
Chapter Three

Computational methods

3.1 Property derivative calculations

As described in the previous Chapter, a great deal of useful information may be

obtained from studies of property (hyper)surfaces and the property derivatives used to

parametrize such surfaces. Although energy derivatives have been calculated for ab initio

prediction of spectroscopic constants and vibrational fundamental frequencies [ 1 -1 0], other

molecular properties have not been widely studied. This is partly due to the lack of suitable

methods and ab initio computational codes for obtaining property derivatives. Therefore, in

this section the implementation of a suitable method for ab initio least-squares evaluation of

property derivatives is described, along with other methods for routine ab initio calculation

of property derivatives. Emphasis is placed on the advantages and disadvantages of

particular methods as well as the information available from different procedures.

3.1.1 Least-squares derivatives method

Least-squares methods may be numerically unstable for calculating energy

derivatives if care is not taken in selecting both the distribution of geometries and the

parameters used in the fitting procedure [3]. However, least-squares methods have been

successfully used by many workers for calculating both energy [5, 1 1, 12] and property

derivatives [11, 13-23]. Through experimentation on energy and property surface fitting in

the present work, it has been found that they are capable of providing both accurate and

precise results of comparable quality to those obtained from numerical finite difference and

central-difference procedures. Least-squares methods also offer the advantage of being

applicable with equal ease to calculations using either Slater or Gaussian type functions, and

to all levels of theory from SCF to highly correlated methods.
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For each molecule, using a particular basis set and level of theory, a geometry

optimization is first performed to locate the potential energy minimum followed by an

analytic second derivative calculation to obtain the vibrational frequencies and normal

modes for the molecule. The cartesian force constant matrix is mass-weighted and

diagonalized to give the / transformation matrix (eigenvectors) and the harmonic vibrational

frequencies, w, [4, 24] using equation (2.7). In the present procedure, all Cartesian gradients

are required to be less than 10-6 hartree/bohr to minimize the forces acting on the nuclei at

the optimized geometry. A density matrix criterion of e(SCF) < 10- 8 is also used to provide

highly converged energies and properties in order to reduce numerical noise in the fitting

procedure. A suitable grid of displaced geometries about the potential energy minimum is

then chosen for the molecule. The choice of these grids is dependent on the system under

investigation and the property derivatives required. To simplify the description of the grids

used for the studies described in following Chapters, a standard cubic grid is described as

1. Single mode displacements –2Aq i, –Aq,, +Aqi and +2Aqi along each of the i normal

modes.

2. Double or pair-wise displacements, derived from using all combinations of single

displacements for two modes, are also used leading to a "square grid" for any two

normal modes i and j ((–Aq,,	 (–Aq,, +AO, (+Aqi , –Aq,), and (+Aqi, +Aqj)).

This grid choice should be sufficient to determine all "diagonal" property derivatives of the

form P P P,,, and all "off-diagonal" property derivatives P ,j , P and P iw . En favourable

cases, it may be possible to determine quartic derivatives P,,,, but the numerical accuracy of

the derivatives may be compromised and should be checked. Based on the molecular system

under investigation, an appropriate step-size Aq in the range 0.02 to 0.20 is chosen. A

standard quartic grid is defined as including the set of points obtained from the cubic grid

scheme and two additional single mode displacements for each ith normal mode, represented

as (-30qi , +3Aqi). For this type of grid, triple-displacements from coupling of three normal

modes are also included (+Aqi , +Aqj, +Aqk). Inclusion of all triple displacements leads to a

large number of grid points, C33N-6 , for an N-atomic molecule, where C"; is the binomial

coefficient. For example, a calculation on ethene would require 220 separate triple

displacements, in addition to 72 single displacements and 264 double displacements.

Therefore, only displacements related to symmetry-allowed cubic P ijk property derivatives

are included in the set of grid points. This helps to reduce the large number of possible
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displacements to a manageable size, so that for a calculation on ethene, only 24 triple

displacements are required from a possible 220. Obviously, for a large molecule without

symmetry, the number of triple displacements required would be exceptionally large and it

may be necessary to neglect these displacements from the set of grid points, such that only

diagonal derivatives are determined.

Degenerate modes are treated by varying only one mode of the degenerate set

providing that the degenerate modes are properly aligned with respect to symmetry planes of

the molecule. Degenerate modes for symmetric and spherical tops are aligned with respect

to symmetry planes of the molecules to match the usual conventions as outlined by Cyvin et

al. [25]. For a degenerate mode of a symmetric top, the modes t o and tb are rotated to lie in

the xz and yz planes respectively. Triply degenerate (tx, ty, t,) modes are aligned so that the ty

and ty modes are symmetric with respect to a ad plane and the t, is antisymmetric. Linear

molecules are treated as symmetric tops and are aligned along the z axis. With proper

alignment, displacements along the t„ modes for symmetric tops, and the t7 modes for

spherical tops should allow calculation of all of the required cubic force constants and

property derivatives for the A term coefficients in equation (2.34). If quartic property

derivatives are required, then extra displacements along the tb modes for symmetric tops and

(tx, ty) modes for spherical tops are necessary.

Geometries in terms of cartesian coordinates for input into a suitable ab initio

program are then calculated via the inverse of the matrix equation, given by Schneider and

Thiel [24], for transformation of cartesian coordinates to dimensionless normal coordinates.

Point group symmetry can also help reduce the number of displaced cartesian geometries

required. If two displaced cartesian geometries, rod and rpi, are related by a symmetry

operation R, such that

raj = D (R)raP	 Pi

is satisfied, where Dap(R) is the symmetry representation matrix for the Rth symmetry

operation, then property calculations may be skipped at one of the geometries. Properties

calculated at the rsi geometry are then used to generate symmetry related properties at the rod

geometry by use of appropriate tensor transformation matrices. For the dipole moment,

which is a first rank tensor (vector), the symmetry transformation is represented as

(3.1)
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,ua = ti91) ( R ) du o	 (3.2)

where T(1) is the transformation matrix for the Rth symmetry operation. 	 Similarcff3

transformation matrices are constructed for second-rank tensor properties, such as the

quadrupole moment and polarizability tensor. If the molecule possesses symmetry elements

other than the identity element, then the procedure outlined above effectively searches for

symmetry related geometries within the complete set of grid points and constructs a subset

or petite grid of symmetry-unique geometries at which energy and property calculations are

to be carried out. Once the computations for the petite grid have been completed, then

properties for the complete set of grid points may be generated by the symmetry

transformations outlined above. Additionally, if a particular displaced geometry transforms

as the totally symmetric representation, molecular symmetry is utilised within the ab initio

code for the property calculations, thus saving computational time and storage. Energies and

properties were computed at each displaced geometry using CADPAC Versions 4 [26] and

5.2 [27] with dipole polarizabilities obtained analytically via the coupled-perturbed Hartree-

Fock (CPHF) formalism [28, 29]. Dipole and quadrupole moments have been obtained as

energy derivatives rather than expectation values.

Least-squares fitting of the resulting energies and properties to polynomials

(equations (2.17) and (2.33)) in terms of the dimensionless normal coordinates, is then

carried out. Required property derivatives were calculated from the properties at the

displaced geometries, using a least-squares singular value decomposition (SVD) algorithm

[30]. A computer program, ANHARPS [31] (described in Section 3.1.3) was written for this

purpose and used for all least-squares fitting, geometry generation, normal coordinate and

rotational-vibrational calculations. As with all least-squares fitting procedures, there is

considerable flexibility in the choice of fitting parameters, although the number of

parameters to be determined must always be less than the number of data points to be fitted.

For the standard cubic grids, initially all terms up to quartic level are included in the energy

fit and up to cubic terms for each of the property components. For standard quartic grids, all

symmetry-allowed derivatives are included in the fit as well as diagonal quintic and sextic

derivatives. The higher order quintic and sextic terms are necessary to obtain converged

quartic property derivatives. Fitted parameters possessing large uncertainties are excluded

and subsequent fits performed to obtain smaller parameter uncertainties. Although energy

gradient terms should be numerically close to zero for a stationary point (the optimized
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geometry), their inclusion in the least-squares fit is found to improve the accuracy of the

cubic force constants due to strong correlation between these parameters. Off-diagonal

second derivatives of the form P,1 are also included and significantly improve the overall

description of the property surfaces. These derivatives are related to infrared and Raman

overtone and combination bands [32] if P is the dipole moment or polarizability

respectively, and their non-zero behaviour will depend on the symmetry species of both the

property and the ith and jth normal modes. Off-diagonal second derivatives of the energy

are initially included in the fitting procedure but can be deleted if the number of parameters

to be fitted becomes too large with respect to the number of data points. Generally, the

property surface fitting procedure is found to be more numerically robust than fitting the

energy surface since all parameters up to cubic or quartic property derivatives can be

routinely used without significantly altering the choice of parameters in the fit. Energy

surface fitting usually required more trial and error with (n+1 )th order diagonal derivatives

required in the fit to improve the uncertainties of the nth order derivatives. Increasing the

number of displaced geometries (at larger distances from the energy minimum) in the

procedure is expected to alleviate this problem of parameter choice, as the quartic and higher

order force constants would be accurately determined thus also leading to improved lower

order force constants. However, a compromise must be reached between the number of

displaced geometries and the accuracy of the derivatives obtained from the least-squares

fitting procedure.

The accuracy and precision of the least-squares procedure adopted in this thesis has

been established through careful comparison of the least-squares numerical and analytic

property derivatives. Details and results of the calibration procedure have been published

elsewhere [33] and a reprint of the paper is supplied in Appendix V.

3.1.2 Central differences derivatives method

The above least-squares method for calculation of property derivatives is not the

most efficient method possible since the analytic derivative capabilities of CADPAC have

not been fully exploited. Analytic second derivatives of the energy and first derivatives of

the polarizability, dipole and quadrupole moments, with respect to cartesian coordinates, are

available from CADPAC (and similar programs) at the SCF level. The CADPAC program

also features analytic MP2 second derivatives of the energy [34] and dipole moment [35].

Therefore, taking central differences of the analytic second derivatives of the energy and the
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property first derivatives would undoubtedly be a much more efficient procedure. However,

the least-squares method does have the advantage that it is not limited to a particular

theoretical electron correlation treatment or geometry-dependent property since all required

derivatives could be obtained from any "black-box" ab initio program computing energies

and properties for a given nuclear configuration.

The PHI34 routine, written for calculation of numerical third and fourth derivatives

of the energy and dipole moment [4, 10, 36] within CADPAC and kindly provided by Dr

Dylan Jayatilaka of the University of Western Australia, was modified to incorporate the

calculation of quadrupole moment and polarizability derivatives. Utilising CADPAC and

taking central differences of analytic second derivatives, cubic and quartic force constants,

dipole moment derivatives, quadrupole moment derivatives and polarizability derivatives, up

to third-order, may be obtained at the SCF level of theory. For the MP2 level of theory, both

cubic and quartic force constants may be calculated but only the dipole moment derivatives

to third-order may be obtained. The central differences formulae for calculating the third

and fourth-order derivatives of the energy, with respect to dimensionless normal coordinates,

are

Oijk =

01:j
qk = +A 	 T ifI9x = -A

(3.3) 
2A

Oijkk =

(Pij
qk = + A • = -A - 2Ou	 0

(3.4)  A2

where are the second derivatives of the energy with respect to dimensionless normal

coordinates in cm- 1 and A is an appropriately chosen step-size. For a general property, the

second and third-derivatives with respect to dimensionless normal coordinates are given by

Ply = +A - Pi lqj =; 

2A

P.. =
PI y = +A	

P, – 2P,
(if = -A 

A2

=0
(3.6)  

P.. = (3.5)
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This procedure requires a maximum of 2(3N-6) analytic second derivative calculations for

N atoms and if higher order derivatives are required, then many more calculations are likely

to be necessary. The central-differences method is quite efficient and is especially useful for

large molecules where the grid-based least-squares method is likely to prove costly. It

should be noted that the property derivatives obtained from the central differences method

do not include cubic Pijk property derivatives or the quartic Piiii and Piill
property derivatives.

