBVs) can be predicted with high accuracy (r > 0.80) using Bayes-A. However these

estimates were derived under a number of restrictive assumptions.

The aim of this experiment is to determine, under a range of different conditions, the

accuracy with which both the individual markers effects and GEBVs can be estimated using

the Bayes-A method. The different conditions will include: different trait heritabilities

(h2=0.1,0.4,0.8); different numbers of QTL (1,10,100,1000); and different distributions of

allelic effects (gamma and uniform). Based on these results, we then discuss the benefits

of GS relative to traditional pedigree based selection and what implication this may have

for the tree breeding industry.

4.3 Materials and Methods

4.3.1 The data set

For this experiment we used a set of real animal genotypes as a proxy for tree genotypes

since large real data sets were not available for Pinus radiata. The data set consisted of

a real population of 593 Brahman cattle and 3135 SNP genotypes sourced from three

seperate chromosomal segments in chromosomes 1, 3 and 7 of the Bos primigenius indicus

genome. The combined length of the three chromosomal segments was 4.2 Morgans. Each

SNP loci had a minor allele frequency between 0.1 and 0.9. A real set of genotypes was

preferred in this case as we wanted to retain the inherent LD structure contained within

the data.

In this experiment we ignore the effect of LD on the estimation of marker effects by assuming

in each case that the marker effects are a true representation of the underlying QTL effect.

Thus ’marker effect’ is used interchangeably with ’QTL effect’ in this experiment. We did

this to highlight the extent to which discrepancies in the estimates were due to statistical
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limitations in the estimation process. For the same reason, neither dominance nor epistatic

effects were included in the model.

4.3.2 Generating true genomic breeding values

Although there were a total of 3135 SNP genotypes, only a selection of these were allocated

an effect. These are referred to as ’active markers’ as opposed to ’dormant markers’. We

did this because we wanted test whether the analysis was capable of distinguishing between

the two.

We limited the number of marker effects to either 1, 10, 100 or 1000 marker loci. Marker

effects were drawn from both a gamma distribution (α=0.4,β=1.66) and a uniform

distribution (uniform random deviate between 0 and 1) and the sign of each effect was

sampled to be positive or negative with probability 0.5. Each individual was assigned a

true breeding value equal to the sum of its individual QTL effects. Phenotypic records

were then calculated by the model:

y =
∑
i

Xigi + e

where y is a vector of phenotypes, Xi is the design matrix for the ith QTL effect with

summation
∑

i over all 3135 QTL, gi represents the genetic effects of the QTL at the ith

SNP marker and e is a random error vector with variance σ2
e (N ∼ [0, 1]), with each error

value adjusted according to the chosen heritability (h2=0.1, 0.4 or 0.8). The simulated

marker effects, the true genomic breeding values and the phenotypic values were saved

in seperate files. Each scenario was replicated 10 times. Dominance and epistatic effects

were not included in the model.

4.3.3 Estimating marker effects using Bayes-A

This required firstly estimating the variance of the marker effects for every locus using the

program AlphaBayes (Hickey 2011). The program estimates variances using a scaled

inverted Chi-square distribution as a prior, such that:

p(Vgi) = χ−2(v, S)
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where p(σ2
gi) is the probability of a given variance at the ith locus, S is a scale parameter

and v is the number of degrees of freedom. Information from this prior distribution was

combined with information from the data resulting in a posterior distribution that was

also a scaled inverted Chi-square. Variances σ2
gi were then sampled from this posterior

distribution by a Gibbs sampler from which the estimated QTL effects were derived. In

the simulation, the true marker effects were known in all cases (Section 4.3.2) such that

the average correlation between true and estimated marker effects, rTMV |EMV , could be

calculated for each of the ten replicates.

4.3.4 Comparing true and estimated genomic breeding values

The GEBVs of all animals in the data set were obtained from:

û = 1µ+ Xĝ + e

where X is the design matrix containing all animals in the data set, g is the vector of

estimated marker effects obtained using method Bayes-A, and e is the vector of residuals.

In the simulation, the true genomic breeding values were known in all cases such that

the average correlation between true and estimated breeding values, rTBV |EBV , could be

calculated for each of the ten replicates. In the case where only a single active marker was

included, rTBV |EBV was instead calculated across all ten replicates. These correlations

were then used as a measure of the accuracy of GEBVs and were plotted in Figure 4.2.

4.3.5 Finding the active marker(s) in the analysis

In Section 4.3.3 we described the methods used to estimate individual marker effects. For

this part of the experiment we wanted to determine whether the active markers, whose

effects were randomly allocated in the simulation, could be identified once more in the

analysis and distinguished from the dormant markers. Examining a plot of the true marker

effects against their estimated values allowed us to identify those markers with the most

accurate estimated values. However, in this case, how close the estimated value of the

marker was to the true value was not important in itself, but rather it was its proximity

to the true value relative to the other estimates which mattered the most. In the majority
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of cases it was simply not possible to distinguish between the active and dormant loci as

their values were too similar.

We seperated the ’detected’ active markers from the rest by filtering out all effects within

3 SD from the mean and calculated the average size of their true effects, measured as

a percentage of the total genetic variance. These values were then plotted against four

different numbers of active markers so that we could see, on average, how big an active

marker effect had to be relative to the others in order to be clearly identified in the analysis.

We counted the number of markers identified in each case and averaged that value across

all 10 replicates. This gave us an estimate of the probability, or likelihood, of detecting

any single active marker against a backdrop of dormant loci. These probability values

were then plotted against the numbers of active markers when the model of gene action

was represented by a gamma and uniform distribution respectively.

4.3.6 Bayes-A and the Chi-square prior

One of the problems associated with the use of a standard Chi-square prior distribution in

the estimation of multiple marker effects is the cumulative and dampening effect of a build

up of variance in the estimation process. The more marker effects that are estimated, the

greater the ’background noise’ and the harder it becomes to differentiate between markers

with and without effects.

In order to demonstrate this phenomenon we considered a scenario with 1000 active SNP

markers and incrementally removed the smallest marker effects from the data set, beginning

with all values less than or equal to 0.1. This first ’cut’ included the 2135 dormant loci for

which Bayes-A tried to estimate an effect. The prediction accuracy was then re-calculated

for the remaining markers when h2 = 0.1, 0.4, 0.8, and the values plotted in Figure 4.6.

The revised accuracies for the remaining marker effects were plotted on the Y axis and

the cumulative cut off point for marker effects were plotted on the X axis.
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4.4 Results

4.4.1 Estimating individual marker effects

A plot of all rTMV |EMV values can found in Figure 4.1 with the individual effect sizes

for the gamma distribution in Table 4.1. High rTMV |EMV values were observed when

trying to predict the effects of 1 or 10 loci, especially when the effects were drawn from a

gamma distribution. For example, when trying to predict a single marker effect drawn

from a gamma distribution, the prediction accuracy is greater than 90% for h2 =0.4;0.8,

and continues to perform well (rTMV |EMV > 0.80) with as many as 10 active loci in the

model. However when we tried to simultaneously predict more than 10 marker effects,

significant reductions in accuracy were observed. With 100 active loci, the prediction

accuracy dropped from 0.94 to 0.62 when h2 =0.8, and from 0.87 to 0.34 when h2=0.4.

When h2=0.4, the prediction accuracy fell away sooner when the marker effects were

drawn from a uniform distribution, dropping to 0.55 with as few as 10 active loci in the

model. With 100 active loci, rTMV |EMV dropped to below 0.1 regardless of the heritability.

When h2=0.1, rTMV |EMV values were consistently around 0.5 for the uniform and gamma

distributions.

4.4.2 Calculating GEBVs

A plot of all rTBV |EBV values can found in Figure 4.2 with the individual effect sizes for

the gamma distribution in Table 4.1. Bayes-A performed very well on all accounts. For

h2=0.4;0.8, Bayes-A predicted GEBVs comprising of up to 10 active loci with a minimum

correlation of rTBV |EBV =0.87 and up to 1000 active loci with a minimum correlation of

rTBV |EBV =0.74. Even when h2=0.1, GEBVs were consistently estimated with a correlation

greater than 0.4 (rTBV |EBV >0.4).

With the number active markers held constant, the prediction accuracy increases with

heritability under both models of gene action. When h2 was held constant, the prediction

accuracy decreased marginally with increasing numbers of active loci and the steepest rate

of decline occured between 1 and 100 markers.

There was very little difference in the values of rTBV |EBV between the two assumed

underlying distributions.
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Accuracy of SNP marker estimation against number of active SNPs
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Figure 4.1 – Both graphs represent the accuracy of selection when selection is for the
individual SNP markers. The top graph is based on a gamma distributed model of gene
action whilst the bottom graph is based on a uniformly distributed model of gene action.
Both plots show the trend in accuracy for different heritabilties and different numbers of
active loci. On the X axis the number of active SNP markers are marked on a log scale and
the Y axis shows the correlation, rTMV |EMV , between the true and estimated marker effects.
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Accuracy of breeding value estimation against number of active SNPs
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Figure 4.2 – Both graphs represents the accuracy of selection when selection is for the
marker based breeding value estimates. The top graph is based on a gamma distributed
model of gene action whilst the bottom graph is base on a uniform distribution. Both plots
show the trend in accuracy for different heritabilties and different numbers of active loci. On
the X axis the number of active loci are marked on a log scale and the Y axis shows the
correlation, rTBV |EBV , between the true genomic breeding values and those estimated using
Bayes-A.
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rTBV |EBV rTMV |EMV ∆r

h2=0.10
1SNP 0.55 1SNP 0.45 ↓ 10%
10SNP 0.46 10SNP 0.15 ↓ 31%
100SNP 0.46 100SNP 0.12 ↓ 34%
1000SNP 0.48 1000SNP 0.12 ↓ 36%

h2=0.40
1SNP 0.92 1SNP 0.87 ↓ 5%
10SNP 0.71 10SNP 0.88 ↑ 17%
100SNP 0.72 100SNP 0.71 ↓ 1%
1000SNP 0.72 1000SNP 0.71 ↓ 1%

h2=0.80
1SNP 0.98 1SNP 0.99 ↑ 1%
10SNP 0.97 10SNP 0.94 ↓ 3%
100SNP 0.92 100SNP 0.62 ↓ 30%
1000SNP 0.89 1000SNP 0.34 ↓ 55%

Table 4.1 – A complete table of rTBV |EBV and rTMV |EMV values comparing the accuracy
of method Bayes-A across all treatments and with marker values generated using a gamma
distribution. ∆r represents the percentage difference in accuracy when estimating marker
values instead of breeding values.

4.4.3 Finding the active marker(s)

Figures 4.3 and 4.4 show that the probability that any one active marker will be detected

decreases with increasing numbers of active loci, and at slightly different rates depending

on the distribution from which the effects were drawn. Over ten replicates, a single active

marker was detected by the analysis nearly every time when h2=0.4 or 0.8 and as much

as 80% of the time when h2=0.1. But in the group of replicated of 10 active loci this

probability was almost halved, and in a group of 1000 active loci or more, any one active

marker will go undetected on average 99.5% of the time even at high heritabilities.

In the group of replicates with 1 and 10 active markers, the average marker that had

been ’found’ accounted for between 0.5 and 1% of the variance of estimated marker effects

(Figure 4.5). This may seem counterintuitive given that a single active marker obviously

accounts for 100% of the actual genetic variance. However the reader is reminded that

Bayes-A estimates a variance for all markers, whether it has an effect allocated to it or not.

As the number of active markers increased, so did the average size of a detected active

marker. Although a higher heritability helped in the discovery process, the average size

of the detected marker effects were fairly similar across heritabilities. As the number of

active marker effects approached 1,000, the average size of the detected active markers

was greater than 4%.
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Likelihood of SNP detection.

Gamma

#SNP

Li
ke

lih
oo

d 
(%

)

0.
2

0.
4

0.
6

0.
8

1 10 10
0

10
00

●

●

● ●

●

●

●

●

●

●

●

●

h2=0.1
h2=0.4
h2=0.8

Figure 4.3 – The probability of marker detection decreases with increasing numbers of
estimated effects. All effects here are drawn from a gamma distribution.
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Figure 4.4 – The probability of marker detection decreases with increasing numbers of
estimated effects. All effects here are drawn from a uniform distribution.
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Mean proportion of total genetic variance of detected QTL.
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Figure 4.5 – The average size of a detected QTL effect, measured as a proportion of the
estimated variance of all marker effects, inevitably gets larger as the number estimated effects
increases. In this case a ”detected QTL” was one whose value was at least 3 SD from the
mean. All effects here were drawn from a gamma distribution.