Therefore, these derivatives are not included in equation (2.34) for the property rotational-

vibrational average. The effect on the vibrational average should be minimal since the

leading A term coefficients involve the linear P, and diagonal quadratic Pii property

derivatives and cubic Piii and Piij derivatives are still present in the expression. However, the

neglect of particular derivatives must be carefully considered if vibrational corrections from

the least-squares method are to be compared with those from the central-differences

procedure. Pure vibrational polarizabilities from Bishop and Kirtman's perturbation

formulae [37, 38] depend only on linear P i and quadratic Pii , Pi./ dipole moment derivatives

and are therefore unaffected by the omission of cubic Piik property derivatives or the quartic

Piiii and PiiJJ property derivatives.

3.1.3 Anharmonic property surfaces package (ANHARPS)

A suitable computational package is indispensable for investigations of vibrational

and rotational corrections to molecular properties. It would prove to be extremely tedious

(or impossible) to "hand-calculate" spectroscopic constants, vibrational and rotational

contributions, thermal corrections and the effects of isotopic substitution on molecular

properties from property derivatives. Therefore, almost all vibrational and rotational

calculations reported in the present thesis have been carried out with the ANHARPS

program [31]. This package was originally written to obtain molecular property derivatives

from least-squares fitting. However, the program has been significantly extended to include

calculation of:

• least-squares property derivatives;

• anharmonic constants and fundamental frequencies;

• properties in arbitrary vibrational-rotational states;

• pure vibrational polarizabilities;

• vibrationally averaged rotational constants and geometries;

• thermal corrections to molecular properties;
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• the effects of isotopic substitution on molecular properties;

• property derivatives in internal coordinates via non-linear transformations;

• anharmonic infrared and Raman transition intensities

Most of the theory for calculation of the quantities above has been described in the previous

Chapter. Similar computer programs exist for computation of fundamental frequencies and

spectroscopic constants from energy derivatives, such as the SPECTRO package [39].

However, ANHARPS also treats other properties such as electric multipole moments and

polarizabilities. The program has been designed to allow simple addition of other molecular

properties, such as hyperpolarizabilities and electric field gradients, and an attempt has been

made to keep the program completely independent of the ab initio code (CADPAC) so that

other ab initio computational programs may be easily interfaced to ANHARPS. The

calculation of least-squares derivatives (described in Section 3.1.1) involves normal mode

calculations, automatic generation of displaced geometries as well as handling and least-

squares fitting of the ab initio properties data for the displaced geometries. Property

derivatives from a central-differences calculation can also be utilised for the vibrational and

rotational calculations with symmetry widely utilised in the program to minimise

computational cost for any ab initio computations. Written in Fortran90, ANHARPS makes

extensive use of modular programming methods and information hiding. Input to the

program is straightforward and a keyword driven method has been utilised to control

program execution.

3.2 Ab initio theoretical methods

A wide variety of ab initio theoretical methods have been utilised in the present

thesis. Standard methods most often used are the SCF, MP2, BD and BD(T) levels of theory

that represent a convenient order of increasing theoretical completeness in the treatment of

electron-correlation. Generally, SCF methods are commonly used for property derivative

studies because they offer the simplest approach to analytic derivative theory [8, 40-42], and

the straightforward evaluation of many electrical properties from a variety of different

computational codes. Analytic evaluation of the dipole moment, quadrupole moment and

polarizability at the MP2 level is possible with CADPAC [27] so the MP2 method has been

utilised for the present least-squares property derivatives procedure. Dipole moment
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derivatives at the MP2 level are also able to be calculated from CADPAC. This simple

electron correlation treatment also yields good results for molecular properties, especially if

the basis set is large. Apart from the good quality results able to be obtained from this

method, MP2 theory also scales properly with molecular size (size-extensive) as opposed to

other theoretical methods such as CISD [43].

The Brueckner doubles (BD) variant [44] of coupled-cluster (CC) theory utilises

Brueckner orbitals that have been shown to have maximal overlap with a full-CI

wavefunction. The Brueckner orbitals are constructed via a rotation of the Hartree-Fock

(HF) orbitals,

BD) =	 HF)

where T is a cluster operator that includes double and higher excitations and K describes the

orbital rotations. The singles amplitudes are effectively absorbed into the HF orbitals via the

orbital rotation procedure. Therefore the BD equations are simpler than the analogous CC

equations leading to less complicated expressions for the analytic derivatives of the BD

wavefunction. The perturbative triples correction is included to make BD theory correct to

fourth-order in a Moller-Plesset perturbation theory analysis and is the same as used for

CCSD(T) theory. Very few electrical property studies have been carried out using BD or

BD(T) methods so relatively little is known about their behaviour with various basis sets and

properties [45] as compared with other electron-correlation methods. It has been shown [45,

46] that BD(T) theory yields results that are almost identical to CCSD(T) and that BD is

more complete than either CCSD or QCISD at fifth order in a Moller-Plesset perturbation

theory analysis [44]. Additionally, the Brueckner method utilises relaxed orbitals by virtue

of the fact that the singles amplitudes are absorbed into the wavefunction. Methods based

upon the CC method do not utilise relaxed orbitals and there is some question as to which

method gives the most reliable and accurate results for molecular properties [45, 47].
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3.3 Finite-field methods for electrical property calculations

Electrical property calculations can be carried out using either analytic or numerical

methods. For wavefunctions that have explicit formulae for the analytic derivatives, the

calculation of electrical properties such as the dipole moment, quadrupole moment and

polarizability are routine [27]. However, for wavefunctions such as those based on coupled-

cluster theory [43] and Moller-Plesset perturbation theory [48, 49], the formulae required for

the calculation of the first and second derivatives are complicated and, as yet, not available

in many computational chemistry codes. The finite-field approach, originally proposed by

Cohen and Roothaan [50], is a numerical method where the field or field-gradient is

introduced into the one-electron part of the molecular Hamiltonian as a perturbation. The

field or field-gradient may also be produced by arrays of point-charges at suitable distances

from the molecule or atom. Only the one-electron integrals are affected by the field or field-

gradient perturbation and so the method is straightforwardly incorporated into ab initio

programs. The energy is calculated in the presence of known field or field-gradient

strengths for the species of interest and then the equation for the charge distribution in the

presence of a field or field-gradient (equation (2.74)) is numerically differentiated to a

suitable order to yield the electrical properties defined as derivatives of the energy with

respect to the perturbation. The method is flexible since different combinations of fields and

field-gradients allow calculation of almost any electrical property component. As with any

numerical procedure, the possibility of numerical inaccuracy through poor choice of field or

field-gradient strength is present and this is especially true for higher order properties such

as the second hyperpolarizability, y, where several different field strengths may be required

to obtain sufficient accuracy. The molecular electron density and energies must also be

well-converged for the numerical differentiation procedure. Computational requirements for

the finite-field calculations may also be substantial since the symmetry of the molecule is

lowered when placed in an external field or field-gradient. However, the finite-field method

does have the advantage that the computed electrical properties obey the Hellmann-Feynman

theorem [51] since they are defined in terms of energy derivatives and not as expectation

values of the wavefunction [52].

Finite-field methods have been utilised in the present thesis for calculation of dipole

and quadrupole moments, polarizabilities and polarizability anisotropies for wavefunctions

involving sophisticated electron correlation treatments. Examples of such theoretical

methods include BD and BD(T), QCISD(T) and MP4, procedures for which analytic

derivative methods are unavailable and/or computationally expensive. For large basis set
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MP2 calculations, finite-field methods were also utilised. Finite-field strengths in the range

0.0005 to 0.002 au have been used in conjunction with first- and second-derivative central

difference formulae for computation of dipole moments and polarizabilities. Quadrupole

moments have been calculated using field-gradient strengths of 0.0005 au. Expected

numerical errors are supplied in the respective methods sections of the following Chapters

and have been estimated from comparison of analytic and numerical SCF and MP2 electrical

property calculations.

3.4 Strategy for obtaining high-quality electrical properties

The strategy for obtaining high-quality predictions of ab initio electrical properties

for the vibrational ground state involves two distinct steps:

(1) Geometry optimization and calculation of energy and property derivatives at the SCF

or MP2 level of theory with a moderately sized basis set to reduce computational cost.

The derivatives are then used for calculation of zero-point vibrational corrections and

other spectroscopic quantities corresponding to the optimized theoretical geometries,

re(1).

(2) Vibrationless electrical properties are then calculated with a more complete basis set at

a high-level theoretical or experimental geometry, r e(2). In this thesis, the level of

theory used for this step is usually BD or BD(T), but other high-level correlated

methods such as QCISD(T), CCSD(T) or MP4 could be used with similar outcomes.

The ZPVC from step (1) is then added to the vibrationless electrical property Pe to

give a ground state vibrationally averaged property

(P)0	Pe (re (2)) + ZPVC(re (1))

The above approach circumvents the calculation of energy and property derivatives

at a non-stationary point on the potential energy surface (PES), thus avoiding projection of

the gradient contribution from the second and higher-order energy derivatives at a non-

stationary point [53]. The success of the approximation relies on the similarity of the PES

about the true re(2) and the theoretical PES about the optimized r e(1) geometry (a situation

that should be well satisfied for regions close to the potential energy minima).
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Obviously, a full BD(T) calculation with a large basis set would render the above

approximation unnecessary as both vibrationless properties and the ZPVC could be

computed to the same accuracy. However, such large BD(T) or similar calculations are

presently not feasible, even for small polyatomic molecules, and hence the above

approximation is utilised in the present thesis.

3.5 Pseudo-BD(T) method for dynamic polarizabilities

As mentioned in the previous Chapter, electrical properties such as the polarizability

and hyperpolarizabilities are frequency-dependent and many experiments yield

polarizabilities that depend on the frequency of the incident light. Theoretical approaches to

calculation of dynamic polarizabilities have been based upon SCF methods [54] and the

second-order polarization propagator approach (SOPPA) [55], although recent developments

have allowed calculation of dynamic (hyper)polarizabilities that include the effects of

electron-correlation at both the MCSCF [56-58], MP2 [59-61] and coupled-cluster linear

response (CCLR) theory [62, 63].