4.4.4 Bayes-A really is noisy

The removal of all markers with effects less than or equal to 0.1 from the analysis, including

the estimated effects for all the dormant loci, resulted in the largest single increase in

accuracy across all heritabilities (Figure 4.6). This was not surprising considering that

even with 1000 active markers, the remaining dormant loci still account for over 60% of

the estimated genetic variance. For example, when h2=0.4 the prediction accuracy of the

marker values increases from 0.23 to 0.45 once all the dormant SNP markers have been

removed. As we continue to successively remove the smallest effects from the analysis the

accuracy can be seen to increase in a way that reflects the distribution from which the

effects were derived - in this case, a parabolic increase in accuracy was observed resembling

that of an inverse gamma distribution.
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Accuracy of SNP marker estimation against increasing SNP values 
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Figure 4.6 – The accuracy of marker prediction increases as the smallest effects are removed
from the analysis. The shape of the curve is that of an inverse gamma distribution, a mirror
image of the gamma distribution from which the effects were first derived.

4.5 Discussion

In the following section we summarise the results concerning the estimation of marker

effects and GEBVs and discuss some of the assumptions made in this chapter.

4.5.1 Calculating GEBVs and estimating individual marker

effects

In the first part of this experiment we tested the efficiency of Bayes-A in estimating

individual marker effects. We proposed a ’best case scenario’ for the estimation of marker

effects by assuming complete linkage between the markers and the QTL and ignored the

effects of dominance and epistasis.

Despite these assumptions, the estimation of individual QTL effects was not easy. In

Section 4.4.1 we demonstrated that individual marker effects could only be estimated

accurately in a group of 10 or fewer active loci. Thus for traits with over 100 QTL, it would

seem that accurately estimating individual marker effects remains a near impossible task
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at least with this population size, as there are far too many small effects to be estimated

and not enough information to estimate them with.

In the second part of this experiment we used the Bayes-A method to test the prediction

accuracy for GEBVs. The prediction accuracies were higher than would be expected

through selection on individual phenotypes. For example when h2=0.4, traditional selection

on individual phenotype yields a maximum prediction accuracy of 0.63. Based on our

results, selection on an individual GEBV is likely to increase this accuracy by anywhere

between 18-46% depending on the number of QTL affecting the trait. Other studies

investigating selection on GEBVs have found similarly high accuracies. Meuwissen et al.

(2001) simultaneously estimated the effects of ∼50,000 marker haplotypes from a population

size of 2200 individuals and found that accuracies of up to 0.80 and 0.85 could be achieved

using Bayes-A and Bayes-B respectively.

4.5.2 Assumptions and general remarks

A limiting factor in the estimation of genomic breeding values is the extent of linkage

disequilibria between markers and QTL (Meuwissen et al. 2001). At the beginning of

this chapter we justified why LD was not factored into this experiment. We note that

in reality LD has been shown to vary considerably from species to species and even

within an individual genome. For example LD in outcrossing forest trees such as Pinus

radiata is known to decay very rapidly, generally between 1,500 and 2,000 base pairs

(Neale & Savolainen 2004). In such species, very high marker densities would most likely

be necessary for a genome-wide selection scheme to be successful, however due to the

unusually large size of the Pinus radiata genome (∼26 Gb) such marker densities are likely

to remain impractical for the foreseeable future.

We also assumed in this experiment that all gene effects were additive, and did not

account for the possibility of dominance and epistatic effects between QTL. Although this

assumption is appropriate for the prediction of breeding values, some degree of dominance

would probably exist in practice. The existence of epistatic effects and interactions between

QTL could also be a potential drawback of genome-wide selection. If epistatic effects are

large, then prediction accuracies may never reach 0.75 (Schaeffer 2006).

The relatively small population size of 593 individuals used in this experiment is also worth

further discussion. Based on the results reported by Meuwissen et al. (2001), population

size is more likely to become a limiting factor in situations where large numbers of effects
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are estimated from a limited number of records, even when the population size was already

large. For example when the ratio of effects to records was reduced from approximately

50:1 to 25:1 a substantial increase in accuracy was observed (Meuwissen et al. 2001). In

this experiment we only estimated 3,396 effects from 593 records, equivalent to a 6:1 ratio

of effects to records, thus an increase in population size is unlikely to have had a significant

effect on the prediction accuracy. Furthermore, the Bayesian approach is known to be far

more robust in such situations when compared to other available methods (Meuwissen

et al. 2001). Meuwissen et al. (2001) showed that when the population size was reduced

to 500 individuals (a ratio of 100:1), only a 17% reduction in accuracy was observed using

Bayes-A compared to a 61% loss in accuracy using least-squares.

It should also be noted here that Bayes-B uses a prior with a mixture of a distribution

with zero variance and an inverse Chi-square distribution, and this helps to reduce some

of the variance associated with the estimated effects in Bayes-A. However much of this

variance still remains and the increase in accuracy from using Bayes-B is not substantial.

In a sense, Bayes-A was useful in being able to highlight the difficulties in estimating

large numbers of marker effects. As a result the conclusions made in this chapter remain

unchanged.

4.6 Conclusions

1. The estimation of individual QTL effects is likely to continue to be a problem for

quantitative traits with more than 10 QTL, although moderate to large marker effects

may still be retrievable. A small improvement is expected using Bayes-B.

2. Conversely, the application of GS to the estimation of genomic breeding values holds a

great deal of promise for low heritability traits where the power of traditional pedigree

selection is weakest. Once again, Bayes-B is expected to deliver slightly better results.

3. The assumed model of gene action is not a major factor in the prediction of GEBVs

and is only a small factor in the estimation of individual marker effects.

4. The use of a standard Chi-square prior in a Bayesian analysis is not ideal for the

estimation of QTL effects, as it fails to deal with the reality that many of the QTL-marker

associations routinely detected in a genomic analysis will have no effect on the target trait.

5. The potential benefits of GS in Pinus radiata are many, however due to the size of the
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Pinus radiata genome (∼ 26 Gb) and the low levels of LD within it, the implementation

of GS in this species remains a challenge.
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Chapter 5

The use of clones in the estimation

of marker effects and genomic

breeding values

5.1 Overview

The aim of this chapter is to examine the effect of clonal replication within families on the

accuracy of estimation of both individual marker effects and genomic breeding values. A

detailed analysis on the effect family structure and population size is also given.

5.2 Introduction

Clonal forestry has been shown to increase genetic gains in breeding and production

populations of forest trees (Shaw & Hood 1985, Russel & Libby 1986, Mullin & Park 1986).

The many advantages to practicing clonal forestry are well documented (Libby & Rauter

1984) and include (1) the consistent production of the same genotypes over time, (2) the

ability to capture non-additive genetic effects producing better evaluation of environmental

and spatial trends leading to larger genetic gains and (3) ease of propagation.

Despite these advantages, clonal forestry is rarely practiced with conifers, largely due

to the lack of an efficient clonal propagation system that can mass produce genetically

tested material (Park & Klimaszewska 2003). The principal limitation in conifers is the
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phenomenon of physiological maturation which prevents sustained clonal propagation

through cuttings (Cyr et al. 2003). Consequently, mass propagation by rooted cuttings in

conifers is generally only possible with seedlings up to about 5 years of age. This poses a

significant problem for many late-onset traits as by the time the genetic worth of each

clone (ortet) has been established, the donor plant has become too old for further mass

propagation by rooting of cuttings.

Somatic Embryogenisis (SE) offers a partial solution to this problem by allowing embryonic

clonal lines (ramets) to be cryopreserved in liquid nitrogen, while corresponding parent

trees (ortets) are tested in the field (Park & Klimaszewska 2003). However many Pinus

species, including Pinus radiata, are still seen as being recalcitrant with regard to the

initiation of SE (Bishop-Hurley et al. 2002). For example, mature seed explants from

Pinus species generally yield a substantially lower frequency of initiation. Moreover, in

Pinus radiata it has been shown that SE tissue quickly loses its plant-forming ability when

continuously subcultured (Bishop-Hurley et al. 2002). Genomic selection could potentially

offer a more efficient solution to this problem by allowing the genetic worth of an ortet to

be estimated at seedling age, allowing for the mass propagation of rooted cuttings and

avoiding the time and labour costs associated with testing ramets in the field.

In this chapter we investigate the use of clones in the prediction of genomic estimated

breeding values (GEBVs). We begin by determining the accuracy of clonal GEBVs for

different population sizes and under varying genetic parameters. The effect of population

size and family structure on the estimation of clonal genomic breeding values and QTL

effects is also examined. We discuss the results and briefly outline some of the implications

for clonal forestry.

5.3 Methods

5.3.1 The initial data set

As in the previous chapter, we used a set of real animal genotypes as a proxy for tree

genotypes since large real data sets were not available for Pinus radiata. The base data

set consisted of a real population of 593 Brahman cattle (Bos primigenius indicus) and

3135 SNP genotypes sourced from three seperate chromosomal segments in chromosomes

1, 3 and 7. The combined length of the three chromosomal segments was 4.2 Morgans.
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Each SNP loci had a minor allele frequency between 0.1 and 0.9. This data was then used

to generate 12 experimental populations in a single generation of breeding.

5.3.2 Reconstructing parental haplotypes

In order to simulate breeding, each individual’s haplotype had to be inferred from the

unphased genotypic data. This was achieved using the fastphase software package (Scheet

& Stephens 2006). Using fastphase we were able to reconstruct all 1186 haplotype

pairs and use them to simulate the random union of parental gametes for the subsequent

generation.

5.3.3 Generating the populations

All 12 populations were initially used in an analysis of population size and family structure

which we refer to below as ’Analysis 1’. Six of the 12 populations were then adjusted

and used for the analysis of clonal replication within families, which we refer to below as

’Analysis 2’.

5.3.3.1 Analysis 1: Population size and structure

Twelve experimental populations were generated in sets of three [Set(A), Set(B), Set(C)]

each consisting of four populations [P1,P2,P3,P4]. Populations P1, P2, P3 and P4 of Set(A)

each contained 1000 progeny, populations P1, P2, P3 and P4 of Set(B) each contained

5000 progeny, and populations P1, P2, P3 and P4 of Set(C) each contained 10,000 progeny.

Progeny in populations P1 and P3 were generated in family groups of 5 individuals, with

P1 containing halfsib progeny and P3 containing fullsib progeny. Progeny in populations

P2 and P4 were generated in family groups of 20 individuals, with P2 containing halfsib

progeny and P4 containing fullsib progeny. This is depicted in Table 5.1. Family structure

was manipulated by adjusting the pedigree file for each population.

5.3.3.2 Analysis 2: Clonal replication within families

To avoid having to generate 12 new populations from scratch, we used the families in

Analysis 1 as a template for the new clonal families created in Analysis 2. Since the effect
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of family size was not considered in this analysis, we made a second copy of populations

P2 and P4 for each of the three ’sets’ so that all families in all populations contained

20 individuals. These clonal populations are referred to as CP1, CP2, CP3 and CP4.

The family structure in Analysis 1 was retained, so that CP1 and CP2 contained fullsib

progeny, and CP3 and CP4 contained halfsib progeny.

For CP1 and CP3, two sets of genotypes were picked at random and replicated 10 times

each, creating two groups of ten clones. For CP2 and CP4, four sets of genotypes were

picked at random and replicated 5 times each, creating 5 groups of 4 clones. In each case

the remaining genotypes were removed so that the total number of individuals in each

family remained at 20. This is depicted in Table 5.2.

5.3.4 The simulation

The simulation described below was used in both Analysis 1 and Analysis 2, and repeated

for every population. It was used as a benchmark so that the results in Section 5.3.3.1 and

Table 5.1 – A tabular representation of the 12 experimental populations used in Analysis 1,
where HS=Halfsib, FS=Fullsib and pf=per family. Set(A) contains 1,000 progeny, Set(B)
contains 5000 progeny and Set(C) contains 10,000 progeny.

Set(A) Set(B) Set(C)
FS P1 P1 P1 5pf

P2 P2 P2 20pf
HS P3 P3 P3 5pf

P4 P4 P4 20pf

Table 5.2 – A tabular representation of the 12 clonal populations used in Analysis 1, where
HS=Halfsib, FS=Fullsib and both 2× 10 and 5× 4 represent the number of clonal replicates
in each family. As in Analysis 1, Set(A) contains 1,000 progeny, Set(B) contains 5,000
progeny and Set(C) contains 10,000 progeny.

Set(A) Set(B) Set(C)
FS CP1 CP1 CP1 2 × 10

CP2 CP2 CP2 5 × 4
HS CP3 CP3 CP3 2 × 10

CP4 CP4 CP4 5 × 4

70



Chapter 5 The use of clones in the estimation of marker effects and GEBVs

Section 5.3.3.2 could be compared. We compare the results of each simulation in Section

5.4.