To circumvent the lack of availability of a suitable ab initio code for calculation of

dynamic MP2 or BD(T) polarizabilities, the pseudo-BD(T) method was developed to

incorporate some degree of electron-correlation effects into predictions of available SCF

frequency-dependent polarizabilities. Dynamic polarizabilities are obtained at the SCF level

of theory using time-dependent Hartree-Fock theory (TDHF) and are scaled by the

<BD(T)>0 / SCF ratio. This yields approximate vibrationally averaged BD(T) theoretical

values for the polarizability tensor. The procedure assumes that the relative dispersion of the

TDHF and BD(T) curves is identical or that the relative contribution of electron correlation

is independent of the optical frequency, (Dm of the dynamic polarizability. Therefore, for a

polarizability frequency dependence or dispersion function f(o)6), the following equations are

obtained:

a as (o), )(TDHF)	 a (0) (TDHF ){1 + f (co,)}

a as (Ng. )(BD(T))	 aap (0)(BD(T )){1 + f(0), )}

Combining these equations, with inclusion of a zero-point vibrational correction, leads to

(oc (cob )(pseudo - BD(T))) 0
a (0) (BD (T )))

aa (0)(TDHF )
a (o) )(TDHF)a P (3.7)
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The above approximation also avoids assuming that the correlation contribution is

independent of co,. Scaling of the tensor components in this manner is expected to lead to a

dispersion curve (a(wa) vs co6 plot) that rises a little faster than that found for the

conventional TDHF dispersion.

3.6 Basis sets for molecular property calculations

Calculations of vibrational averages of electrical properties and pure vibrational

polarizabilities require basis sets that can not only reproduce the electrical properties and

their derivatives with accuracy, but also provide a good description of the energy

hypersurface (the derivatives of the energy). Reliable estimates of the geometries and

vibrational frequencies of the molecule are necessary since it has been concluded from a

number of studies of anharmonic force constants that the largest source of error in these

constants arises from errors in the geometry and harmonic frequencies and not from errors in

the cubic, quartic and higher-order force constants [1, 53]. Therefore, if a basis set for

calculating reliable geometries and vibrational frequencies can be successfully developed,

then there is a greater likelihood of calculating a good quality anharmonic energy surface

and corresponding anharmonic corrections. It is indeed fortunate that basis sets for

computing geometries and harmonic frequencies have already been constructed and much

work has been performed on determining the optimum basis set requirements for various

systems [2, 4, 5, 64-68]. Basis set requirements for electrical property calculations are

discussed in the following section, along with a novel approach for development of basis

sets using atomic natural orbitals (ANOs).

Basis sets for accurate prediction of electrical properties have been successfully

constructed using either well-founded rules-of-thumb [69] or a systematic method [70-75].

Optimizing basis sets for reproducing specific properties may be a troublesome and time-

consuming task with an inordinate amount of trial and error involved in the process; this is

especially true if the basis set is to be restricted to a manageable size. Dynamical electron

correlation effects are rarely incorporated into the one-particle basis set as most basis set

optimization for electrical properties takes place at the SCF level. This is despite the fact

that the majority of electrical property calculations are subsequently performed at correlated

levels of theory. Therefore, the present work is motivated by a need to obtain electrical

property basis sets, via a simple method, that (1) reproduce both the accuracy of larger basis
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sets, (2) incorporate dynamical electron correlation effects and (3) are also economical to use

in combination with sophisticated electron correlation treatments.

Basis sets for molecular properties require polarization and diffuse functions to

describe the electron distribution at a range of distances from the nuclei. If a basis set

contains sufficient functions to effectively saturate the orbital space for a given symmetry

type or angular momentum, then accurate molecular properties should be obtained. Even-

tempered basis set expansions should well satisfy this criterion provided that the parameters

used to define the even-tempered series are carefully chosen. Basis sets constructed in this

way have proven to be particularly useful in obtaining the convergence behaviour for many

molecular properties [70, 76] and although there is no mathematical theorem to suggest that

an even-tempered expansion will offer the fastest convergence to the Hartree-Fock limit or

basis set limit for a given property, Woon and Dunning [70] have found it to be more

reliable and stable than other construction methods. The primary difficulty that arises from

the even-tempered method is the rapid increase in basis set size thus leading to sets that

either suffer from linear-dependence problems or are too large for high level electron-

correlation calculations on molecules. Correlation consistent basis sets developed by Woon

and Dunning are based on augmented cc-pVXZ sets where X = D, T, Q, 5 for double, triple,

quadruple and quintuple-zeta sets. The augmented-cc-pVTZ basis set is a suitable candidate

for calculation of electrical properties since it has been systematically constructed with

augmenting functions optimized for anion energies. However, the size of the basis set,

represented as [5s4p3d2fl4s3p2d], places it out of reach for many molecular studies. The

approach taken in the present work involves construction of a slightly smaller

[6s4p3d1f/4s3p1d] basis set for electrical property calculations that yields an accuracy

greater than or equal to, the accuracy of the aug-cc-pVTZ basis set for electrical properties.

3.7 Atomic natural orbital basis sets for electrical properties

Atomic natural orbital (ANO) contraction methods were originally proposed by

Almla and Taylor [77-79] to deliver efficient contracted basis sets possessing small

contraction errors for molecular properties with respect to large uncontracted primitive sets.

In their landmark papers, large uncontracted ( 13s8p) substrates were augmented with both

polarization and diffuse functions then generally contracted using CISD atomic natural

orbitals to yield smaller basis sets that reproduced both the SCF and correlation energy with

high accuracy. While their method was extremely successful for the energy and slightly less
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successful for multipole moments, the method appeared not to perform as well for response

properties such as the polarizability [79]; extra diffuse functions were required to augment

the ANO basis sets to obtain sufficient accuracy. Widmark et al. [72] have also utilised

density matrix averaged ANOs in contracting basis sets for electrical properties with some

success for computation of ionisation potentials. However, the accuracy of polarizabilities

using the large [6s5p4d3f] sets was less satisfactory.

The basis set construction method proposed in the present work is based on MP2

atomic natural orbitals (MP2–ANOs) for obtaining highly accurate basis sets that reproduce

the electrical properties of the uncontracted set. It is believed that if the characteristics of

even-tempered expansions can be reproduced within smaller basis sets by contracting the

even-tempered functions with ANOs, then highly accurate and cost effective sets should

result. Both Alm1Of and Taylor [77, 79] and Widmark et al. [72] contracted the entire set

(substrate and polarization functions) using ANOs to obtain improved energies and

minimize contraction errors in the substrate. However, in the present study, the substrate is

left completely contracted in the construction of the basis sets so that only the polarization

functions are contracted using MP2–ANOs. Although MP2–ANOs have been utilised in the

present work, similar results are expected using ANOs from CISD or other correlated

wavefunctions. One particular criticism of ANO sets is the heavy contraction of large

numbers of primitive gaussians into a single basis function thereby increasing the time

required to compute the two-electron integrals. This problem may be partially remedied by

using general contractions. However, the majority of computational codes utilise segmented

contractions and consequently these basis sets are probably unsuitable for SCF calculations

where the integral calculation would be the limiting step. For correlated methods that

approximately scale as n 5 , iterative n 6 or n7 (for n basis functions) the computation of

integrals is no longer the limiting step of the calculation and in many instances need only be

performed once. However, as the smaller ANO contracted sets should obtain most of the

accuracy of the uncontracted sets, the cost is effectively the same. The method of basis set

construction is now outlined in detail.
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3.8 Construction of ANO basis sets for first and second-row atoms

Restricted open-shell second-order Moller-Plesset perturbation theory (ROMP2) has

been outlined by Amos et al. [80] and Knowles et al. [81]. Good quality contracted triple-

zeta valence (TZV) substrates of Schafer et al. [82, 83] were used and may be represented by

[3s], [5s3p] and [5s4p] for H/first-row/second-row atoms respectively. The substrates were

left fully contracted in the construction procedure. Polarization function exponents were

taken from Dunning and Woon [70, 84, 85] where the d- and f-type cc-pVTZ and s-, p-, B-

and f-type aug-cc-pVTZ exponents were utilised.

For heavy atoms, the s, p and f orbital spaces were extended by 2 functions each and

the d orbital space by 4 functions, which should be sufficient for the present purposes. For

hydrogen, the s, p and d orbital spaces were increased by 2, 4 and 2 functions respectively.

As an example of the construction procedure for oxygen, the substrate and augmenting

function exponents are supplied in Table 3.1. The most diffuse s- and p-type function

exponents were determined by even-tempering the aug-cc-pVTZ s- and p-type functions

with respect to the most diffuse functions of the substrate. The most diffuse d-type function

was generated by even-tempering the exponents for the aug-cc-pVTZ and cc-pVTZ basis

sets. A similar construction procedure was followed for hydrogen with the exponents of the

augmenting functions shown below.

H atom :

2s (0.039469, 0.011081)

4p (1.407, 0.388, 0.102, 0.026814)

2d (1.057, 0.247)

The most diffuse s- and p-type functions for hydrogen were derived from even-tempered

expansions with the s-type exponents scaled by (1.25) 2 to match the scaled TZV substrate s-

type exponents [82, 83]. All other exponent values for hydrogen were taken from cc-pVTZ

or aug-cc-pVTZ basis sets. The resulting size of the uncontracted basis is

[7s5p4d2f15s4p2d] for first-row atoms/hydrogen and [7s6p4d2f] for second-row atoms.

For each atom, closed-shell and open-shell MP2 gradient calculations were then

performed for the ground electronic states of the atoms to obtain the MP2 relaxed density

matrix which was subsequently diagonalized to obtain the natural orbitals and occupation

numbers.



s-type exponents

27032;382631

4052.3871392

922.32722710

261.24070989

85.354641351

31.035035245

12.260860728

4.9987076005

I. 1703 08158

0.46474740994

0:18504536357

0.073760

0.029401

substrate

substrate

substrate

substrate

substrate

aug-cc-pVTZ

even-tempered

p-type exponents

63.274954801

14.627049379

4.4501223456

1 275799647

substrate

	

0.52935117943	 substrate

	

0.17418421270	 substrate

	

0.059740	 aug-cc-pVTZ

	

0.020419	 even-tempered
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Table 3.1.

Oxygen atom s-, p-, d- andf-type function exponents (in au) for the MP2–ANO basis set.

Shaded functions belong to the TZV (11 s6p)I[5s3p] substrate from Schafer et al. [82, 83].

d-type exponents

	2.314	 cc-pVTZ

	

0.614	 cc-pVTZ

	

0.214	 aug-cc-pVTZ

	

0.071002	 even-tempered

f-type exponents

	1.428	 cc-pVTZ

	

0.5	 aug-cc-pVTZ
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The MP2–ANOs were averaged and contracted to yield a basis for first-row and

second-row atoms of [6s4p3d1f] and [6s5p3d1f] respectively with contraction coefficients

and exponents supplied in Appendix IV. Appropriate contraction coefficients can be

obtained from the following averaging formulae for p-, d- andf-type functions [72],

I
C(p) =	 + C(p) + C(p,))

3

C(d) = -1– (2C(d, v ) + 2C(d,,) + 2C(d,z ) +	 + C(d,z ) + C(d, z ))	 (3.9)5 

C(f) =	 +	 + C(f,,,)) + -1C(f„,z)
2	 (3.10)

CV,)	 C(f„)	 C(f,,)	C(4,,)	 C(4,z))

However, the averaging for d- and f-type functions was actually carried out using the simple

average of the six d-type and ten f-type component coefficients. The difference in the

resulting contraction coefficients for the two methods is small. The coefficients for the s-, p-

, d- and f-type primitives were also normalized for use in molecular calculations.

Obviously, the MP2–ANO contraction scheme cannot be applied to the hydrogen

atom and other one-electron species. Therefore a suitable hydrogen atom basis set was

derived from MP2 calculations on the H2 molecule, at the re bond-length of 0.74144 A [86],

with the MP2–ANO contraction method used to give a basis set represented as [4s3p1d].