We limited the number of marker effects to either 1, 10, 100 or 1000 marker loci. Marker

effects were drawn from both a gamma distribution (α=0.4,β=1.66) and a uniform

distribution (uniform random deviate between 0 and 1) and the sign of each effect was

sampled to be positive or negative with probability 0.5. Each individual was assigned a

GEBV equal to the sum of its individual QTL effects. Phenotypic records were obtained

by firstly generating a random error term (N ∼ [0, 1]), adjusting this value for the chosen

heritability (h2=0.1, 0.25 or 0.4) and adding it to the individuals GEBV. The simulated

marker effects, the true genomic breeding values and the phenotypic values were saved

in seperate files. Each scenario was replicated 10 times. Dominance and epistatic effects

were not included in the model.

5.3.5 Estimating marker effects using Bayes-A

This required firstly estimating the variance of the marker effects for every locus using the

program AlphaBayes (Hickey 2011). The program estimates variances using a scaled

inverted Chi-square distribution as a prior, such that:

p(σ2
gi) = χ−2(v, S)

where p(σ2
gi) is the probability of a given variance at the ith locus, S is a scale parameter

and v is the number of degrees of freedom. Information from this prior distribution was

combined with information from the data resulting in a posterior distribution that was

also a scaled inverted Chi-square. Variances σ2
gi were then sampled from this posterior

distribution by a Gibbs sampler from which the estimated QTL effects were derived. In

the simulation, the true marker effects were known in all cases (Section 5.3.4) such that

the average correlation between true and estimated marker effects, rTMV |EMV , could be

calculated for each of the ten replicates.
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5.3.6 Comparing true and estimated genomic breeding values

The GEBVs of all animals in the data set were obtained from:

û = 1µ+ Xĝ + e

where µ is the mean, X is the design matrix containing all animals in the data set, g is

the vector of estimates of marker effects obtained using Bayes-A (see Section 5.3.5), and e

is the vector of residuals. In the simulation, the true genomic breeding values were known

in all cases such that the average correlation between true and estimated breeding values,

rTBV |EBV , could be calculated for each of the ten replicates. In the case where only a

single active marker was included, the correlation was instead calculated across all ten

replicates.

5.4 Results

5.4.1 Analysis 1 - Population size and family structure

5.4.1.1 Estimating individual marker effects

Figures 5.1 and 5.2 show the prediction accuracy of individual markers for three different

population sizes and two family structures. Individual values are shown in Table 5.3.

Increasing the population size, n, inflated the accuracy of prediction considerably for

large numbers of marker effects (≥ 100). The results clearly demonstrate that increasing

the population size is a good way to lift the accuracy of individual marker estimation,

especially at low heritabilies (h2 = 0.1) where the greatest gains were made. At moderate

to high heritabilities, the largest gains were made by increasing the population size

from 1000 to 5000 individuals. However, all else being equal, the marginal benefit of

increasing population size can be seen to diminish with both increasing population size

and heritability.

The effect of family structure was negligible for moderate and high heritabilities, but

for low heritabilities adopting a fullsib family structure resulted in minor gains when

estimating small number of marker effects (≤ 10).
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Figure 5.1 – The accuracy of selection when selection is for the individual SNP markers.
The three panels show the trend in accuracy for different heritabilties, numbers of active loci
and population sizes. Only halfsib families with 20 progeny are considered here.
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Figure 5.2 – The accuracy of selection when selection is for the individual SNP markers.
The three panels show the trend in accuracy for different heritabilties, numbers of active loci
and population sizes. Only fullsib families with 20 progeny are considered here.
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5.4.1.2 Estimating genomic breeding values

Figures 5.4 and 5.5 show the prediction accuracy of genomic breeding values for three

different population sizes and two family structures. Although every increase in population

size clearly improved the accuracy, worthwhile gains were only made at low and moderate

heritabilities (h2 = 0.10, 0.25) and from an increase of 1000 to 5000 individuals. This

is because the marginal benefit of increasing population size diminishes with increasing

population size and diminishes strongly with increasing heritability. This can be observed

in Figures 5.4 and 5.5, where the accuracies for each population size can be seen to converge

tightly at higher heritabilities.
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Figure 5.3 – The accuracy of selection when selection is for marker based breeding value
estimates. The three panels show the trend in accuracy for different heritabilties, numbers of
active loci and family sizes. Only a fullsib family structure is considered here. IPF=individuals
per family

Once again, the overall effect of family structure was negligible for moderate and high

heritabilities, however adopting a fullsib family structure resulted in moderate gains when

estimating small numbers of marker effects (≤ 10) at low heritabilties (h2 = 0.1).

The effect of family size on the accuracy was inconclusive across the board for a halfsib

family structure (graph not included). However, Figure 5.3 shows that increasing the num-

ber of individuals per family can result in moderate gains in accuracy at low heritabilities

(h2 = 0.1). At moderate to high heritabilities the effect of family size was negligible.
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Figure 5.4 – The accuracy of selection when selection is for marker based breeding value
estimates. The three panels show the trend in accuracy for different heritabilties, numbers of
active loci and population sizes. Only halfsib families with 20 progeny are considered here.
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Figure 5.5 – The accuracy of selection when selection is for marker based breeding value
estimates. The three panels show the trend in accuracy for different heritabilties, numbers
of active loci and population sizes. Only fullsib families with 20 progeny are considered here.
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5.4.2 Analysis 2 - Clonal replication within families

As there was no tangible difference in accuracy for fullsib family clonal replication and

halfsib family clonal replication, we will only examine the results of the halfsib analysis

here. Also, only the prediction accuracy of GEBVs will be considered.

For a population size of 1,000 individuals, the inclusion of clonal replication within halfsib

families resulted in a marked increase in the accuracy of prediction at lower heritabilities

(Figure 5.6). For example, when h2 = 0.10, both clonal family structures provided a

noticeable increase in accuracy when GEBVs comprised of 10 or more marker effects. At

moderate to high heritabilties the benefits of clonal replication were smaller, with the

largest gains being made when GEBVs were comprised of more than 100 marker effects.

With 5,000 individuals, worthwhile gains were made when h2 = 0.1, although the gains

at moderate and high heritabilities were less pronounced (Figure 5.7). An increase from

5,000 to 10,000 individuals had no tangible benefit whatsoever, and was omitted from the

results.
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Figure 5.6 – The accuracy of selection when selection is for marker based breeding value
estimates. The three panels show the trend in accuracy for different heritabilties, numbers
of active loci and combinations of clonal family structure. Only a halfsib family structure is
considered here with a populations size, n, equal to 1,000.
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Correlation between true and estimated GBV's : 5000 individuals
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Figure 5.7 – The accuracy of selection when selection is for marker based breeding value
estimates. The three panels show the trend in accuracy for different heritabilties, numbers
of active loci and combinations of clonal family structure. Only a halfsib family structure is
considered here with a population size, n, equal to 5,000.

A 5x4 clonal family structure (5 groups of 4 ramets) returned higher prediction accuracies

for GEBVs than did a 2x10 clonal family structure (2 groups of 10 ramets). This was true

for all values of h2 and all population sizes.

5.5 Discussion

In the following section we discuss in greater detail the effect of population size, family

size and structure. The effect of clonal replication is explored further and some general

remarks are made regarding the assumptions made in this chapter.

5.5.1 The effect of population size, family size and family

structure

Population size was a critical factor in the estimation of individual marker effects. By

increasing the population size from 1000 individuals to 5000 individuals, we increased the

prediction accuracy of 10 marker effects at a heritability of 0.1, from rTMV |EMV =0.35 to
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rTMV |EMV =0.80. For 100 marker effects the accuracy was increased from rTMV |EMV =0.19

to rTMV |EMV =0.65. This was a considerable improvement and in stark contrast to the

equivalent results of the analysis on the founder populations presented in Chapter 4

(Section 4.4.1). This was not unexpected, especially since in the case of 5,000 individuals

the number individuals exceeded the number of markers (a theoretical situation that is

unlikely to occur in reality).

These improvements flowed through into the estimation of GEBVs, although the gains

in prediction accuracy from the same population increase (1,000 to 5,000) were not as

impressive. However, as with the estimation of marker effects, the greatest gains occured

for the lowest heritability (h2 = 0.1). Although increasing the population from 5,000

individuals to 10,000 produced little if any benefit, it did serve to identify the range

within which a population increase could produce worthwhile gains. The knowledge

that considerable gains can be made up to the level of 5,000 individuals should make

population size a top priority in experimental design, especially when dealing in the genetic

improvement of lowly heritable traits.

The results also showed a distinct improvement in the accuracy of estimation when

switching between a halfsib and fullsib family structure. This can be attributed to the

higher coefficient of relationship between fullsibs (r = 0.5) compared to halfsibs (r = 0.25).

We suggest that for lowly heritable traits (h2 = 0.10), and small population sizes (n = 1000),

the prediction accuracy can be significantly improved by adopting a fullsib family structure

as this reduces the genetic covariance between sibs, and makes their individual breeding

values easier to estimate. In this situation, an increase in family size would also result in a

useful increase in prediction accuracy for the same reasons.

5.5.2 Clonal replication

Using clones can significantly improve the accuracy of selection on GEBVs at low heritabil-

ities (h2=0.1). As with previous results, the heritability continues to be a major factor in

the prediction accuracy and consequently only small gains were made at moderate and

high heritabilities.

The benefit of replicating individuals within families was more apparent for halfsibs than

fullsibs. This can be explained by the fact that introducing clonal replicates within families

further reduces the average genetic covariance between sibs by setting the coefficient of

relationship between ramets to r = 1.0. Consequently, the reduction in average genetic
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covariance between sibs is therefore greater for halfsibs with a coefficient of relationship of

0.25, than for fullsibs with a coefficient of relationship of 0.5.

5.5.3 Assumptions and general remarks

For this experiment we made the same assumptions as outlined in Section 4.5.2 for the

previous chapter. We ignored the effect LD because the primary interest with respect to

the estimation of marker effects was the difficulty in estimating all of them simultaneously.

We also did not account for non-additive genetic variation or the possibility of dominance

and epistatic effects between QTL and so we reiterate that although this assumption is

appropriate for the prediction of breeding values, some degree of dominance would exist

in practice. In fact, there is some evidence to suggest that non-additive, epistatic and

dominance effects are quite high for traits such as diameter in radiata pine (Baltunis et al.

2009). The existence of epistatic effects and interactions between QTL could be a potential

drawback of genome-wide selection. For example if epistatic effects are large, then the

accuracy of GEBV may never reach 0.75 (Schaeffer 2006).

The results of this experiment further demonstrate the power and flexability of the GS

method. There is little doubt that with time, GS has the potential to revolutionise clonal

forestry practice in Pinus species. We mentioned in the introduction that a primary

limitation of clonal forestry in Pinus radiata is the time taken to identify potential ortets.

Typically, there is only a short available time frame (∼ 5 years) within which clonal

propagation through rooted cuttings can be undertaken (Cyr et al. 2003), and although a

number of methods have been suggested to circumvent this problem (Section 5.2), they

are often limited by high costs and difficulties in implementation. Grafting, for example,

is often not practical on a large scale whilst micropropagation and somatic embryogenesis

are difficult to achieve in material beyond the seedling stage (Aderkas & Bonga 1998). It

should therefore be possible to use these methods to identify high performing clones at

seedling age, well within the time frame where Pinus radiata trees are physiologically able

to produce cuttings capable of rooting. Under such a system, selected clones would be

able to be mass propagated cheaply and efficiently.

Furthermore, as the genetic evaluation of potential clones would no longer be based on their

performance in the field, the need for expensive technologies such as micropropagation,

somatic embrogenesis and the mass cryopreservation of corresponding clonal embryonic

tissue lines would no longer be required. Of course, this is not to say that these technologies
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could not be used in conjunction with GS to produce further economic gains. Just that

if such technologies were to be used for clonal propagation, it need only be initiated for

selected progeny with high GEBVs after which they could be prepared for immediate

deployment in clonal forestry. In Chapter 8, we discuss in greater detail some of the new

possibilities opened up by GS and their implications for clonal forestry in Pinus radiata.

5.6 Conclusions

1. For traits with low to moderate heritabilities (h2 = 0.10− 0.25), the prediction accuracy

for genomic breeding values is heavily influenced by the actual population size relative to

the effective population size Ne.

2. When estimating 10 or more individual gene effects in a small population (n = 1000),

the accuracy with which those effects are estimated is dramatically improved by increasing

the population size n.

3. When dealing with lowly heritable traits, significant increases in prediction accuracy of

genomic breeding values are achievable by adopting a fullsib family structure rather than

a halfsib family structure.

4. Higher prediction accuracies of genomic breeding values are attainable with the inclusion

of clones in families. The higher the ratio of ramets to ortets, the higher the prediction

accuracy.

5. Genomic selection has the potential to dramatically increase the efficiency of clonal

forestry by identifying high performing clones in the laboratory, rather than in the field.
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Chapter 6

The use of genotypic data in the

estimation of BLUP breeding values

6.1 Overview

The primary purpose of this experiment was to compare the accuracy of traditional BLUP

derived breeding values using pedigree information, with BLUP derived breeding values

using genomic information. The former assumes that covariation between breeding values

is a product of shared genes arising through common ancestry, whilst the latter assumes

that covariation in phenotypes is a product of sharing the same genotypes. Both methods

were compared under alternative trait and genomic parameters in order to establish their

relative strengths and weaknesses.

6.2 Introduction

Using Best Linear Unbiased Prediction (BLUP), traditional EBVs are estimated based on

the phenotypic information of both the individual and its relatives whilst simultaneously

accounting for systematic environmental effects. This form of BLUP is now referred to as

traditional BLUP (T-BLUP) and has been the cornerstone of genetic evaluation for over

30 years.

We are now entering a new era of genetic evaluation where it is cheaper to collect genotypic

information per unit, than phenotypic information (Tier et al. 2007). Consequently, the
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focus of research has shifted away from traditional selection on phenotypes and on to

marker assisted selection (MAS) in its various shapes and forms. The discovery of the

Single Nucleotide Polymorphism (SNP) in conjunction with the invention of modern

genotyping techniques has enabled us to genotype many thousands of SNPs across the

genome in a cost effective manner. With such a large amount of marker information now

readily available, it is possible to simultaneously select upon thousands of densely packed

SNP markers using a method known as Genomic Selection (GS).

One particular implementation of GS utilises BLUP to estimate individual breeding values

using only genomic and phenotypic information. Commonly referred to as genomic BLUP,

or G-BLUP, it uses genomic information rather than pedigree information to estimate

individual relationship coefficients. A genomic relationship matrix (GRM) therefore

replaces the traditional pedigree derived numerator relationship matrix (NRM) in the

mixed model equations to model covariances among relatives.

In this chapter we investigate the efficiency of both G-BLUP and T-BLUP in estimating

individual breeding values under a variety of different scenarios including three different

trait heritabilities (h2 = 0.10, 0.25, 0.40) as well as varying numbers of active QTL

(1,10,100,1000). We go on to compare the performance of both G-BLUP and T-BLUP

with the Bayes-A method as described in previous chapters.

6.3 Methods

6.3.1 The initial data set

The base data set consisted of a real population of 593 Brahman cattle (Bos primigenius

indicus) and 3135 SNP genotypes sourced from three seperate chromosomal segments in

chromosomes 1, 3 and 7. The combined length of the three chromosomal segments was 4.2

Morgans. Each SNP locus had a minor allele frequency between 0.1 and 0.9. This data

was then used to generate two experimental populations in a single generation of breeding.
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6.3.2 Reconstructing parental haplotypes and generating

experimental populations

In order to simulate breeding, each individual’s haplotype had to be inferred from the

unphased genotypic data. This was achieved using the fastphase software package (Scheet

& Stephens 2006). Using fastphase we were able to reconstruct all 1182 haplotype

pairs and use them to simulate the random union of parental gametes for the subsequent

generation. These haplotypes pairs were then used to simulate two different sized progeny

populations (n=1400, 2800) in a single generation of breeding with progeny placed into

fullsib families of 20 individuals each.

6.3.3 Generating true and estimated breeding values

We limited the number of marker effects to either 1, 10, 100 or 1000 marker loci. Marker

effects were drawn from both a gamma distribution (α=0.4,β=1.66) and a uniform

distribution (uniform random deviate between 0 and 1) and the sign of each effect was

sampled to be positive or negative with probability 0.5. Each individual was assigned a

true breeding value equal to the sum of its individual QTL effects. Phenotypic records

were then calculated by the model:

y =
∑
i

Xigi + e

where y is a vector of phenotypes, Xi is the design matrix for the ith QTL effect with

summation
∑

i over all 3135 QTL, gi represents the genetic effects of the QTL at the ith

SNP marker and e is a random error vector with variance σ2
e (N ∼ [0, 1]), with each error

value adjusted according to the chosen heritability (h2 = 0.1, 0.25, 0.4). The simulated

marker effects, the true genomic breeding values and the phenotypic values were saved

in seperate files. Each scenario was replicated 10 times. Dominance and epistatic effects

were not included in the model.

Estimated breeding values were calculated as a linear index of the marker genotypes.

Linear predictions using T-BLUP were computed in ASReml 2.0 (Gilmour et al. 2006)

and assumed that there were no major genes and that all markers contributed equally to

genetic variance. For predictions using G-BLUP, we simply substituted the traditional

numerator relationship matrix (A) with a genomic relationship matrix (G).
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6.3.4 Genomic relationships

The genomic relationship matrix, G, was calculated using the first method as described by

Van Raden (2007). Marker alleles were placed into a matrix M, with dimensions n×m,

where n equals the number of individuals and m equals the number of loci. Elements

of M were set to -1, 0 and 1, for the homozygote, heterozygote, and other homozygote

respectively. A second matrix P was created, and contained allele frequencies expressed

as a difference from 0.5 and multiplied by 2, such that column i of P equals 2(pi − 0.5),

where pi equals the frequency of the second allele at locus i. Matrix P was then subtracted

from matrix M to give matrix Z, setting the mean values of the allele effects to 0.

To obtain the genomic relationship matrix, G, we used the formula:

G =
ZZ′

2
∑

pi(1− pi)

where the division by 2
∑
pi(1−pi) scales G to be analogous to the numerator relationship

matrix A. The genomic inbreeding coefficient for individual i is simply Gjj − 1, and

genomic relationships between individuals j and k are obtained by dividing elements Gjk

by the square roots of diagonals Gjj and Gkk.

6.3.5 BLUP estimation

For T-BLUP, the mixed model equations are:

[
X′X X′Z

Z′X Z′Z + A−1λ

][
b̂

û

]
=

[
X′y

Z′y

]

where A is the numerator relationship matrix (NRM) and λ = σ2
e

σ2
a
. For G-BLUP, A was

replaced with G, as described above.

6.3.6 Comparing T-BLUP, G-BLUP and BayesA

The two BLUP methods considered in this chapter were compared on the basis of the

change in prediction accuracy, ∆r. Similarly, the accuracies of both T-BLUP and G-BLUP

were compared with those of BayesA described in Chapter 4.
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6.4 Results

Figure 6.1 compares the correlation between true and estimated breeding values (rTBV |EBV )

for both T-BLUP and G-BLUP and for two population sizes (n = 1400, 2800). G-BLUP

performed better than T-BLUP for all values of heritability irrespective of population size.

The disparity in accuracy between T-BLUP and G-BLUP was greater for the larger of the

two populations (n = 2800). We can also see this in Table 6.1, where the average rise in

accuracy from G-BLUP increased from 10% when n = 1400, to 14.8% when n = 2800. It

can be explained by the fact that the accuracy of T-BLUP which, across all heritabilities,

did not change when the population size was increased (Figure 6.2), whereas the accuracy of

G-BLUP improved significantly. In all cases, rTBV |EBV remained constant as the numbers

of active QTL was increased.

Although G-BLUP clearly outperformed T-BLUP, comparatively G-BLUP performed best

at lower heritabilities. For example, when n = 1400 and h2 = 0.10, G-BLUP performed

13% better than T-BLUP, 9.25% better when h2 = 0.25 and only 7.75% better when

h2 = 0.40. Similarly, when n = 2800 and h2 = 0.10, G-BLUP performed 18.5% better

than T-BLUP, 14.25% better when h2 = 0.25, and 11.75% better when h2 = 0.40.

This disparity can be illustrated by plotting TBVs against EBVs for each heritability and

highlighting the differences in both accuracy and precision between methods. Each of

the three graphs in Figure 6.3 is one of ten representative replicates for each heritability.

For h2 = 0.10, the graph for both T-BLUP and G-BLUP show a lack of precision in the

estimation of breeding values, typified by the ’shotgun’ distribution of points. Both graphs

register very little upward movement in EBVs with increasing TBV, symptomatic of a

lack of accuracy. The transition to higher heritabilities shows a distinct improvement in

precision for both G-BLUP and T-BLUP, however at h2 = 0.25 G-BLUP would appear to

be more accurate than T-BLUP given its sharper slope. At h2 = 0.40, the slope of both

graphs is tight and compact, with very little distinguishable difference in slope between

the two methods.

In Figure 6.4, we compare values of rTBV |EBV for G-BLUP with those derived using method

Bayes-A in previous chapters. With few QTL (between 1 and 10) and for h2 > 0.25,

Bayes-A thoroughly outperformed all the alternatives. In Table 6.2, Bayes-A can be seen

to consistently return accuracies between 9 and 14% higher than those achieved using

G-BLUP. However for larger numbers of QTL G-BLUP performed equally well, and in

some cases better than Bayes-A. This was especially the case at lower values of heritability.
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For example, when h2 = 0.10, Bayes-A delivered comparatively smaller gains with fewer

than 10 QTL, and performed up to 9% worse with greater than 100 QTL.

G−BLUP vs T−BLUP: Population 1400

No. Active SNP Loci

r(
T

B
V

|E
B

V
)

0.2

0.4

0.6

0.8

1 10 100 1000

●
● ●

●

●
● ● ●

● ● ● ●

G−BLUP

1 10 100 1000

● ●
● ●

● ● ● ●

● ● ● ●

T−BLUP

h2=0.1
h2=0.25
h2=0.40

G−BLUP vs T−BLUP: Population 2800

No. Active SNP Loci

r(
T

B
V

|E
B

V
)

0.2

0.4

0.6

0.8

1 10 100 1000

●
●

●
●

● ● ● ●

● ● ● ●

G−BLUP

1 10 100 1000

● ● ● ●

● ● ● ●

● ● ● ●

T−BLUP

h2=0.1
h2=0.25
h2=0.40

Figure 6.1 – A comparison of G-BLUP and T-BLUP according to population size shows a
small but noticeable increase in the accuracy of EBVs for both populations. The number of
active QTL loci had no tangible effect however the effect of heritability was evident in both
cases.
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G−BLUP: 1400 vs 2800 individuals

No. Active SNP Loci

r(
T

B
V

|E
B

V
)

0.2

0.4
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● ● ● ●

2800

h2=0.1
h2=0.25
h2=0.40

T−BLUP: 1400 vs 2800 individuals
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V
)
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h2=0.1
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h2=0.40

Figure 6.2 – Comparing accuracies according to population size shows a small increase
in accuracy for G-BLUP when the population is increased from 1400 to 2800 individuals.
However, this increase in population size had no tangible effect on the accuracy of T-BLUP.
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G-BLUP Bayes-A ∆r

h2=0.10

1SNP 0.55 1SNP 0.69 ↑ 14%
10SNP 0.59 10SNP 0.58 ↓ 1%
100SNP 0.58 100SNP 0.49 ↓ 9%
1000SNP 0.55 1000SNP 0.49 ↓ 6%

µ 0.57 µ 0.56 ↓ 1%

h2=0.25

1SNP 0.73 1SNP 0.87 ↑ 14%
10SNP 0.71 10SNP 0.85 ↑ 14%
100SNP 0.72 100SNP 0.72 ↑ 0%
1000SNP 0.72 1000SNP 0.70 ↓ 2%

µ 0.72 µ 0.72 ↑ 0%

h2=0.40

1SNP 0.81 1SNP 0.93 ↑ 12%
10SNP 0.80 10SNP 0.89 ↑ 9%
100SNP 0.81 100SNP 0.83 ↑ 2%
1000SNP 0.80 1000SNP 0.78 ↓ 2%

µ 0.81 µ 0.86 ↑ 5%

Table 6.2 – A complete table of rTBV |EBV values comparing the accuracy of G-BLUP with
that of method Bayes-A for 1400 individuals. Bayes-A was shown to be superior when
estimating BV’s for fewer than 10 active QTL but deficient when estimating BV’s for more
than 100 QTL.
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TBV vs EBV for G−BLUP and T−BLUP: h2=0.40
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Figure 6.3 – A plot of estimated breeding values against true breeding values highlighting
the differences in both accuracy and precision between T-BLUP and G-BLUP. Each of the
three graphs is one of ten representative replicates for each of the given heritabilities.
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G−BLUP vs BayesA
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Figure 6.4 – Comparing the accuracy of G-BLUP with Bayes-A for three different heri-
tabilities across varying numbers of SNP loci.

6.5 Discussion

The use of G-BLUP in the estimation of breeding values resulted in a significant average

increase in accuracy (12.5%) compared to T-BLUP. This is because the additive relationship

matrix used in T-BLUP (NRM) is calculated exclusively from pedigree information and

gives only the expectation of the proportion of genes that two particular individuals have

in common. In contrast, marker information contained within the GRM can be used to

calculate these proportions with a high degree of accuracy. Thus, genomic data could be

said to provide a better quality of information than traditional pedigree data.

In certain situations the use of a GRM may also provide more information per individual.