Although a larger uncontracted set could have been used in the present procedure by adding

extra s and p functions, linear dependence problems generally resulted.

The basis set specification for both the substrate and the resulting contracted

polarized basis set may then be summarised as follows:

Atom Contraction Scheme Uncontracted Contracted

H 41111 / 1111 / 11 8s4p2d 4s3pld

B–Ne 6211111/41111/1111/11 13s8p4d2f 6s4p3d1f

Al–Ar 7321111 / 61111 / 1111 / 11 16s10p4d2f 6s5p3d1f

(3.8)
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Cartesian 6-membered d-type and 10-membered f-type basis functions were utilised

within the ab initio program CADPAC [27] for all calculations. It should be noted that the

present method is entirely general and is only limited by the number of primitives that may

be contracted into a given shell. Therefore, in principal, any combinations of exponents and

primitive gaussians may be used, but in practice integral times will be substantially

increased if the number of contracted primitives is excessively large. With the exception of

hydrogen, the basis sets are also derived entirely from atomic calculations and do not include

any explicit optimization for the molecular environment. However, field-dependent and/or

anion-optimized functions have been used in constructing the even-tempered expansion so it

is likely that these functions will compensate for rearrangement of the electron-density

within a molecular environment.

3.9 Validation of ANO basis sets for first and second-row atoms

To demonstrate the accuracy of the present basis sets, a number of example

calculations using both uncontracted and MP2—ANO contracted sets, are reported in this

section. It should be noted that all of the ANO sets have been explicitly designed for

electrical properties and may be slightly deficient in reproducing geometries, energies and

frequencies since high exponent polarization functions have not been added to improve the

energies calculated from these sets. Contraction errors for the various properties and the

accuracy of the sets with respect to size of the basis are the primary concern.

The polarization and diffuse functions obtained from the contraction procedure may

be transferred to different substrates such as double-zeta (DZ). Additionally, some of the

functions may be removed from a particular atom for correlated calculations where the size

of the basis set must be restricted to save computational resources.

Neon and argon

Mean polarizabilities of neon and argon atoms are presented in Table 3.2 for various

basis sets and have been calculated via finite-field methods with field-strengths of 0.001 au.

The uncontracted (7 s5p4d21) set for neon yields SCF results that are quite close to the

Hartree-Fock limit for the polarizability and are comparable in quality to results from the d-

aug-cc-pVTZ [6s5p4d3f] and t-aug-cc-pVTZ [7 s6p5d4f] basis sets for this property. The

BD(T) theoretical estimate for the polarizability of neon agrees well with experimental

estimates. Contraction of the basis functions leads to an SCF polarizability of 2.361 au

which is more accurate than the aug-cc-pVTZ [5s4p3d2f] result of 2.194 au and closer to the
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d-aug-cc-pVTZ value. This is particularly encouraging as one of the criteria for using MP2–

ANO contractions was to obtain the accuracy of the aug-cc-pVTZ set and in favourable

circumstances, acquire the accuracy of the d-aug-cc-pVTZ set for the polarizability. An

alternative method of constructing basis sets for electrical properties through optimizing

diffuse functions in the presence of a field is a less efficient and more tedious process than

the present single MP2 gradient calculation for an atom. A strong disadvantage of any

exponent optimization method is that removal of the optimized diffuse functions often leads

to poor predictions of the properties if other diffuse functions are not present in the basis set.

This is not the case for the MP2–ANO contracted set, as demonstrated by the results in

Table 3.2 for neon, where the removal of the 3rd d-type polarization function and f-type

function, to give the [6s4p2d] set, does not markedly affect the value of the mean

polarizability.

The MP2–ANO [6s5p3d1f] contracted basis set for argon appears to be less

successful in reproducing the accuracy of the uncontracted set since, at the MP2 level, the

differences between polarizabilities are larger than found for neon. Nevertheless, the MP2–

ANO set still acquires the accuracy of the aug-cc-pVTZ basis, yielding an MP2 mean

polarizability of 10.937 au which is in reasonable agreement with the d-aug-cc-pVTZ result

of 11.169 au. Core correlation may be responsible for some of the discrepancy between the

present uncontracted (7 s6p4d21) set MP2 values and the results of Woon and Dunning for

the largest augmented basis sets, since the frozen core approximation was used by Woon and

Dunning for their finite-field polarizability calculations. However, it should be noted that

atoms perhaps represent a worst-case scenario for polarizability calculations as there is no

possibility of interatomic polarization, such as that found for molecules [87].
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Table 3.2.

Mean polarizabilities of neon and argon obtained with various basis sets and levels of

theory.a

Basis Set NBF SCF MP2 BD BD(T) Experiment

Ne
(7 s5p4d2f) 56 2.376 2.699 2.619 2.673 2.67(2)b, 2.669c
[6s4p3d1f] 36 2.361 2.667 2.593 2.641
[6s4p2d] 30 2.325 2.632 2.573 2.618
cc-pVTZ 35 1.026 1.028
aug-cc-pVTZ 55 2.194 2.437
d-aug-cc-pVTZ 75 2.375 2.711
t-aug-cc-pVTZ 95 2.375 2.712

Ar
(7 s6p4d2f) 69 10.697 11.132 11.063 11.153 11.092(9)b,11.08c
[6s5p3d1f] 49 10.626 10.937 10.882 10.950
[6s5p2d] 33 10.204 10.468 10.481 10.554
aug-cc-pVTZ 59 10.438 10.814
d-aug-cc-pVTZ 79 10.701 11.169
t-aug-cc-pVTZ 99 10.702 11.170

a All polarizabilities are in atomic units. The (7 s5p4d2j) and (7 s6p4d2f) basis sets have

uncontracted polarization functions, the [6s4p3d1f], [6s4p2d] and [6s5p3d1f], [6s5p2d]

basis sets have ANO-contracted polarization functions. The cc-pVTZ and augmented-

cc-pVTZ results were taken from Woon and Dunning [70].

NBF is the number of basis functions for the basis set. The values for the Woon and

Dunning sets were calculated assuming six-member d-type and ten-member f-type

functions, although Woon and Dunning carried out the calculations using spherical

harmonic five-member d- and seven-memberf-type basis functions.

b Static mean polarizability from a quadratic extrapolation of refractivity data [88].

Static dipole oscillator strength distributions (DOSD) estimate [89, 90].
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Ammonia

Although the MP2–ANO basis sets were developed from atomic calculations, they

perform equally well for molecular property calculations. For both uncontracted and

contracted basis set calculations reported in Table 3.3, the hydrogen atom utilised the

TZPOL1 basis set (reported in [91] as TZP1), with an additional d-type function (exponent

of 1.057 a02). This basis set was used on hydrogen to only focus on the contraction error

for the nitrogen atom rather than utilising contracted sets for both nitrogen and hydrogen.

The experimental re geometry of Benedict and Plyler [92](rNE, = 1.0124 A, OHNH = 106.67 °)

was used for these calculations. Energies and electrical properties of NH 3 are presented in

Table 3.3 for the uncontracted and MP2–ANO contracted basis sets. The contraction error

for the SCF energy is only 5.8 piartrees and this is increased to 6.1 mHartrees at the MP2

level. For dipole and quadrupole moments, differences between the uncontracted and

contracted basis set values for both the SCF and MP2 levels of theory are relatively

insignificant; < 0.0014 au and < 0.0025 au for the dipole and quadrupole moments

respectively. Mean polarizability differences are also quite small (0.003 au) for SCF and

only a little larger at the MP2 level (0.005 au). Generally for NH 3 , the contraction errors for

the properties from this basis set on nitrogen are exceptionally small.

Results in Table 3.4 demonstrate the contraction error for the properties when MP2–

ANO basis sets are used on both nitrogen and hydrogen atoms. Although the contraction

error for the SCF dipole moment is exceedingly small (< 0.0001 au), contraction errors for

other properties are larger for this basis set. A different basis set optimization procedure

should probably be used for hydrogen as the polarization functions from the 11 2 molecule

MP2–ANOs may not be well-suited towards general molecular calculations. However, the

contracted basis set yields relatively good quality results which compare quite well with the

uncontracted (7 s5p4d2f14s3p1d) basis set values reported in Table 3.4.
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Table 3.3.

SCF and MP2 energies and electrical properties of ammonia using the uncontracted

and contracted MP2–ANO basis sets on the nitrogen atom. a

SCF	 MP2

Property Uncontr. Contr. Uncontr. Contr.

E –56.222803 –56.222745 –56.484156 –56.478072

1-t, –0.6374

–2.1515

–0.6372

–2.1490

–0.6027

–2.2405

–0.6013

–2.2395

a 12.948 12.945 14.262 14.257
Da 0.530 0.520 1.844 1.840

a All properties are in atomic units. The uncontracted basis set has uncontracted polarization
functions on nitrogen and is represented as (7 s5p4d2f) (123 basis functions). The
contracted basis set has polarization functions on nitrogen constructed from MP2–ANOs
and is represented as [6s4p3d1f] (103 basis functions). The basis set for hydrogen is the
TZPOL I basis set supplied in [91] with an additional d-type function (exponent of 1.057).

Table 3.4.

SCF and MP2 calculations on ammonia using the uncontracted and contracted

MP2–ANO basis sets for both nitrogen and hydrogen atoms. a

SCF	 MP2

Property Uncontr. Contr. Uncontr. Contr.

E –56.222863 –56.222053 –56.485223 –56.472205

P,

e..
–0.6375

–2.1459

–0.6376

–2.1554

–0.6022

–2.2359

–0.6033

–2.2527

a 12.954 12.935 14.293 14.302
Da 0.516 0.543 1.847 1.909

a All properties are in atomic units. The uncontracted basis set has uncontracted polarization
functions on nitrogen and hydrogen and is represented as (7 s5p4d2fI5s4p2d) (153 basis
functions). The contracted basis set has polarization functions on both nitrogen and
hydrogen constructed from MP2–ANOs and is represented as [6s4p3d1114s3p I d] (103 basis

functions). The basis set for hydrogen was constructed using MP2–ANOs for the H2

molecule.
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Carbon Dioxide

Highly accurate electrical property calculations using electron-correlation treatments

such as MP4, BD(T) and CCSD(T) require considerable computational time and disk

storage. Approximate costs for BD(T) and CCSD(T) theory are iterative n 6 + a single n7

step for n basis functions, while MP4 requires a single n7 step. The MP2–ANO basis sets

offer one way to circumvent the computational cost problems since they reduce the number

of basis functions to an acceptable size while still retaining nearly all of the accuracy of the

uncontracted set. Calculations of the mean polarizability and polarizability anisotropy for

CO, using a variety of basis sets, at the experimental re geometry of Graner et al. [93, 94](rc0

= 1.15995884 A), are presented in Table 3.5. For these calculations, the finite-field method

was utilised with field-strengths of 0.002 au. The calculations with f-type functions on all

atoms with the [6s4p3d1f] basis set exceeded available computational resources for BD(T)

calculations. Therefore f-type functions on oxygen where removed and the d-type functions

have been uncontracted to give a [6s4p4d1f/6s4p4d] set, thereby saving 20 basis functions.

The contracted set used in Table 3.5 is built from MP2–ANO contracted d-type functions.

Table 3.5.