For example, in this experiment the parent generation was assumed to be the base

generation and consequently the depth of pedigree was insufficient for the estimation

of parent-parent relationships within the NRM. This is because the traditional NRM

represents the covariance among individuals in the population resulting from genes being

identical by descent (IBD). A key advantage of G-BLUP is that individual coefficients

estimated within the GRM are based on identity by state (IBS) and are therefore not
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directly reliant on ancestral information. Parent-parent relationships can be estimated

with a high degree of accuracy and relationships between sibs are better defined, thus

providing additional information from which breeding values can be estimated. This is

evident in the fact that G-BLUP appears to respond more favourably to an increase in

population size than T-BLUP (Table 6.1). Put a different way, for every additional record,

more information is stored within the GRM than the NRM and this seems to lead to a

disproportionate rise in the accuracy of G-BLUP.

Lande & Thompson (1989) suggested that MAS is likely to be more useful for low

heritability traits. This also applies to G-BLUP. For example, in this experiment we

found considerable variation in accuracy between heritabilities (Figure 6.3), with G-BLUP

performing comparatively better than T-BLUP at lower heritabilities (h2 = 0.10) than

higher heritabilities (h2 = 0.25, 0.40). A similar result was also reported by Muir (2007).

This is likely to be because for low heritability traits T-BLUP relies on information from

relatives to construct a selection index based on a combination of individual and family

merit. In situations where extensive multi-generational information is not available, the

potential for T-BLUP to accurately estimate breeding values is severely reduced.

Furthermore, as the cost of genotyping continues to decline, it becomes more practical and

cost efficient to select on either genotypes or haplotypes. Low heritability traits in T-BLUP

require more replications of phenotypic evaluations due to environmental interactions, and

for many traits this can be an expensive and time consuming process. Plant breeders

may also rely on very low selection intensities over multiple generations which can retard

genetic gain. The problem may then be compounded if the trait of interest is measured

at harvesting age as this further extends the cycle of selection and breeding. Most Pinus

radiata trees are harvested at between 25 and 30 years of age.

It is possible that some of this inefficiency may be able to be offset in traits with high

juvenile-mature genetic correlations by using early age phenotypic data as a proxy for

phenotypic data gathered at harvesting age. The concept of age-age correlations has

traditionally had solid support amongst tree breeders with many authors suggesting that

the most efficient age for selection is between 5 and 10 years of age for many conifers

(Lambeth 1980, Nanson 1988). However the concept has also been questioned on the basis

that tree growth in competative and non competative environments may be controlled

by different genes (Lambeth 1980). For example, Cannel et al. (1978) hypothesised that

genotypes that perform well before crown closure may not be well suited to competative

growth conditions resulting in reduced or non-existant genetic correlations between early
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performance and later performance.

As the use of MAS on a genome wide scale becomes more mainstream, more attention is

likely to be given to the differences between Bayesian and BLUP methodology. Bayes-A

has the distinct advantage of being able to incorporate a prior distribution that better fits

the true distribution of allelic effects, that is, one that reflects the fact that only a few

QTL have large effects and most have small effects (Kearsey & Farquhar 1998). Despite

this advantage, our results indicate that Bayes-A only results in higher accuracies when

dealing with polygenic traits with around 10 QTL. However when dealing with polygenic

traits with 100 or more QTL, Bayes-A may in fact result in a slight decrease in accuracy

compared to G-BLUP. Thus on face value it would seem as though the choice of method

would depend on the trait under investigation, Bayes-A being better suited to traits with

fewer QTL and G-BLUP being better suited to traits with larger numbers of QTL.

6.6 Conclusions

1. G-BLUP allows for a significant increase in the accuracy of breeding values when

compared to T-BLUP regardless of the heritability, number of QTL or population size.

2. The relative efficiency of G-BLUP increases with decreasing heritability and increasing

population size.

3. Bayes-A can further improve on G-BLUP if the number of QTL are few (around 10)

but may perform worse than G-BLUP when the number of QTL are large (100 or more).
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Chapter 7

An economic evaluation of Genomic

Selection for a typical tree breeding

program

7.1 Overview

In this chapter we will attempt to compare three possible breeding scenarios on the basis of

overall costs, response to selection, and economic efficiency. The three breeding scenarios

considered are 1. traditional selection on own performance, 2. traditional selection on

multiple ramets, and 3. Genomic Selection (GS) on own performance.

7.2 Introduction

Forest tree improvement has traditionally relied on the analysis of phenotypes at rotation

age. Long generational intervals combined with the compounded cost of tree improvement

over a timber rotation, has meant that the time necessary to complete a breeding generation

has been a major obstacle in tree breeding. Although early selection techniques offer some

reprieve, for most traits of commercial importance early selection on phenotypes only

becomes efficient half-way through the rotation (Grattapaglia et al. 1996). This is due to

critical changes that occur in trees during the transition phase from juvenility to maturity.

97



Chapter 7 An economic evaluation of Genomic Selection

The potential for molecular markers to dramatically reduce the generational interval in

trees has been a discussion point amongst tree breeders for some time. The uptake of

molecular genetic technology in the tree breeding industry has been slow, due largely

to scepticism regarding its potential as well as reservations about its associated costs.

However, with the advent of cheap high density genotyping there is an opportunity to

re-evaluate the potential benefits of molecular genetics to tree improvement.

Genomic selection offers the ability to predict total genetic value from a limited number of

phenotypic records using genome wide dense marker maps. As well as offering a high degree

of accuracy in the genetic evaluation of individuals, it is also a more flexible alternative

than marker assisted selection as it simultaneously selects on all available markers (MAS)

rather than relying on the identification of specific marker-allele combinations. In theory,

the ability to select on individual alleles at sapling age rather than phenotypes at rotation

age, would allow high performing trees to be propagated sooner. The marker of choice for

GS is the single nucleotide polymorphism (SNP), a marker that is found in abundance

within both plant and animal genomes.

It has been estimated that by adopting GS in place of traditional progeny testing, the

cost of proving bulls in the Canadian dairy cattle industry can be reduced by 92% and

the rate of genetic gain increased by a factor of 2, amounting to cost savings of up to

$23 million/year (Schaeffer 2006). In this chapter we will attempt in similar fashion to

establish the possible economic benefits of GS in a tree breeding program similar to that

used by the Southern Tree Breeding Association (STBA). We evaluate the utility of GS to

tree breeding under the assumption that the cost of genotyping is cheap enough to allow

for an adequate marker coverage of the Pinus radiata genome.

7.3 Methods

7.3.1 Operational costs and breeding parameters

The operational costs of a traditional breeding program were estimated based on a

budgeting spreadsheet provided by STBA and calculated on an annual basis (Pilbeam,

Pers. Comm). Operational costs were estimated based on three breeding parameters; the

number of crosses per year, the number of progeny per cross planted, and the average

number of crosses per selection. Our typical breeding program included 500 crosses per
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year with 5 progeny per cross planted at an average of 4 crosses per selection. This

amounted to 125 selections per year and 2500 trees tested per year. For the purposes of

this experiment the breeding objectives can be assumed to be the genetic improvement

of total volume (m3/ha) and average wood density (kg/m3). A list of operational costs

and assumptions made for our model breeding program can be found in Table A1 in the

Appendix.

Additional costs for clonal selection included the cost of micropropagation, estimated at

$10 per ramet, as well as the cost of planting, transporting and assessing each clone. These

prices were the same as those listed in Table A1 in the Appendix.

The cost of genotyping was assumed to be $100 per tree.

7.3.2 Genetic parameter assumptions

We made a number of assumptions regarding genetic parameters in this study which are

outlined in Table 7.1. Here we elaborate on the most important of these assumptions.

7.3.2.1 Genetic map length

Although we found no official estimates in the literature for the total genomic map length

for Pinus radiata, the average genome map length for Pinus taeda, a closely related species,

has been estimated at between 12 - 20 Morgans (Sewell et al. 1998). We assumed that the

genome map length for Pinus radiata was 20 Morgans.

7.3.2.2 Effective population size [Ne]

The effective population size of the breeding population was assumed to be 50 trees

sampled from the wild. A larger effective population size caused a significant drop in

response to selection and would have resulted in negative savings across the range of

heritabilities tested.

7.3.2.3 Number of independent chromosome segments [q]

The number of independent chromosome segments was a function of the total genomic

map length and effective population size. It was calculated as q = 2Ne × L, where Ne is
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Table 7.1 – Important genetic parameter assumptions made in this case study

Target traits DBH, form, wood density and volume
Repeatability (R) 0.70
Effective population size (Ne) 50
Selection intensity (i) 1.775
Generational interval 8 yrs
No. independent chromosome seg. 3200
Genetic variance (σ2

a) 1.0
Genome size 20 Morgans
Juvenile-mature correlation (rj,m) 0.58
Percentage of trees genotyped 40%
Early selection age 6 years
Target trait age 25 years

the effective population size of the breeding population, and L is the total genomic map

length measured in Morgans (Hayes et al. 2009b).

7.3.2.4 Juvenile-mature correlations [rj,m]

The juvenile-mature correlation used in the analysis was calculated according to the

predictive model described by Lambeth (1980), such that rj,m = a + b(LAR) = 1.02 +

0.306(LAR), where a and b are the slope and intercept in a linear regression and LAR is

natural log of the age ratio for early selection age and target trait age.

7.3.2.5 Percentage of trees genotyped

To ensure that we are breeding at maximum cost efficiency, we should only be genotyping

the minimum number of trees required to attain the highest marginal increase in genetic

gain. In Figure 7.2 the marginal rate of change of variable T ∗, d
d(T ∗)

f(T ∗), is plotted

against the percentage of trees genotyped where T ∗ is the time taken to achieve a 1%

increase in genetic response, measured in years.
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7.3.3 Accuracy of traditional selection on clones

For this experiment we assumed that the accuracy of estimated breeding values (EBVs)

based on clonal information was equivalent to the accuracy of EBVs based on repeated

records on the same individual. When multiple measurements or clones are used the

genetic component of the overall variance, σa, remains the same, whilst the environmental

component is adjusted according to the value of the repeatability and the number of

ramets.

The accuracy of the estimated breeding value for a single ortet with n ramets, rCLONE,

was calculated as:

rCLONE =

√
nh2

(1 + (n− 1)t)

where h2 is the heritability of trait and t is the repeatability (Mrode & Thompson 2005).

7.3.4 Accuracy of GEBVs

The accuracy of genomic breeding values rGEBV , were calculated according to the equation

given by Daetwyler et al. (2008):

rGEBV =

√
Nh2

(Nh2 + q)

where N is the number of individuals genotyped and phenotyped in the reference population,

h2 is the heritability of trait, q is the number of independent chromosome segments in the

population. When N ≥ q, a correction equal to r4q
2N

was added to the above prediction to

get the final accuracy.

7.3.5 Response to indirect traditional selection

The response to indirect selection on own performance per generation, Rgen1, was calcu-

lated as:
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Rgen1 = i× hxhyrG × σPx

where i is the intensity of selection, hxhyrG is the coheritability of target trait x and

correlated juvenile trait y, rG is the genetic correlation between target trait x and correlated

trait y, and σPx is the phenotypic standard deviation of target trait x (Falconer & Mackay

1996). The intensity of selection was assumed to be 1 in 10, or 1.775. To calculate the

response to selection on a yearly basis, Rgen1 was divided by the generational interval L,

such that Ryr1 = ihxhyrGσPx/L.

The response to indirect clonal selection per generation was calculated by substituting

the coheritability in Equation 7.3.5 with the clonal coheritability. To calculate the clonal

coheritability we calculated the accuracy of clonal selection, rCLONE, as the square root of

the clonal heritability. Thus, rCLONE =
√
h2
CLONE, or:

√
nh2

(1 + (n− 1)t)

where n is the number of ramets, t is the repeatability and h2 is the heritability of the

target trait.

7.3.6 Response to Genomic Selection

The response to GS on own performance per generation, Rgen2, was calculated as:

Rgen2 = i× r2
GEBV × σPx

where i is the intensity of selection, rGEBV is the accuracy of GS, and σPx is the phenotypic

standard deviation of target trait x (Falconer & Mackay 1996). The intensity of selection

was assumed to be 1 in 10, or 1.775. To calculate the response to selection on a yearly

basis, Rgen2 was divided by the generational interval L, such that Ryr2 = Rgen2/L =

(i× r2
GEBV × σPx)/L.
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7.3.7 Estimation of costs

The total annual cost of traditional selection on own performance, Cyr1, was calculated

based on a complicated cost function provided to us by the STBA 1. The cost function

contained 15 variable costs and 2 fixed costs, such that:

Cyr1 =
∑
i

ψi +
∑
j

αj

where
∑

i ψi is the sum of all the individual variable costs, ψ1..ψ15, and
∑

j αj is the the

sum of all the individual fixed costs, which in this case consisted of vehicle and research

and development costs. Each variable cost is listed in Table A1 of the Appendix.

Each variable cost, ψi, was derived from the three basic input variables, ρ, κ, and η, where

ρ is the number of crosses per year, κ is the number of progeny per cross planted, and η is

the average number of crosses per selection.

Since the cost of genotyping was treated as an additional cost to traditional selection, the

total annual cost of the genomic breeding regime, Cyr2, was calculated as:

Cyr2 =
∑
i

ψi +
∑
j

αj + (ε× γ)

where ε is the number of trees genotyped per year, and γ is the cost of genotyping a single

tree, in this case $100.

The total annual cost of traditional breeding on clones, Cyr3, was calculated as:

Cyr3 =
∑
i

ψi +
∑
j

αj + ξ

where ξ is the additional cost of cloning, assumed to be $50 per 5 ramets using microprop-

agation.

1The complete cost function can not be disclosed due to a confidentiality agreement with the STBA
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7.3.8 Estimation of savings

For each breeding scenario the estimated cost per 1% increase in genetic gain, C∆G, was

calculated as:

C∆G =
0.01

Ryrk
× Cyrk

where Ryrk is the response to selection per year of the chosen breeding regime k [k = 1, 2, 3],

and Cyrk is the total annual cost of the chosen breeding regime. Response to selection

was calculated based on a selection intensity of 1 in 10, or 1.775, and a generation interval

of 8 years.

Cost savings, Save∆G, were calculated based on the amount of money saved in achieving

a 1% increase in genetic response, such that:

SaveY r = C∆G2 − C∆G1

where C∆G2 and C∆G1 represent the estimated cost per 1% increase in genetic gain for GS

and traditional selection respectively.

7.4 Results

7.4.1 Comparing annual costs

A direct cost comparison between traditional selection on own performance, traditional

selection on clones and Genomic Selection on own performance is shown in Figure 7.1.

On a yearly basis, GS was more expensive than traditional selection on own performance,

costing $580,283 compared to $480,283 for traditional selection, but this was expected

because genotyping was treated as an additional cost to selection. Clonal selection was

more expensive that GS in each case, costing ∼$666,000 per year for 5 ramets per parent

clone, ∼$845,000 per year for 10 ramets per parent clone, and ∼$1.2 million per year for

20 ramets per parent clone.
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Figure 7.1 – Comparing annual costs of selection for traditional selection on own perfor-
mance, traditional selection on multiple clones, and GS on own performance

7.4.2 What percentage of trees should we genotype?

The most efficient percentage of trees to genotype is approximately 40% for h2 = 0.1 and

30% for heritabilities up to 0.5 (Figure 7.2).

7.4.3 Response to selection

Figure 7.3 shows the potential benefits of using GS in terms of additional response to

selection. Across the full spectrum of heritabilities GS achieved a higher rate of genetic gain

than did traditional selection with the greatest gains being achieved at lower heritabilities.

Clonal selection was superior to traditional selection on own performance across all

heritabilities and offered a marginally higher genetic gain compared to GS at higher

heritabilities.

For clonal selection, the maximum value for heritability was equal to the repeatability,

in this case 0.7. The difference in response between having up to 10 and 20 clones per
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Figure 7.2 – The marginal rate of change of variable T ∗, d
d(T ∗)f(T ∗), plotted against the

percentage of trees genotyped

individual was negligible and these results were therefore not included in Figure 7.3.

Figure 7.3 – Comparing response to GS to pedigree selection with and without clones
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7.4.4 Relative cost of genetic gain

Figure 7.4 compares each scenario in terms of the costs of achieving a 1% increase in genetic

gain in a target trait with a genetic variance of 1. The cost of achieving a 1% increase

in genetic response was comparatively smaller for GS at low and moderate heritabilities

(h2 < 0.5).

The cost of genetic gain under clonal selection was larger than both GS and traditional

selection on own performance for all values of heritability under 0.5.

Figure 7.4 – Comparing the relative costs of achieving a 1% increase in genetic gain between
GS and pedigree selection with and without clones

7.4.5 Potential cost savings

The cost benefit of using GS can also be shown in terms of the cost of achieving a 1%

increase in genetic gain relative to traditional selection. Figure 7.5 shows the potential

savings from adopting GS for each heritability. The largest savings were made at lower

heritabilities up to maximum heritability of h2 = 0.5.

Clonal selection was more expensive for all values of heritability.
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7.4.6 Effective population size and the number of independent

chromosome segments

The effective population size was the most influential variable affecting the response to

GS. This is shown in Figure 7.6, where the response to selection is plotted against a range

of heritabilities and for values of Ne equal to 50, 100, 500 and 1000. The bottom graph

shows the rise in the number of independent chromosome segments in the population as

Ne increases. The number of independent chromosome segments (q) is a key determinant

of genetic response to GS.

Figure 7.5 – Potential cost savings made through the use of GS relative to traditional
selection with and without clones
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No. Independant Chromosome Segments (q) vs Effective Population Size (Ne)
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Figure 7.6 – The impact of effective population size (Ne) and number of independent
chromosome segments (q) on the response to GS

7.5 Discussion

In the following section we will discuss the assumptions and variables used in the cost

function. We will also discuss some of the more important results found in this chapter

regarding the effective population size as well as the ideal percentage of trees to genotype

in a hypothetical GS breeding regime.

7.5.1 The effect of Ne on response to GS

Figure 7.4 demonstrates the propensity of GS to excel in low heritability traits where

traditional pedigree based selection is less effective. However in outcrossing conifer species
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the effectiveness of GS is severely reduced by their typically large genome sizes combined

with the low levels of LD found within them. As shown in Figure 7.6, the efficiency of GS

is closely related to the number of chromosome segments (q) in the population. In this

case we estimate that fewer than 5000 chromosome segments are required to ensure that

the response to GS is greater than traditional selection a lower heritabilities. Since the size

of the Pinus radiata genome is fixed, we could only achieve fewer than 5000 chromosome

segments by adjusting the effective population size to equal 50 trees.

7.5.2 The effect of juvenile-mature correlations on traditional

selection

The relative cost efficiency of GS also depends on assumptions made regarding traditional

selection. The efficiency of traditional selection is largely dependant on the age of selection

and the coheritability of the target trait and correlated juvenile trait. In calculating the

coheritability we assumed in this experiment that the heritability of both the target trait

and juvenile trait were the same in each case. However this may not necessarily be true and

if, for example, one trait was significantly smaller than the other, we would see a decline in

the response to selection. Furthermore, although the predictive model for juvenile-mature

phenotypic correlations described by Lambeth (1980) has been found to be accurate by

many authors Johnson et al. (1997), it has been found to underestimate juvenile-mature

genetic correlations in some growth traits (Lambeth & Dill 2001).

7.5.3 How many trees should we genotype?

The optimum percentage of trees to genotype is likely to become a topical issue should

GS be adopted as a preferred breeding strategy in trees. In principle there is no point in

genotyping additional trees if there is no appreciable increase in genetic response. In a

traditional breeding scenario where 2,500 trees are tested per year, we found that only a

fraction of those trees (∼ 40%) would require genotyping whilst still achieving the majority

of the available genetic gain. This does not mean that the overall cost of GS will be less

than traditional selection, in fact it may be higher. It simply demonstrates that under

any breeding regime there will be a point at which the marginal rate of change of genetic

response will be too low to justify the extra expense of genotyping more trees.
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7.5.4 Traditional selection on clones

The additional genetic gain achieved using clonal selection was found to be significant

although the cost of implementing such a scheme using expensive techniques such as

micropropagation procludes it as an alternative to traditional selection on own performance.

The cost of clonal propagation was high in this experiment ($5/ramet) due to the inherent

physiological difficulty in propagating clones cheaply through rooted cuttings past the age

of 5.

7.5.5 A conservative approach to costings

Genomic selection may in fact reduce the costs of some traditional selection practices in

ways that are not yet known. For example, it is likely that it will be cheaper to gather

genomic information across multiple traits than it would be to assess performance under

traditional selection. This is due to the variable nature of the measurement process in

different traits. Moreover, since the STBA commonly uses a form of index selection where

multiple traits are included in the selection process, the heritability of the overall index

in a multiple trait selection scenario is likely to be less than 0.20 and within the most

effective range for GS.

7.5.6 Genetic relationships

Over time, the accuracy of GS will reduce unless the genetic markers can be ’recalibrated’

with a new set of phenotypes. This is because GS works in part by using the realised

relationships from that expected from pedigree, where the deviations are only useful if

there is LD between SNPs and QTL (Goddard 2008). With each sucessive generation the

LD between SNP and QTL slowly erodes leading to a steady decline in the accuracy of

prediction. The extent of this decline was demonstrated by Habier et al. (2010).

By assuming that the cost of GS is additional to traditional selection, the cost of phenotyp-

ing for the recalibration of the SNPs was effectively incorporated into this study. However

in reality, recalibration would only occur every 3 or 4 generations and there would be some

reduction in efficiency experienced between recalibration events. Precisely how this would

impact on the overall cost of GS was not explored in this study, but would need to be

taken into consideration prior to the implementation of such a scheme.
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7.6 Conclusions

1. If GS were to be one day used to supplement a typical STBA breeding regime only

a fraction of the total trees tested phenotypically would need to be genotyped. Thus in

principle, should the cost of genotyping become less than phenotyping, we would expect

GS to result in significant cost savings on this basis alone.

2. The limiting factor in the use of GS in trees is the number of independent chromosome

segments whose effects need to be estimated, a function of both genome size and the

effective population size of the breeding population.

3. Clonal selection as it is practiced today would be no match for a hypothetical GS

scheme in terms of both cost and response to selection.

4. In theory, GS would be more cost effective at lower heritabilities where traditional

pedigree selection is less efficient.
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Chapter 8

General Discussion

Genomic Selection (GS) has the potential to revolutionise tree breeding programs by

offering smaller generational intervals and higher rates of genetic response than traditional

pedigree based selection methods. However the implementation of GS in conifers will

inevitably come at a price, and the uptake of GS in the tree breeding industry will depend

largely on the continued exponential reduction in the cost of genotyping.

On this point it is worth noting that 15 years ago the application of GS in conifers was

virtually inconcievable given the cost of genotyping at that time. For example when the

human genome project began in 1990, the cost genotyping a single base pair was around

$10 whilst the project itself, valued at $300 million, took the better part of 13 years to

finish. In 2007 two human genomes were genotyped for around $1 million and today we

can type the 3 Gb human genome in under a month for as little as $1000. This equates

to a cost of approximately 3c per 100,000 base pairs - a truly remarkable improvement

in such a short period of time. When this study was begun the rapid advances in high

density genotyping were unforseen.

Of course, the uptake of GS in conifer breeding programs will take a little longer than in

mammal as the genomes of conifers are typically much larger and contain considerably less

LD on the inter-gene level. However the rate of improvement in genotyping technology

would suggest that it is no longer a question of if it is possible, but when. Figure 8.1

depicts the exponential decline in genotyping costs since 1990. At the rate of decline

observed since 2005, we would expect through extrapolation that the cost of genotyping a

single human genome may be as low as $100 by 2015. Since the Pinus radiata genome is

only 9 times larger than the human genome (26 Gb), we might also expect the entire
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Figure 8.1 – The exponential decline in the cost of genotyping since the human genome
project began. At the current rate of decline we would expect the cost genotyping to be as
low as $100 by 2015

Pinus radiata genome to be typed for $1000 by 2015.

With the entire Pinus radiata genome sequence at hand, we will then be able to further

investigate the make up of the conifer genome, including the distribution and extent

of non-coding genetic material such as retro-transposons. The ”C-value paradox” was

discussed at length in Chapter 2 because it represents, in a sense, the white elephant in

the room. The fact that ”junk” DNA makes up over 50% of the conifer genome (over

13 Gb) must surely beg the question of whether the proliferation of non-coding genetic

material has occured in specific areas of the conifer genome, and if so, to what extent they

can be avoided in the genotyping process. If we could avoid such areas of the genome

altogether then we could considerably reduce the price of genotyping, and concentrate

instead on improving marker coverage in gene rich areas of the Pinus radiata genome.

Just as important as the cost of genotyping to the economic viability of GS, is the response

to selection. For an organisation such as the STBA, a not-for-profit cooperative that is

funded entirely by its member organisations, the increase in genetic response achieved

from adopting a genome wide approach is of high importance. This funding is treated by
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each member as an investment, and like any profit based enterprise each member expects

a return on that investment through time. For an organisation like the STBA to justify

the extra expense of genotyping, it needs to be able to demonstrate that a genome wide

strategy will lead to better quality commercial seed for its members.