Carbon dioxide a and Aa using uncontracted and the contracted
MP2–ANO basis sets.a

Basis Set SCF MP2 BD BD(T)

Uncontracted 15.849 17.835 17.299 17.521
Contracted 15.836 17.802 17.277 17.497
Difference 0.013 0.033 0.022 0.024

Uncontracted 11.711 14.545 13.880 13.943
Contracted 11.812 14.659 13.997 14.061
Difference –0.101 –0.114 –0.117 –0.118

CO2

a

Aa

a All properties are in atomic units. The uncontracted basis set with
uncontracted d-type functions is represented as [6s4p4d1f/6s4p4d]
(136 basis functions) (carbon/oxygen). The contracted basis set has d-type
polarization functions contracted using MP2–ANOs and is represented as
[6s4p3dlf/6s4p3d] (118 basis functions).
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Apparently, the contraction of the d-type functions only leads to small differences in

the mean polarizability with a maximum contraction error of 0.033 au (< 0.19% of a from

the uncontracted basis set) found for MP2 theory. Differences between the polarizability

anisotropy for the two basis sets are also quite small with respect to the uncontracted

property. However, the uncontracted basis set calculation required 1.8 times the disk storage

and 1.7 times the cpu time of the contracted basis set calculation. Obviously, the required

computational cost must be weighed against the accuracy obtained from the calculation.

Nevertheless, the MP2–ANO contraction scheme does offer another way of retaining

accuracy in a truncated basis set while avoiding the time-consuming optimization of

exponents for a given molecule or basis set.

It has been shown that basis sets possessing MP2–ANO contracted polarization and

diffuse functions are capable of reproducing electrical properties with an accuracy close to

that of their uncontracted counterparts. Polarization and diffuse functions obtained from the

present contraction scheme should be transferable to other substrates such as double-zeta

(DZ) with minimal loss of accuracy. Full contraction of the substrates and polarization

functions would prove to be computationally very costly and likely to lead to inefficient

basis sets; this procedure has been avoided in the present work. The transferability approach

has been used for construction of the DZP–ANOx type basis sets (x = 1, 2, 3), for later

studies on the fluoromethanes (Chapter 6), ethene (Chapter 7) and ethane (Chapter 8), where

the MP2–ANO polarization and diffuse functions have been combined with the DZ substrate

of Thakkar et al. [95].

Although electrical properties such as the polarizability have been targeted in the

study, the MP2–ANO contraction is open-ended and may be used with any combination of

gaussian primitives or choice of molecular properties. It is not recommended that these sets

be used for SCF calculations since the time to compute two-electron integrals is expected to

dominate such computations. However, the MP2–ANO sets are suitable for accurate

electrical property investigations involving high-level electron correlation methods, where

the cost of the calculations is dominated by the approximate iterative n 6 + single step n7 cost

for n basis functions and not by the evaluation of two-electron integrals.
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Chapter Four

Second-row hydrides : SiH4, PH3, H2S and HC1

4.1 Introduction

Of all molecules studied to date, the first-row hydrides CH 4, NH3 , H20 and HF

appear to be among the most popular due to their relatively small size and simple structures.

Zero-point vibrational corrections (ZPVCs) to the electrical properties of the first-row

hydrides have already been published [1] as part of a validation of the least-squares

derivative method and that work demonstrated the feasibility of routinely incorporating

ZPVCs into ab initio electrical property calculations. However, very few theoretical

electrical property studies have been performed on the analogous second-row series: SiH4,

PH3 , H2S and HC1. Highly accurate ab initio electrical property calculations are able to be

carried out on the second-row hydride molecules since large basis sets can be utilised in

conjunction with accurate electron correlation methods. In this respect, a study of the

second-row hydrides provides the possibility of calibrating theoretical methods and a serious

attempt is made to provide high quality theoretical predictions in the present Chapter.

Experimental dipole moments of these molecules have been determined with high

precision from microwave Stark and molecular beam electric resonance (MBER)

spectroscopy [2-5]. Unfortunately, there have been no experimental estimates of quadrupole

moments published for PH 3 or H2S. Reliable experimental mean polarizabilities from

refractivity data exist for the molecules SiH 4 [6, 7], H2S [8-10] and HC1 [11, 12], but the

mean polarizability of PH3 has only been investigated via a single dielectric constant study

[13]. The polarizability anisotropies for HC1 and H 2S have been studied experimentally via

Rayleigh light scattering and rotational Raman spectroscopy [14-16]. The polarizability

anisotropy of H2S is exceptionally small and should provide an illuminating test of the

accuracy of the present ab initio procedures.
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Considering incompleteness of some of the experimental data and as an extension of

the work on the first-row hydrides [1], a study of the second-row hydrides SiH 4, PH3 , H2S

and HC1 was undertaken with an emphasis on providing reliable predictions of dipole and

quadrupole moments, polarizabilities and polarizability anisotropies for these molecules.

The Brueckner orbital variant of CCSD(T) theory [17], namely Brueckner doubles (BD)

with perturbatively linked triples, BD(T), has been combined with large triple-zeta polarized

basis sets in order to establish the basis set and correlation limit for the vibrationless

properties. Vibrational effects have been included through calculation of the ZPVCs for the

ground vibrational state, with pure vibrational polarizabilities also presented. The effect of

deuterium substitution on the properties is investigated and the frequency dependence of the

dipole polarizability is also explored. Theoretical values are critically compared with

available experimental results in an effort to highlight any discrepancies between theory and

experiment. Where there is little or no data for the studied properties, it is hoped that the

present predictions will perhaps act as an incentive for further experimental study on these

molecules. The research presented in this Chapter has already been published [18] and a

reprint of that work is included in Appendix V. The majority of that material is included in

the present thesis as it makes an important contribution to the overall discussion. Where

precise details have been omitted, they may be found in the published paper.

4.2 Computational methods

4.2.1 Vibrational averaging and property derivative calculations

The required property derivatives up to fourth-order for the energy, dipole and

quadrupole moments, polarizabilities and polarizability anisotropies were computed via the

least-squares technique described in Chapter 3. Degenerate modes for PH 3 and SiH4 were

aligned with respect to symmetry planes of the molecules to match the usual conventions as

outlined by Cyvin et al. [19]. In all cases, the principal axis of rotation was chosen to be the

z axis with the heavy atom lying along the positive z direction. For H2S, the molecule was

chosen to lie in the xz plane. Quadrupole moments were calculated with respect to the

molecular centre of mass. All least-squares fitting, generation of grid points, calculation of

derivatives, vibrational corrections and pure vibrational polarizabilities was carried out using

ANHARPS [20]. Unless otherwise specified, all calculations reported in this Chapter refer

to the 28SiH4, 31 PH3 , H232S and H35C1 isotopomers corresponding to the most abundant

isotopes of the heavy atoms, with isotopic masses supplied in Appendix II. Isotope effects
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arising from deuterium substitution for SiD4, PD3 , D2S and DC1 were obtained using the

theory and methods outlined in Chapters 2 and 3.

4.2.2 Basis sets and ab initio methods

Two types of basis sets were used in the present study, both of which are based on

the triple-zeta valence substrates of Schafer et al. [21, 22]. For the vibrational averaging and

property derivative calculations, the TZPOL1 molecular basis set was used and may be

represented as [7 s6p2d1f14s3p] for heavy atoms / hydrogen. Exponents and contraction

coefficients for the TZPOLI basis set are reported in the published work [18]. To obtain

higher accuracy in frequencies and geometries, d-type functions on H are probably

warranted but were omitted from this work for reasons of high computational cost.

For high-accuracy electrical property calculations at the experimental re geometries,

the MP2–ANO basis set, described in Chapter 3, was utilised. To improve the energies

calculated with the MP2–ANO set and partially address core correlation effects,

uncontracted high exponent d-type functions were added to the heavy atoms. The inclusion

of diffuse d-type functions on hydrogen was also found to have a dramatic effect on

correlated polarizabilities. The MP2–ANO basis set for second-row atoms may be

represented by [6s6p4d1f/4s3p1d] for heavy atoms/hydrogen and is designated as TZP-

ANO1 in the present work. Exponents and contraction coefficients for the TZP–ANO1

basis are supplied in Appendix IV. Although larger basis sets could be utilised, especially

for calculations on H2 S and HC1, high level BD and BD(T) calculations with the same high

quality basis set are to be performed without exceeding current computational resources; the

MP2–ANO type of basis set well satisfied this requirement.

Calculations of the electrical properties using the TZP–ANOI set were performed at

the experimental re geometries for SiH4 (rsiii = 1.4707 A [23]), PH 3 (r„,. 1.41175 A, eiw. =

93.4210 ° [24]), H2S (rSH = 1.3356 A, elisH = 92.12 ° [25]) and HC1 (rHCI = 1.2746 A [26]). All

dipole moments and dipole polarizabilities were obtained via finite-field techniques using

central differences of field-dependent energies in CADPAC 5.2 [27]. Electric field strengths

of 0.001 au were found to be suitable for these calculations, with quadrupole moments

calculated from central differences of energies in the presence of finite-field-gradients of

strength 0.0005 au. Numerical errors in the properties are estimated to be less than 10- 5 au

for the dipole moment and less than 10- 3 au for the polarizability tensor components, with an

error of less than 0.0002 au expected for the quadrupole moments. Atomic units are used

throughout and conversion factors to SI units are provided in Appendix I. Although the
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present results are not explicitly compared with other theoretical estimates, it is noted that

several studies have been performed on HC1, the most extensive on the dipole and

quadrupole moments [28, 29], dipole polarizability and hyperpolarizabilities [28, 30]. Many

other dipole moment and polarizability calculations on HCI are summarised by Maroulis

[28]. Other electrical properties studies on the second-row hydrides include those of

Dougherty and Spackman [31, 32] and Sadlej [33].

4.3 Results and discussion

4.3.1 Zero-point vibrational corrections

Zero-point vibrational corrections to the various properties are presented in Table

4.1. Dipole moment corrections for PH3 decrease the magnitude of the dipole moment with

the largest contribution to the ZPVC arising from the degenerate v3 "asymmetric stretching"

mode. For HC1, bond stretching causes an expected increase in the dipole moment with SCF

and MP2 ZPVCs in good agreement. It is interesting to find that both SCF and MP2

vibrational corrections have the same sign for PH 3 and HC1, whereas for H 2S the SCF

corrections are of opposite sign to their MP2 counterparts. This is not too surprising given

that the vibrational correction for this molecule is of very small magnitude.

It is difficult to discern any firm trends from the ZPVCs for dipole and quadrupole

moments. However, for the mean polarizabilities there is a regular decrease across the row

where the MP2 percentage corrections to the vibrationless property are 4.0, 2.8, 1.6 and

0.9% respectively for SiH4, PH3 , H2S and HC1. This can be explained by the decrease in the

number of vibrational modes able to influence a since, to a rough approximation, the MP2

vibrational contribution per mode for SiH 4, PH3 , H2S and HC1 is 0.135, 0.139, 0.133 and

0.150 au respectively. This simple analysis obviously neglects the fact that different types

of modes, both bending and stretching, are contributing various amounts to the ZPVC, but it

does show that the contribution to the mean polarizability per mode is approximately

constant. Agreement between SCF and MP2 ZPVCs for this property is also exceptionally

good. Corrections to the polarizability anisotropy are particularly important, with

percentage corrections to the vibrationless property of as much as 49% for H 2S at the MP2

level of theory. Such large percentage corrections are primarily due to the small magnitude

of the uncorrected Aa, but they do highlight the fact that the ZPVC should not be neglected

for this property in any ab initio study aiming for definitive results.
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Table 4.1.