The results presented in this thesis provide some justification for the adoption of GS. For

example, in Chapter 4 we used a ’best case scenario’ approach to highlight the inevitable

shift away from marker assisted selection (MAS) techniques. We then demonstrated that

when selection is on marker based breeding values, GS is capable of substantially increasing

the accuracy of selection relative to pedigree based selection, especially in traits with low

heritabilities. It was also shown to work effectively in traits controlled by large numbers

of genes. Then, in Chapter 7, we translated this increase in accuracy to an improvement

in genetic response over a range of heritabilities. Taking a working example of an STBA

tree improvement program, we were able to show how this increase in genetic response

would, over the longer term, provide savings in the order of 20 to 40 thousand dollars per

year for low heritability traits compared to pedigree selection (h2=0.1-0.2). These savings

make up approximately 8% of the annual cost of traditional pedigree based selection.

Another important issue to consider is whether GS can be adapted for use in a clonal

forestry setting. In Chapter 5 we explored the possibility of using clones to improve

the accuracy of selection when selection was for marker based breeding values (GEBVs).

Whilst our results were promising, we did not take into account the cost of cloning in

addition to genotyping. We showed in Chapter 7, that based on current practice, clonal

forestry was not as efficient as either traditional selection on own performance, or GS on

own performance. This is in large part due to the time taken to identify high quality

clones in the field and the cost of proliferating clonal tissue using methods other than

rooted cuttings, for example somatic embryogenesis (SE).

However if GS could instead be used to identify high quality clones within the short

time frame available for the propagation of rooted cuttings, then in principle, this should

dramatically reduce the generation interval in a way that is analogous to that of a veloge-

netics scheme as proposed by Georges & Massey (1991). With velogenetics, the generation

interval is reduced by harvesting oocytes from calves still in utero and transferring them

to a recipient female. Individuals are then selected, based on their marker genotypes,

which are determined through the extraction of a few cells of an embryo. Generational

intervals can then be reduced to between 3 and 6 months. In the case of clonal forestry,

the benefits would be felt not only in terms of the reduced generational interval, but also
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in the option of propagating and deploying clones through rooted cuttings.

Park (2002) describes a simplified implementation of SE in an advanced generation clonal

breeding program. The hypothetical implementation strategy, depicted in Figure 8.2,

begins with a set of selected parents from a breeding population. Controlled crosses are

then made between pairs of these parents, and small quantities of high quality full-sib

seeds, resulting from these crosses, are then used to initiate SE. Traditionally, a number of

clonal embyonic tissue (ET) lines would then be cryopreserved, and small amounts of this

tissue would be used to produce small numbers of plants from each clone. This traditional

path is marked with blue arrows. These plants would then be performance tested in the

field and assessed at regular intervals until they reach rotation age (20-25 years). The

best performing clonal ET lines would then be thawed from cryopreservation and used to

produce planting stock for deployment in clonal forestry.

An alternative method using GS to identify high performing clones is depicted in Figure 8.2

by the red arrows. In this scenario, SE may be used to initiate and proliferate embryonic

tissue for all fullsib seeds as usual. However at this point, rather than cryopreserve all ET

lines whilst performance testing individual clonal lines in the field, GS is preferentially used

to identify the best performing clones using the methods described in earlier chapters. The

best performing clones are identified rapidly and with a high degree of accuracy. Planting

stock for the high performing clonal lines are then produced using rooted cuttings and

deployed directly into clonal forestry.

In a clonal forestry scheme the additional genetic response achievable from including

repeated measurements could also be factored into the estimated accuracy of GS. Given

that the adjusted phenotypic variance which includes repeated records, is equal to:

VP (n) = (t+
1− t
n

)VP

where t= repeatability, n= number of ramets and VP= the standard phenotypic variance

in the trait, the accuracy of GS could then be estimated as:

rGEBV =

√
Nh2

n

(Nh2
n + q)

where h2
n = VA

VP (n)
.
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Select parents from 
breeding populat ion

Controlled pair crosses

Init iate Somatic Embryogenesis Cryopreservation

Estimate GEBVs

Clonal f ield testingSelection of tested clones

Deployment in clonal forestry

Figure 8.2 – An example of a clonal forestry scenario. The red arrows show the traditional
use of cryopreservation as a means of storing seeds, whilst potential clones are performance
tested in the field. The blue arrows represent an alternative method of identifying high
performing clones by selecting on GEBVs.

We should also mention here that since much of this work was completed, it has become

apparent that the accuracy of GS also depends upon the relationship between the individ-

uals used to develop predictions and the individuals being predicted (Habier et al. 2010).

Whilst this is not a problem for the dairy industry where highly accurate EBVs are used

to develop predictions for young bulls, it is a problem for other industries where highly

accurate EBVs are unavailable. Fortunately, the Australian forestry industry has the

potential to use highly accurate EBVs since the relatively small number of parents each

have large numbers of progeny.

Finally, with the ability to genotype any tree at an affordable price, it is worth considering

the possibility that better genotypes remain in wild populations. The prospect of being

able to resample wild populations for high quality seed without the need of progeny testing

is an exciting one for tree breeders.
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One way to take advantage of this would be to return to the native provenances of Pinus

radiata and use the information from a genome wide association study to choose the best

trees to include in a new round of breeding and selection. Each population could be

sampled and ranked according to their genetic potential. Australian breeding populations

could then be supplemented with new and superior genotypes sourced from the best

of these wild provenances. Alternatively, it could form the basis of a comprehensive

conservation strategy where wild populations (or sub-populations) are managed according

to a ‘genetic priority status’.

In conclusion, the availability of cheap genomic information has the potential to revo-

lutionise tree breeding. How we can apply this technology will be only limited by our

imagination.
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Appendix B

Fortran code for simulation program

!SimSNP v1.3 Last modified 19:35pm 11/12/08

!Program now writes a marker output file for BayesA analysis.

!This file is located in fort.308

!SimSNP simulates phenotypes, SNP effects and breeding values for any given

!number of individuals. The two input files are in the form of Animals x SNP

!and SNP x Animals. Population size, total SNP number, active SNP number and

!heritability are set in the parameters file. Assumed gene action can be in

!the form of a uniform, gaussian or chi-square distribution.

MODULE global_data

IMPLICIT NONE

SAVE

INTEGER, ALLOCATABLE, DIMENSION(:,:) :: TEMP,ALL_GENOTYPES,MY_GENOTYPES

INTEGER, ALLOCATABLE, DIMENSION(:) :: SNPid

DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: MARKER_VECTOR,SNPeffects&

&,errors,TBV,phenos

DOUBLE PRECISION :: h2,time1,time2,SUMs

INTEGER :: RANDOM_SNP,A,idum,edum,MY_SNP,TOTAL_SNP

!######################################################

! Adjust gamma shape and scale here! !##

DOUBLE PRECISION, PARAMETER :: shape=0.4,scale=1.66 !##
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!######################################################

!######################################################

ENDMODULE global_data

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

!PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

PROGRAM SimSNP

USE global_data

IMPLICIT NONE

!Local variables

DOUBLE PRECISION :: W(1),GASDEV

PRINT*,""

WRITE(*,*) "Sim_SNP.f90 A.Hathorn v1.3"

CALL CPU_TIME(time1)

!INPUT FILES

OPEN(30,FILE=’Seed’,STATUS=’OLD’)

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

!Generate new ’starter’ seed and replace ’Seed’ file. !^^

READ (30,*)idum !^^

W(1)=GASDEV(idum) !^^

!Code to write new seed to file !^^

IF (idum>=0) THEN !^^

edum=(-1*idum) !^^
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ELSE !^^

edum=idum !^^

END IF !^^

REWIND (30) !^^

WRITE (30,*) edum !^^

idum=edum !^^

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

CALL collect_data

CALL calculate_TBVs

CALL calculate_genef

CALL assign_errors

CALL calculate_phenotypes

CALL CPU_TIME(time2)

WRITE(*,’(A19,F8.4,A8)’) "Computation time : ",(time2-time1)," seconds"

PRINT*,""

ENDPROGRAM SimSNP

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

!SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES !-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

SUBROUTINE collect_data

USE global_data

IMPLICIT NONE

135



!Local variables

INTEGER :: i,j,k,counting,dist,interval

DOUBLE PRECISION :: x,random_gamma,GASDEV,ran1

OPEN(33, FILE=’parameters’, STATUS=’OLD’)

OPEN(31, FILE=’CHR137_AxSNP_clean’, STATUS=’OLD’)

OPEN(32, FILE=’CHR137_SNPxA_clean’, STATUS=’OLD’)

!...determine heritability...

READ(33,*) h2

!...determine number of individuals and markers

READ(33,*) A

READ(33,*) MY_SNP

READ(33,*) TOTAL_SNP

!...extract ALL genotypes...

701 format (591(1x,I1))

ALLOCATE(ALL_GENOTYPES(TOTAL_SNP,A))

DO i=1,TOTAL_SNP

READ(32,701) (ALL_GENOTYPES(i,j), j=1,A)

ENDDO

!...Extract SNPs...

DO i=1,1

CALL RANDOM_SNPs

ENDDO

DO i=1,MY_SNP

WRITE(306,701) (MY_GENOTYPES(i,j), j=1,A)

ENDDO

!...determine distribution...

PRINT*,""

PRINT*,"...Reading in parameters from file"
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PRINT*,""

DO j=1,1

READ(33,*) dist

IF (dist==1) THEN

PRINT*, " Dist = univariate"

ALLOCATE(SNPeffects(MY_SNP))

DO i=1,MY_SNP

SNPeffects(i)=ran1(idum)

x=ran1(idum)

IF (x<=0.50) THEN

SNPeffects(i)=(-1)*SNPeffects(i)

ELSE

SNPeffects(i)=SNPeffects(i)

ENDIF

ENDDO

ELSEIF (dist==2) THEN

PRINT*, " Dist = gaussian (zero mean and unit variance)"

ALLOCATE(SNPeffects(MY_SNP))

DO i=1,MY_SNP

SNPeffects(i)=GASDEV(idum)

ENDDO

ELSEIF (dist==3) THEN

WRITE(*,’(A22,F4.2,A8,F4.2,A1)’) &

&" Dist = gamma (shape= ",shape," scale= ",scale,")"

ALLOCATE(SNPeffects(MY_SNP))

DO i=1,MY_SNP

SNPeffects(i)=random_gamma(idum,shape,scale, .TRUE.)

x=ran1(idum)

IF (x<=0.50) THEN

SNPeffects(i)=(-1)*SNPeffects(i)

ELSE

SNPeffects(i)=SNPeffects(i)

ENDIF

ENDDO

ENDIF
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ENDDO

!Prepare marker file

ALLOCATE(MARKER_VECTOR(TOTAL_SNP))

DO i=1,TOTAL_SNP

MARKER_VECTOR(i)=0

ENDDO

DO i=1,MY_SNP

DO j=1,TOTAL_SNP

IF (j==SNPid(i)) THEN

MARKER_VECTOR(j)=SNPeffects(i)

ENDIF

ENDDO

ENDDO

DO i=1,TOTAL_SNP

WRITE(308,*) MARKER_VECTOR(i)

ENDDO

WRITE(*,*) "Analysing ",A," records using ",MY_SNP,&

&" out of ",TOTAL_SNP,"available markers"

WRITE(*,’(A4,F4.2)’) " h2=",h2

DO i=1,MY_SNP

WRITE(301,*) SNPeffects(i)

ENDDO

PRINT*,""

END SUBROUTINE collect_data

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

SUBROUTINE RANDOM_SNPs

USE global_data
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IMPLICIT NONE

!Local variables

INTEGER :: i,j,count

DOUBLE PRECISION :: ran1,rand_num

ALLOCATE(MY_GENOTYPES(MY_SNP,A))

ALLOCATE(SNPid(MY_SNP))

!Randomly choose SNPs

count=0

DO i=1,MY_SNP

100 rand_num=ran1(idum)

RANDOM_SNP=int(rand_num*TOTAL_SNP)

count=count+1

DO j=1,count-1

IF (RANDOM_SNP==SNPid(j)) THEN

count=count-1

GOTO 100

ENDIF

ENDDO

SNPid(i)=RANDOM_SNP

ENDDO

!Construct genotypes matrix and write SNPs to file

DO i=1,MY_SNP

RANDOM_SNP=SNPid(i)

DO j=1,A !Assign genotypes according to chosen SNPs

MY_GENOTYPES(i,j)=ALL_GENOTYPES(RANDOM_SNP,j)

ENDDO

WRITE(305,*) RANDOM_SNP

ENDDO

END SUBROUTINE RANDOM_SNPs
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!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

SUBROUTINE calculate_TBVs

USE global_data

IMPLICIT NONE

!Local variables

INTEGER :: i,j

!...Summing all effects...

ALLOCATE(TBV(A))

DO i=1,A

SUMs=0.0

DO j=1,MY_SNP

SUMs=SUMs+(SNPeffects(j)*MY_GENOTYPES(j,i))

END DO

TBV(i)=SUMs

ENDDO

ENDSUBROUTINE calculate_TBVs

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

SUBROUTINE calculate_genef

USE global_data

IMPLICIT NONE

!Local variables

INTEGER :: i,j,MAF1_count,MAF2_count,MAF3_count

DOUBLE PRECISION :: A1,A2,P,H,Q,Pf,Qf,Hf,A1f,A2f,MAF
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!...Calculating allele frequencies for each SNP &

and write to fort.307...

MAF1_count=0

MAF2_count=0

MAF3_count=0

DO i=1,MY_SNP

P=0.0

H=0.0

Q=0.0

DO j=1,A

IF (MY_GENOTYPES(i,j)==0) THEN

P=P+1

ELSEIF (MY_GENOTYPES(i,j)==1) THEN

H=H+1

ELSEIF (MY_GENOTYPES(i,j)==2) THEN

Q=Q+1

ENDIF

ENDDO

A1=(P*2)+(H/2)

A2=(Q*2)+(H/2)

A1f=A1/(A1+A2)

A2f=A2/(A1+A2)

IF (A1f<=A2f) THEN

MAF=A1f

ELSE

MAF=A2f

ENDIF

IF (MAF<0.1) THEN

MAF1_count=MAF1_count+1

ELSEIF (MAF>=0.1 .AND. MAF<0.25) THEN

MAF2_count=MAF2_count+1

ELSEIF (MAF>=0.25 .AND. MAF<=0.5) THEN

MAF3_count=MAF3_count+1

ENDIF

WRITE(307,*) MAF
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ENDDO

!...Calculate total allelic frequencies and print to screen...

DO i=1,1

PRINT*, " Breakdown of Minor Allele Frequencies for all &

&",MY_SNP," SNP"

PRINT*," -------------------------------------------------"

PRINT*," <0.1 : ",MAF1_count

PRINT*," >=0.1 and <0.25 : ",MAF2_count

PRINT*," >=0.25 and <=0.5 : ",MAF3_count

PRINT*," -------------------------------------------------"

PRINT*,""

ENDDO

!Check for MAF of less than 0.1

DO i=1,1

IF (MAF1_count>0) THEN

PRINT*," ***WARNING*** MAF is less than 0.1 in ",MAF1_count,&

&" out of ",MY_SNP," utilized SNPs"

PRINT*,""

ENDIF

ENDDO

PRINT*,"...SNP effects have been written to fort.301"

PRINT*,""

PRINT*, "...Breeding Values have been written to fort.302"

PRINT*, ""

END SUBROUTINE calculate_genef

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

SUBROUTINE assign_errors

USE global_data
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IMPLICIT NONE

!Local variables

INTEGER :: i,j

DOUBLE PRECISION :: variance,x,GASDEV,ran1,VA,VE,var

VA=variance(TBV,A)

VE=(VA*(1-h2))/h2

!...calculating errors...

ALLOCATE(errors(A))

DO i=1,A

errors(i)=GASDEV(idum)*SQRT(VE)

ENDDO

PRINT*, "...Residuals have been written to fort.303"

PRINT*,""

END SUBROUTINE assign_errors

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

SUBROUTINE calculate_phenotypes

USE global_data

IMPLICIT NONE

!Local variables

INTEGER :: i,j

DOUBLE PRECISION :: variance,VA,VE,VP,var

!...calculating phenotypes...

ALLOCATE(phenos(A))

DO i=1,A

phenos(i)=TBV(i)+errors(i)
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ENDDO

VP=variance(phenos,A)

DO i=1,A

WRITE(302,*) TBV(i)

WRITE(303,*) errors(i)

phenos(i)=phenos(i)/SQRT(VP)

WRITE(304,*) phenos(i)

ENDDO

PRINT*,"...Phenotypes have been written to fort.304"

PRINT*,""

PRINT*,"...For a list of SNPs switched on see fort.305"

PRINT*,""

PRINT*,"...Genotypes have been written to fort.306"

PRINT*,""

PRINT*,"...Gene frequencies have been written to fort.307"

PRINT*,""

PRINT*,"...Marker effects file for Bayes analysis is fort.308"

PRINT*,""

VA=variance(TBV,A)

VE=variance(errors,A)

VP=variance(phenos,A)

WRITE(*,*) "Additive genetic variance = ",VA

WRITE(*,*) "Environmental variance = ",VE

WRITE(*,*) "Phenotypic variance = ",VP

PRINT*,""

END SUBROUTINE calculate_phenotypes

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

!FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS FUNCTIONS !-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

FUNCTION variance(data,n) RESULT(fn_val)
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IMPLICIT NONE

INTEGER, INTENT(IN) :: n

INTEGER :: j

DOUBLE PRECISION, INTENT(IN) :: data(n)

DOUBLE PRECISION :: ave,var,s,ep,fn_val

ave=0.0

DO j=1,n

ave=ave+data(j)

ENDDO

ave=ave/n

var=0.0

ep=0.0

DO j=1,n

s=data(j)-ave

ep=ep+s

var=var+s*s

ENDDO

var=(var-ep**2/n)/(n-1)

fn_val=var

return

END FUNCTION variance

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

FUNCTION GASDEV(idum)

IMPLICIT NONE

!C USES ran1

!Normally distributed deviate with zero mean and unit variance, using ran1(idum)

!as the source of uniform deviates.

INTEGER :: idum

DOUBLE PRECISION :: GASDEV
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INTEGER :: iset

DOUBLE PRECISION :: fac,gset,rsq,v1,v2,ran1

SAVE iset,gset

DATA iset/0/

if (idum.lt.0) iset=0

if (iset.eq.0) then

1 v1=2.*ran1(idum)-1.

v2=2.*ran1(idum)-1.

rsq=v1**2+v2**2

if(rsq.ge.1..or.rsq.eq.0.)goto 1

fac=sqrt(-2.*log(rsq)/rsq)

gset=v1*fac

GASDEV=v2*fac

iset=1

else

GASDEV=gset

iset=0

endif

return

END

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

! This Function returns a uniform random deviate between 0.0 and 1.0.

! Set IDUM to any negative value to initialize or reinitialize the sequence.

!MODIFIED FOR DOUBLE PRECISION

FUNCTION ran1(idum)

IMPLICIT NONE

INTEGER :: idum,IA,IM,IQ,IR,NTAB,NDIV

DOUBLE PRECISION :: ran1,AM,EPS,RNMX

PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)

INTEGER :: j,k,iv(NTAB),iy

SAVE iv,iy
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DATA iv /NTAB*0/, iy /0/

IF (idum.le.0.or.iy.eq.0) then

idum=max(-idum,1)

DO 11 j=NTAB+8,1,-1

k=idum/IQ

idum=IA*(idum-k*IQ)-IR*k

IF (idum.lt.0) idum=idum+IM

IF (j.le.NTAB) iv(j)=idum

11 CONTINUE

iy=iv(1)

END IF

k=idum/IQ

idum=IA*(idum-k*IQ)-IR*k

IF (idum.lt.0) idum=idum+IM

j=1+iy/NDIV

iy=iv(j)

iv(j)=idum

ran1=min(AM*iy,RNMX)

RETURN

END

! (C) Copr. 1986-92 Numerical Recipes Software 6

!-----------------------------------------------------------------------------------------------------------------

!-----------------------------------------------------------------------------------------------------------------

FUNCTION random_gamma(idum,shape, scale, first) RESULT(fn_val)

IMPLICIT NONE

! Adapted from Fortran 77 code from the book:

! Dagpunar, J. ’Principles of random variate generation’

! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9

! N.B. This version is in ‘double precision’ and includes scaling
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! FUNCTION GENERATES A RANDOM GAMMA h2RIATE.

! CALLS EITHER random_gamma1 (S > 1.0)

! OR random_exponential (S = 1.0)

! OR random_gamma2 (S < 1.0).

! S = SHAPE PARAMETER OF DISTRIBUTION (0 < DOUBLE PRECISION).

! B = Scale distameter

!IMPLICIT NONE

INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)

INTEGER :: idum

DOUBLE PRECISION, INTENT(IN) :: shape, scale

LOGICAL, INTENT(IN) :: first

DOUBLE PRECISION :: fn_val

! Local parameters

DOUBLE PRECISION, PARAMETER :: one = 1.0_dp, zero = 0.0_dp

IF (shape <= zero) THEN

WRITE(*, *) ’SHAPE PARAMETER h2LUE MUST BE POSITIVE’

STOP

END IF

IF (shape >= one) THEN

fn_val = random_gamma1(shape, first)

ELSE IF (shape < one) THEN

fn_val = random_gamma2(shape, first)

END IF

! Now scale the random variable

fn_val = scale * fn_val

RETURN
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CONTAINS

FUNCTION random_gamma1(shape, first) RESULT(fn_val)

IMPLICIT NONE

! Adapted from Fortran 77 code from the book:

! Dagpunar, J. ’Principles of random variate generation’

! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9

! FUNCTION GENERATES A RANDOM h2RIATE IN [0,INFINITY) FROM

! A GAMMA DISTRIBUTION WITH DENSITY PROPORTIONAL TO GAMMA**(S-1)*EXP(-GAMMA),

! BASED UPON BEST’S T DISTRIBUTION METHOD

! S = SHAPE PARAMETER OF DISTRIBUTION

! (1.0 < DOUBLE PRECISION)

DOUBLE PRECISION, INTENT(IN) :: shape

LOGICAL, INTENT(IN) :: first

DOUBLE PRECISION :: fn_val

! Local variables

DOUBLE PRECISION :: d, r, g, f, x

DOUBLE PRECISION, SAVE :: scale, h

DOUBLE PRECISION, PARAMETER :: sixty4 = 64.0_dp, three = 3.0_dp, pt75 = 0.75_dp, &

two = 2.0_dp, half = 0.5_dp

DOUBLE PRECISION :: ran1

IF (shape <= one) THEN

WRITE(*, *) ’IMPERMISSIBLE SHAPE PARAMETER h2LUE’

STOP

END IF

IF (first) THEN ! Initialization, if necessary

scale = shape - one
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h = SQRT(three*shape - pt75)

END IF

DO

r=ran1(idum)

g = r - r*r

IF (g <= zero) CYCLE

f = (r - half)*h/SQRT(g)

x = scale + f

IF (x <= zero) CYCLE

r=ran1(idum)

d = sixty4*g*(r*g)**2

IF (d <= zero) EXIT

IF (d*x < x - two*f*f) EXIT

IF (LOG(d) < two*(scale*LOG(x/scale) - f)) EXIT

END DO

fn_val = x

RETURN

END FUNCTION random_gamma1

FUNCTION random_gamma2(shape, first) RESULT(fn_val)

IMPLICIT NONE

! Adapted from Fortran 77 code from the book:

! Dagpunar, J. ’Principles of random variate generation’

! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9

! FUNCTION GENERATES A RANDOM h2RIATE IN [0,INFINITY) FROM

! A GAMMA DISTRIBUTION WITH DENSITY PROPORTIONAL TO

! GAMMA2**(S-1) * EXP(-GAMMA2),

! USING A SWITCHING METHOD.
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! S = SHAPE PARAMETER OF DISTRIBUTION

! (DOUBLE PRECISION < 1.0)

DOUBLE PRECISION, INTENT(IN) :: shape

LOGICAL, INTENT(IN) :: first

DOUBLE PRECISION :: fn_val

! Local variables

DOUBLE PRECISION :: r, x, w

DOUBLE PRECISION, SAVE :: a, p, c, uf, vr, d

DOUBLE PRECISION, PARAMETER :: vsmall = EPSILON(one)

DOUBLE PRECISION :: ran1

IF (shape <= zero .OR. shape >= one) THEN

WRITE(*, *) ’SHAPE PARAMETER h2LUE OUTSIDE PERMITTED RANGE’

STOP

END IF

IF (first) THEN ! Initialization, if necessary

a = one - shape

p = a/(a + shape*EXP(-a))

IF (shape < vsmall) THEN

WRITE(*, *) ’SHAPE PARAMETER h2LUE TOO SMALL’

STOP

END IF

c = one/shape

uf = p*(vsmall/a)**shape

vr = one - vsmall

d = a*LOG(a)

END IF

DO

r=ran1(idum)

IF (r >= vr) THEN

CYCLE
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ELSE IF (r > p) THEN

x = a - LOG((one - r)/(one - p))

w = a*LOG(x)-d

ELSE IF (r > uf) THEN

x = a*(r/p)**c

w = x

ELSE

fn_val = zero

RETURN

END IF

r=ran1(idum)

IF (one-r <= w .AND. r > zero) THEN

IF (r*(w + one) >= one) CYCLE

IF (-LOG(r) <= w) CYCLE

END IF

EXIT

END DO

fn_val = x

RETURN

END FUNCTION random_gamma2

END FUNCTION random_gamma
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