SCF and MP2 TZPOL1 vibrationless properties and zero-point vibrational corrections

(ZPVCs) (in au) to the electrical properties of the second row hydrides.a

SCF	 MP2

Property Pe ZPVC Pe ZPVC

Siff, a 29.697 1.1690 30.670 1.2135

PH 3 II,
(9z

-0.2972
-1.960

0.01365
0.0327

-0.2400
-1.669

0.00948
0.0309

a 29.608 0.8257 30.200 0.8326
Aa 1.252 -0.2717 1.772 -0.2049

H 2 S -0.4289 0.00046 -0.3920 -0.00135

„ 2.250 0.0063 2.087 0.0076
-2.924 -0.0301 -2.883 -0.0359

ezz 0.674 0.0238 0.796 0.0283

alk 23.841 0.6096 24.326 0.5789

24.008 0.0936 25.044 0.1360
oc__ 23.385 0.4787 24.268 0.4778

a 23.744 0.3940 24.546 0.3975

0.559 -0.0474 b 0.748 -0.3681 b

HC1 -0.4651 -0.00712 -0.4370 -0.00706

2.820 0.0534 2.766 0.0550
a 16.689 0.1466 17.325 0.1500
,Na 1.689 0.3013 1.624 0.2747

a In each case the principal rotation axis was chosen to be the z axis with the heavier atom

lying along the +z axis; hydrogen sulfide lies in the xz plane. Quadrupole moment

corrections were derived from quadrupole moments relative to the molecular centre of

mass. Equilibrium vibrationless properties Pe were calculated at the respective SCF and

MP2 optimized geometries (supplied in Appendix III) using the TZPOL1 basis set.

b Calculated using the method described in Chapter 2, Section 2.4.
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4.3.2 Pure vibrational polarizabilities and polarizability anisotropies

Pure vibrational polarizabilities for the ground vibrational state and infinite

wavelength have been computed using the Bishop and Kirtman perturbation theory

formalism [34, 35], implemented as described in Chapter 3, and are compared with

experimental results in Table 4.2. In all cases, the SCF values of av are systematically larger

than their MP2 counterparts. This is likely to be due to an improved description of the

dipole moment surface at the MP2 level of theory, yielding a decrease in the magnitude of

the dipole moment first derivatives which form the leading doubly harmonic term of the

perturbation theory expressions [35] (i.e. [ it2 ]°s) in Bishop's notation [35]). For SiH4, there

appear to be unusually large discrepancies between theory and experiment with both SCF

and MP2 results overestimating experiment by 15.3 and 6.7% respectively. An extensive

study of infrared intensities, which are closely related to the pure vibrational polarizabilities

[36, 37], showed that IR intensities generally decrease with improvements in the treatment

of electron correlation [38]. An improved electron correlation method is therefore expected

to yield more accurate results since the dominant doubly harmonic term involves the dipole

moment first derivatives and the harmonic vibrational frequencies. Nevertheless, the MP2

method used in this work is sufficiently accurate to provide reliable estimates of the pure

vibrational polarizability. It should be noted that the experimental determination of the

integrated infrared intensities, and hence vibrational polarizabilities, is difficult and

susceptible to many problems, especially where fundamental bands overlap. A case in point

occurs for PH 3 . Comparing theoretical results with experiment, it was found that although

the pure vibrational mean polarizability from Bishop and Cheung [36] agrees well with the

present theoretical estimates, this was not so for Aa, where their experimentally derived

value overestimated the MP2 results by a factor of 2.6. When an improved set of

experimental infrared intensities for v, and v3 [39] are used in Bishop and Cheung's

formula, the agreement with theory is excellent, the present theoretical results lying within

1.6 and 0.4% of experiment for av and Day respectively. Further information regarding the

accuracy of the experimental infrared intensities is supplied in the publication [18]. It is

interesting to see that the pure vibrational polarizabilities for H 2S are exceptionally small

compared to the other molecules, reflecting the fact that the dipole moment for this molecule

shows very little variation with nuclear motion.
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Table 4.2.

SCF and MP2 TZPOL1 pure vibrational polarizabilities and polarizability anisotropies

(in au) for the second row hydrides.a

Level of Theory

SCF MP2 Experiment

5.6472 5.2291 4.90(7), b 4.84(7) c

0.7654 0.5882 0.579(6), d 0.58(6) e
0.1384 0.1693 0.170(2), d 0.44(9) e

0.0021 0.0024
0.0240 0.0128

0.0087 0.0051 0.0038(2)f

0.0231 0.0118 0.0111(6)f

0.0516 0.0491 0.041(1), g 0.036(2) e
0.1548 0.1474 0.124(2), g 0.108(5;) e

SiH av

PH,	 av

day

H 2 S

aL

av

Aav

FICl	 av

Aav

a In each case z is the principal rotation axis with the heavier atom lying along the +z axis.
The hydrogen sulfide molecule lies in the xz plane and the yy component of the vibrational
polarizability is therefore zero.

b Derived from experimental infrared intensities [40] with a precision estimate of 1.5%. A
value of 3.8(3) au has been derived from another set of IR intensities [36, 41] but appears

to be too low due to the small intensity measurement for the v4 fundamental band.

c Calculated from an experimental IR intensity measurement for the v4 fundamental [40]

and a recent intensity measurement for the v 3 fundamental [42].
d Calculated from experimental IR intensities [39]. Precision estimates representing I% of

the measured result have been applied.
e Derived from experimental IR intensities within the harmonic oscillator approximation

[36] using the supplied precision estimates.

f Calculated from experimental IR intensities for the v 1 , v3 and 2v2 bands [43] and the v2

band [44, 45].
g Calculated from experimental IR intensities [45, 46]. A precision estimate of 2% has been

assumed.
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4.3.3 Dipole and quadrupole moments

In this and subsequent Chapters, an effort is made to critically compare the present

best estimates of vibrationally averaged molecular properties with available experimental

data. Comparing the present theoretical vibrationally averaged dipole and quadrupole

moments with experiment (Table 4.3), it may be readily observed that the improved

treatment of electron correlation results in a decrease in the magnitude of for all

molecules considered. Quadrupole zz components for PH 3 , HCI and the xx and yy

components for H2S also vary in this manner. Surprisingly, all of the current BD(T)

predictions appear to be underestimates, with BD values closest to experiment.

Table 4.3.

Vibrationally averaged TZP-ANO1 dipole and quadrupole moments (in au) for the second-

row hydrides."

Level of Theory

SCF MP2 BD BD(T) Experiment

PH, P, -0.2545

-1.7182
-0.2225
-1.6040

-0.2211

-1.5643

-0.2190

-1.5566

-0.2258(1) b

H 2 S ii: -0.4218 -0.3876 -0.3818 -0.3771 -0.383(2) C

2.1360 2.0747 2.0266 2.0222

-2.9220 -2.8739 -2.8061 -2.8017

0. 0.7861 0.7996 0.7798 0.7800

HC1 -0.4721 -0.4407 -0.4336 -0.4288 -0.4361(1) d

2.8875 2.8162 2.7590 2.7491 2.78(9) e

a TZPOLI vibrational corrections have been applied to properties computed at the
respective experimental re geometries using the TZP-ANO1 basis set (See text).

SCF/TZPOL1 ZPVCs have been applied to SCF/TZP-ANO I property calculations;

MP2/TZPOL 1 ZPVCs have been applied to TZP-ANO 1 properties for other correlated
levels of theory. In each case z is the principal rotation axis with the heavier atom lying
along the +z axis; hydrogen sulfide molecule lies in the xz plane. Quadrupole moments
refer to the molecular centre of mass.

b Molecular beam electric resonance (MBER) measurement for the ground vibrational state
[2].
Stark effect measurement for the ground vibrational state [3].

d MBER measurement for the ground vibrational state [4].
e MBER measurement for the ground vibrational state [5].
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Several possible sources of the discrepancies between BD(T) theory and experiment were

considered for the dipole moments of H,S and HC1. Basis set incompleteness was explored

with MP2 calculations at the respective experimental r e geometries, using a large

uncontracted form of the TZP–ANO1 basis [7 s6p5d2fI5s4p2d], yielding vibrationless

estimates of –0.3824 and –0.4307 au respectively. Utilising the MP2 ZPVCs gave

predictions of –0.3838 and –0.4378 au which compare favourably with experimental results

in Table 4.3. Applying correlation contributions, from the difference between BD(T) and

MP2 TZP–ANO1 predictions, produced vibrationally averaged dipole moments of –0.3732

and –0.4259 au, both of which are even smaller in magnitude than the BD(T)/TZP–ANO1

values, and further underestimate experiment. A change of substrate for the TZP–ANO1 set

from the TZV [5s4p/3s] substrate for heavy atoms/hydrogen to a much larger [9s6p/6s] set

[47] had little effect for HC1, yielding an MP2 vibrationally averaged dipole moment of –

0.4414 au which only differs from the TZP-ANOI value in Table 4.3 by just 0.00074 au.

Although not reported in detail in this work, the effects of rotational motion on the dipole

moment have also been calculated using the methods of Chapter 2 and 3 and found to be

relatively unimportant. Rotational corrections to the dipole moments were found to be

typically < 10-5 au and certainly smaller than the experimental uncertainties associated with

the dipole moment measurements. Thermal effects were also examined and found to be

negligible for the temperatures at which the dipole moment experiments were performed.

Scaling of the experimental dipole moments for differences in the OCS reference dipole

moments is also not required in the present work.

A number of possible reasons for the discrepancies between the presumably most

accurate vibrationally averaged BD(T) estimates and experiment for the dipole moments

have therefore been investigated. Considering this and the results presented in Table 4.3, it

is possible that the BD method of electron correlation is sufficient to obtain accurate first-

order electronic properties and the perturbative correction for connected triple excitations

(T), used to make the BD method complete to fourth-order in a Moller-Plesset perturbation

theory analysis [17], is actually overcorrecting the BD values in much the same manner as is

found for the T(4) term of MP4 theory [48]. In this instance, full BDT calculations would be

helpful in establishing the source of the discrepancy. Orbital relaxation effects [49, 50] are

not really of issue since the present work utilises Brueckner orbitals for which the relaxation

effect is explicitly included, as opposed to CCSD methods where calculations using

unrelaxed or relaxed SCF orbitals are possible [49]. The question of whether the energy

derivative or expectation value method for calculation of first-order properties is more
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reliable also arises in this context since it is generally accepted that the energy derivative

method is the more reliable approach, especially for small basis set calculations. However,

as the basis set becomes progressively larger and approaches a complete set of functions, it

becomes more likely that the Hellmann-Feynman theorem [51] will be satisfied. Further

detailed work in this area is needed to reliably establish which of the two methods is the

most appropriate for coupled-cluster and Brueckner methods. At this point, the

discrepancies between the present vibrationally averaged BD(T) values and experiment for

the dipole moments cannot be definitively explained.

4.3.4 Polarizabilities and polarizability anisotropies

Vibrationally averaged polarizabilities and polarizability anisotropies are compared

with experimental results in Table 4.4. The superb agreement between present BD(T)

estimates and experiment for a highlights the necessity of including zero-point vibrational

corrections in the ab initio calculations: in all cases, the uncorrected properties are smaller

than experiment by up to 5%. For SiH 4, the mean polarizability increases systematically

moving from SCF to BD(T) with the best estimate of 31.783 au within just 0.04% of a

recent dipole oscillator strength distributions (DOSD) estimate [6]. Although there is only a

single dielectric constant measurement for PH 3 , the difference between the BD(T) result and

experiment is remarkably small and almost within experimental error. It is anticipated that

the present BD(T) theoretical prediction for the mean polarizability of PH3 is likely to be

accurate to within 0.5% of any future experimental results since other calculated mean

polarizabilities in the table lie within this tolerance. For H,S and HC1, the older refractivity

measurements of Cuthbertson and Cuthbertson [8, 11], published in 1909 for H 2 S and 1913

for HC1, appear to be remarkably reliable, and in almost exact agreement with the present

BD(T) estimates. The DOSD semi-empirical values for the mean polarizability [10, 12] also

lie within 0.5% of the present results but slightly underestimate the numbers from

Cuthbertson and Cuthbertson [8]. Unlike the situation for dipole moments, the perturbative

triples correction in BD(T) theory is found to increase a from BD calculations by 0.33, 0.34,

0.74 and 0.95% for SiH 4, PH3 , H2S and HC1 respectively, and thereby improve the

agreement between theory and experiment. For this second-order property, the triples

correction appears to be necessary to obtain quantitative agreement with experiment.



Chapter Four : The Second-Row Hydrides 80

Table 4.4.

Vibrationally averaged TZP-ANO1 polarizabilities (in au) for the second-row hydrides."

Level of Theory

ExperimentSCF MP2 BD BD(T)

SiH4 a 30.403 31.629 31.680 31.783 31.77, b 31.94(3) c

PH3 a 30.392 31.120 30.681 30.787 30.9(1) d
Aa 0.858 1.537 1.222 1.409

H 2 S a ir 24.507 24.980 24.676 24.785
a yr 24.150 25.284 24.732 24.968

zz 24.080 24.855 24.465 24.662

a 24.246 25.040 24.624 24.805 24.77(2), e 24.71f
Aa 0.396 0.382 0.244 0.267 0.669(73), g 0.678(74) h

HC1 a 16.895 17.478 17.269 17.433 17.43(2), i 17.39i
Aa 2.063 1.896 1.966 1.944 1.96(67), k 1.94(6) I

a See footnote (a) of Table 4.3.
b Static estimate from dipole oscillator strength distributions (DOSD) [6].
c Static estimate from quadratic extrapolation of refractivity data (five wavelengths between

436 and 644 nm) [7].
d Re-analysis of dielectric constant data [13] (See Dougherty and Spackman [31]).
e Static estimate from a quadratic extrapolation of refractivity data (four points between 486

and 656 nm) [8]. A static estimate of 24.83(3) au was obtained from a quadratic
extrapolation of refractivity data using four points between 490 and 657 nm [9] with a
quadratic extrapolation of all six data points between 404 and 657 nm yielding a static
value of 24.71(4) au.

f Static DOSD estimate [10].
g Dynamic estimate (632.8 nm) using tensor components from a combination of Kerr effect,

Rayleigh light scattering and refractive index data [14].
h Dynamic estimate (488 nm) from Rayleigh light scattering and rotational Raman

spectroscopy [15].
i Static estimate from quadratic extrapolation of refractivity data (eight wavelengths

between 480 and 670 nm) [11].
I Static DOSD estimate [12].
k Static molecular beam electric resonance (MBER) measurement [4].
I Dynamic estimate (632.8 nm) from Rayleigh light scattering [16] using the reported

depolarization ratio and an interpolated dynamic value (632.8 nm) of the mean
polarizability from refractivity data [11].
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The simpler and less costly MP2 method also performs quite well for a yielding results in

close accord with BD(T) numbers. It is interesting to find that the effect of electron

correlation on a is similar for PH 3 , H2S and HC1. For these three molecules, it is apparent

that the mean polarizability follows an "oscillatory" progression with SCF polarizabilities

underestimating all correlated numbers but with BD(T) results lying almost midway between

MP2 and BD. Silane represents an exception to this behaviour.

The frequency dependence of a and Aa has also been explored through calculation

of the polarizability at several laser wavelengths using the pseudo-BD(T) method described

in Chapter 3. Plots of a(w6) against cob are displayed in Figure 4.1 and compared with

available experimental dispersion curves. It is strikingly apparent from the dispersion plots

that the theoretical mean polarizabilities are in close agreement with polarizabilities from

refractivity data for H 2S and HC1. However, for SiH4 the agreement between the theoretical

and experimental dispersion is not as good and this is partly due to the differences between

the theoretical and experimental static polarizabilities as well as the small number of optical

frequencies at which the experimental refractivities were measured [7]. Although the

method of scaling the dynamic polarizabilities is purely empirical and does not rigorously

include electron correlation into the dynamic polarizability, it does slightly improve upon

the TDHF frequency dependence characteristics for a.

For Aa (Table 4.4) present values for HC1 agree well with results from both MBER

[4] and Rayleigh light scattering measurements [16]. Although at first glance the H 2S results

appear to be inferior to experimental results, static values of Aa at infinite wavelength (zero

optical frequency, co = 0) have been calculated whereas the experimental values pertain to

dynamic quantities measured at an optical wavelength (w o. > 0). To enable a better

comparison between experiment and theory for H 2S, various experimental estimates of Aa

have been plotted with the theoretical pseudo BD(T) Aa as a function of the square of the

optical frequency, wo.2 , all of which are displayed in Figure 4.2. The 632.8 nm estimate of

0.669(73) au from Bogaard et al. [14] appears to be larger than the present numbers by

15.2% with the other estimate at 488.0 nm from Monan et al. [15] smaller than the

theoretical values by 21.2%. It is emphasised that the experimental determination of Aa is

exceedingly difficult for H 2S due to the very small depolarization ratio, Po. Furthermore, the

vibrational Raman effect also influences the measured value of pc, since the combined

intensity from the vi and v3 vibrational stretching fundamental bands is comparable to the

intensity of the central
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Figure 4.1. Frequency dependence of the mean polarizability for the second-row hydrides.

The solid lines are calculated using the pseudo-BD(T) method and the chain-dotted lines are

from experimental refractivities (SiH 4 [7], H2S [8], and HC1 [11]).
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unshifted Rayleigh line at the same frequency as the incident light, from which the polarized

and depolarized intensities are measured [52]. The reported measurement from Monan et al.

[15] explicitly excludes the vibrational Raman contribution whereas the measurements from

Bogaard, Buckingham, Pierens and White (BBPW) [53] include this contribution. The

effect on Au from the vibrational Raman contribution is clearly demonstrated in Figure 4.2.

where the BBPW estimates all lie significantly above the theoretical dispersion curve for

Da. Rough estimates of the vibrational Raman contribution may be obtained by calculating

the differences between the Monan et al. and Bogaard et al. [14] measurements and the

appropriate BBPW results. The resulting estimated vibrational Raman contributions at

632.8 nm and 488.0 nm are calculated to be 1.40 and 1.84 au respectively. Interpolation of

these quantities leads to a value at 514.5 nm of 1.72 au and when used to correct the

measured value of Act from BBPW, yields an estimate of 0.764(10) au which is surprisingly

close to the present pseudo BD(T) value of 0.755 au for the same wavelength. Figure 4.2

displays these corrected BBPW values along with the other results.

Experimental values of Au from Rayleigh light scattering rely on both the observed

depolarization ratio, po, and a dynamic value of the mean polarizability. Therefore, any

errors in the experimental mean polarizability are carried through into the final value of Da.

A more direct and less error prone method of comparison between experiment and theory

would be to calculate theoretical vibrationally averaged depolarization ratios, po, at various

laser wavelengths and compare these with experimentally observed values. This procedure

has been followed for H2S and HC1 with plots of theoretical and experimental depolarization

ratios displayed in Figure 4.3. As previously discussed, the vibrational Raman effect is

responsible for the large differences between the BBPW values and the theoretical curve for

H,S. The value of Monan et al. [15] is therefore much closer to the theoretical po curve

since the vibrational Raman contribution was excluded in their measurements. For HCI,

there is only a single measurement of the depolarization ratio [16] but the agreement

between theory and experiment is excellent. It is interesting that the magnitude of the

frequency dependence for the depolarization ratios of these two molecules are quite similar

but of opposite sign. It is apparent that further experimental work is required to firmly

establish the role of the vibrational Raman contribution to the depolarization ratio and Aa

for H2S, preferably a number of Rayleigh light scattering measurements at different

wavelengths with both inclusion and exclusion of the vibrational Raman contribution.
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Figure 4.2. Comparison between present theoretical estimates of the frequency dependence

of the polarizability anisotropy for H 2S and values derived from various experiments

(Monan et al. [15], Bogaard, Buckingham, Pierens and White (BBPW) [53], Bogaard et al.

[14]).
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Figure 4.3. Comparison between present theoretical estimates of the frequency dependence

of the Rayleigh depolarization ratio for H 2S and HC1 and experimental measurements from

Monan et al. [15], Bogaard, Buckingham, Pierens and White (BBPW) [53] for H 2S and

Bridge and Buckingham [16] for HC1.
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4.3.5 The effects of deuteration

The H/D property isotope effects for the ground vibrational state, calculated from the

zero-point vibrationally averaged properties of the parent molecules and the perdeuterated

species SiD4 , PD3 , D,S and DC1, are presented in Table 4.6 and compared with available

experimental data. The calculated isotopic difference for the ground vibrational state dipole

moment of HC1 is in excellent agreement with the experimental value of –0.0020(7) au from

Kaiser [4]. Theoretical SCF and MP2 H/D isotopic differences for the first excited

vibrational state are also tabulated and are both close to experiment considering the size of

the estimated experimental uncertainty and the difficulty in obtaining the experimental

measurement. For the mean polarizability of HC1 it is apparent that both SCF and MP2

values concur with the experimental estimates despite the large uncertainties associated with

the measurements. In the case of H 2S, excellent agreement is observed between the SCF and

MP2 estimates of a and both numbers are extremely close to the measured isotopic

difference reported by Frivold et al. [9] from refractivity measurements. Measurements of

the polarizability anisotropy for H2S and D2S at 488.0 nm have been performed by Monan et

al. [15] and a value of –0.07(9) au for the isotopic H/D difference has been obtained. No

experimental uncertainty was supplied in that work however it has been assumed for the

present purposes that the absolute error in a single measurement is the same as the absolute

error in the isotopic difference. A measurement of the isotopic difference for Aa of H 2S is a

formidable challenge and although the experimental uncertainty is larger than the estimate,

the correct sign of the difference is supported by theoretical calculations. Using accurate

BD(T)/TZP–ANO1 vibrationless estimates for the polarizability tensor components of H2S,

in conjunction with SCF and MP2 polarizability tensor ZPVCs, yields theoretical estimates

of –0.1002 and –0.0968 au respectively for the isotopic difference of Aa; values which are

consistent with the experimental measurement. An experimental estimate of the isotopic

difference for Aa of HC1 has also been derived using the measured Aa for HC1 [4] and DC1

[54] but is considerably larger than either of the calculated values, and is accompanied by a

massive precision estimate. Unfortunately, lack of other measurements of Aa for both HC1

and DC1 precludes any experimental isotopic differences of higher precision and accuracy.
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Table 4.6.

SCF and MP2 TZPOL I zero-point isotopic property differences, <P(H)> 0 - <P(D)>0,

(in au) for the electrical properties of the second row hydrides and perdeuterides.a

<P(H)>G, - <P(D)>0

Property SCF MP2 Experiment

SiH 4 / SiD4 a 0.3281 0.3416

PH 3 / PD 3 liz 0.00401 0.00250
ez,
a

0.0723

0.2338

0.0586
0.2358

Aa -0.0767 -0.0630

H 2 S / D 2 S 0.00015 -0.00038

XA 0.0383 0.0352

-0.0877 -0.0837

a XX 0.1743 0.1646
a 0.0265 0.0383

a ZZ 0.1340 0.1326

a 0.1116 0.1118 0.1128(19) b
Aa -0.1002 -0.0968 -0.07(9)

Ha / DC1 i 	 (v = 0) -0.00201 -0.00199 -0.0020(7) d
II , (v = 1) -0.00598 -0.00589 -0.0053(6) d

0z_ 0.0792 0.0761
a 0.0416 0.0424 0.043(10),e 0.051(8) f
Aa 0.0856 0.0778 0.41(70) g

a See footnote (a) to Table 4.1. Quadrupole moment corrections were derived from
quadrupole moments relative to the molecular centre of mass for each isotopomer.

b Quadratic extrapolation of refractivity data (5 wavelengths between 420 and 700 nm) [9].
Derived from dynamic polarizability anisotropies at 488.0 nm [15].

d MBER vibrational ground state (t) = 0, J = 1) and first excited vibrational state

(v = 1, J = 1) measurements [4].
e Quadratic extrapolation of refractivity data (17 wavelengths between 230 and 567 nm)

[55].
f Linear extrapolation of refractivity data (5 wavelengths between 436 and 656 nm) [56].

g Calculated from experimental MBER Aa values for HC1 [4] and DC1 [54].
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It is noteworthy that for the properties considered here, with the exception of

quadrupole moments, the zero-point vibrational corrections for the fully deuterated species

can be calculated, to an excellent approximation, from the relation

ZPVC(D)
------ 0.71

ZPVC(H)

This relation holds particularly well for mean polarizabilities and is related to the product

rule for harmonic vibrational frequencies, as outlined in Wilson, Decius and Cross [57].

Isotopic differences between quadrupole moments involve a contribution from a shift in the

molecular centre of mass upon isotopic substitution and therefore this approximate relation

does not apply to the calculated quadrupole moment differences in Table 4.6. The above

expression for the ZPVCs also has the mixed blessing of making the complex non-linear

property derivatives transformations (described in Chapter 3) almost redundant for most

studies on fully-deuterated species interested in approximate results. Some progress has

been made towards the establishment of simple sum rules for the properties of partially

deuterated species (e.g. HDS) as well as the calculation of isotope shifts from the property

derivatives of a single parent molecule [58] and although further study is required in the area

of isotope effects on electrical properties, the simplicity of the present outcome is somewhat

gratifying.

4.4 Conclusion

The present study has shown that when accurate electronic properties are corrected

using zero-point vibrational corrections (ZPVCs) almost quantitative agreement with

experiment is obtained for many of the properties studied. Perhaps the most convincing

demonstration of the success of the vibrational averaging procedure is for the mean

polarizabilities, where all of the present BD(T) estimates lie within 0.5% of the experimental

values, and often agreement to better than 0.1 % is obtained with the most accurate

experiments. Agreement between theory and experiment is not as good for dipole and

quadrupole moments, and further theoretical work is required to determine the source of the

remaining discrepancies. For the polarizability anisotropy, the lack of accurate experimental

data precludes a detailed comparison between theory and experiment for the present time.

Further MBER and Rayleigh light scattering measurements are required to establish more

precise and accurate experimental values of Aa and the frequency dependence of this
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property. The quadrupole moment perhaps requires the most experimental study as there are

no estimates for PH 3 , H2S or any of the isotopomers for these molecules. The present high-

quality theoretical estimates will hopefully provide incentive for further experimental work

on these molecules.

References

[1] Russell, A. J., and Spackman, M. A., 1995, Molec. Phys., 84, 1239.

[2] Davies, P. B., Neumann, R. M., Wofsy, S. C., and Klemperer, W., 1971, J. chem.

Phys., 55, 3564.

[3] Huiszoon, C., and Dymanus, A., 1965, Physica, 31, 1049.

[4] Kaiser, E. W.,1970, J. chem. Phys., 53, 1686.

[5] De Leeuw, F. H., and Dymanus, A., 1973, J. molec. Spec., 48, 427.

[6] Cooper, G., Burton, G. R., Chan, W. F., and Brion, C. E., 1995, Chem. Phys., 196,

293.

[7] Watson, H. E., and Ramaswamy, K. L., 1936, Proc. R. Soc. Lond. A, 156, 144.

[8] Cuthbertson, C., and Cuthbertson, M., 1909, Proc. R. Soc. Lond. A, 83, 171.

[9] Frivold, 0. E., Hassel, 0., and Hetland, E., 1938, Physik. Z., 39, 224.

[10] Pazur, R. J., Kumar, A., Thuraisingham, R. A., and Meath, W. J., 1988, Can. J. Chem.,

66, 615.

[11] Cuthbertson, C., and Cuthbertson, M., 1913, Phil. Trans. R. Soc. Lond. A, 213, 1.

[12] Kumar, A., and Meath, W. J., 1985, Can. J. Chem., 63, 1616.

[13] Watson, H. E., 1927, Proc. R. Soc. Lond. A, 117, 43.

[14] Bogaard, M. P., Buckingham, A. D., and Ritchie, G. L. D., 1982, Chem. Phys. Lett.,

90, 183.

[15] Monan, M., Bribes, J. L., and Gaufres, R., 1982, J. molec. Struct., 79, 83.

[16] Bridge, N. J., and Buckingham, A. D., 1966, Proc. R. Soc. Lond. A, 295, 334.

[17] Handy, N. C., Pople, J. A., Head-Gordon, M., Raghavachari, K., and Trucks, G. W.,

1989, Chem. Phys. Lett., 164, 185.

[18] Russell, A. J., and Spackman, M. A., 1997, Molec. Phys., 90, 251.

[19] Cyvin, S. J., Brunvoll, J., Cyvin, B. N., Elvebredd, 1., and Hagen, G., 1968, Molec.

Phys., 14, 43.

[20] Russell, A. J., 1995, Anharmonic Property Surface Package, ANHARPS 2.0.



Chapter Five .• The Second-Row Hydrides 90

[21] Schafer, A., Horn, H., and Ahlrichs, R., 1992, J. chem. Phys., 97, 2571.

[22] Schafer, A., Huber, C., and Ahlrichs, R., 1994, J. chem. Phys., 100, 5829.

[23] Ohno, K., Matsuura, H., Endo, Y., and Hirota, E., 1986, J. molec. Spec., 118, 1.

[24] Kijima, K., and Tanaka, T., 1981, J. molec. Spec., 89, 62.

[25] Edwards, T. H., Moncur, N. K., and Snyder, L. E., 1967, J. chem. Phys., 46, 2139.

[26] Huber, K. P., and Herzberg, G., 1979, Constants of Diatomic Molecules (Van

Nostrand-Reinhold).

[27] Amos, R. D., Alberts, I. L., Andrews, J. S., Colwell, S. M., Handy, N. C., Jayatilaka,

D., Knowles, P. J., Kobayashi, R., Noga, N., Laidig, K. E., Maslen, P. E., Murray, C.

W., Rice, J. E., Sanz, J. E., Simandiras, E. D., Stone, A. J., and Su, M.-D., 1994,

CADPAC: The Cambridge Analytic Derivatives Package, issue 5.2.

[28] Maroulis, G., 1991, Molec. Phys., 74, 131.

[29] Maroulis, G., 1991, J. Phys. B: At. Mol. Opt. Phys., 24, L1 17.

[30] Hammond, B. L., and Rice, J. E., 1992, J. chem. Phys., 97, 1138.

[31] Dougherty, J., and Spackman, M. A., 1994, Molec. Phys., 82, 193.

[32] Spackman, M. A., 1989, J. phys Chem., 93, 7594.

[33] Sadlej, A. J., 1991, Theor. chim. Acta, 79, 123.

[34] Bishop, D. M., and Kirtman, B., 1991, J. chem. Phys., 95, 2646.

[35] Bishop, D. M., and Kirtman, B., 1992, J. chem. Phys., 97, 5255.

[36] Bishop, D. M., and Cheung, L. M., 1982, J. Phys. Chem. Ref Data, 11, 119.

[37] Bishop, D. M., 1990, Rev. Mod. Phys., 62, 343.

[38] Thomas, J. R., DeLeeuw, B. J., Vacek, G., Crawford, T. D., Yamaguchi, Y., and

Schaefer, H. F., 1993, J. chem. Phys., 99, 403.

[39] Tarrago, G., Lacome, N., Levy, A., Guelachvili, G., Bezard, B., and Drossart, P., 1992,

J. molec. Spec., 154, 30.

[40] Ball, D. F., and McKean, D. C., 1962, Spectrochim. Ac•ta, 18, 1019.

[41] Levin, I. W., and King, W. T., 1962, J. chem. Phys., 37, 1375.

[42] Cadot, J., 1992, J. molec. Spec., 154, 383.

[43] Lechuga-Fossat, L., Flaud, J.-M., and Camy-Peyret, C., 1984, Can. J. Phys., 62, 1889.

[44] Emerson, M. T., and Eggers, D. F., 1962, J. chem. Phys., 37, 251.

[45] Pugh, L. A., and Rao, K. N., 1976, In Molecular Spectroscopy: Modern Research,

Vol. II, edited by K. N. Rao (Academic Press), p. 165.

[46] Atwood, M. R., Vu, H., and Vodar, B., 1972, J. Phys. (Paris), 33, 495.

[47] van Duijneveldt, F. B., 1971, IBM Research Report, RJ 945,



Chapter Five The Second-Row Hydrides 91

[48] Urban, M., Cernusak, I., KellO, V., and Noga, J., 1987, In Methods in Computational

Chemistry, Vol. 1, edited by S. Wilson (Plenum, New York), p. 117.

[49] Kobayashi, R., Koch, H., Jorgensen, P., and Lee, T. J., 1993, Chem. Phys. Lett., 211,

94.

[50] Salter, E. A., Sekino, H., and Bartlett, R. J., 1987, J. chem. Phys., 87, 502.

[51] Feynman, R. P., 1939, Phys. Rev., 56, 340.

[52] SchrOtter, H. W., and KlOckner, H. W., 1979, Top. Curr. Phys., II, 123.

[53] Bogaard, M. P., Buckingham, A. D., Pierens, R. K., and White, A. H., 1978, J. Chem.

Soc. Faraday Trans. I, 74, 3008.

[54] Johnson, D. W., and Ramsey, N. F., 1977, J. chem. Phys., 67, 941.

[55] Larsen, T., 1938, Z.Physik, 111, 391.

[56] Frivold, 0. E., Hassel, 0., and Rustad, S., 1937, Physik Z., 38, 191.

[57] Wilson, E. B., Decius, J. C., and Cross, P. C., 1955, Molecular Vibrations. The theory

of infrared and Raman vibrational spectra (McGraw-Hill).

[58] Fowler, P. W., 1983, Molec. Phys., 48, 153.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51

