
Appendix 1	 Derivation of Results in Chapter 3

Appendix 1. Mathematical Derivation of Error Expressions For

Results in Chapter 3

The mathematical tool 'order of magnitude' is used to examine the sizes of the errors of EDM

estimates when the exogenous percentage shift A, is near zero. We first introduce the notation of

O(.) (Ledermann and Vajda 1978).

Definition: Let f(x) and g(x) be two functions. If

fin if(x)/g(x)1 = c,d 

where 0<c<-1-c is a constant, then we write:

f(x) = 0(g(x)).

Properties: As x-->0,

(i) 0(1) = constant;

(ii) cO(g(x)) = 0(g(x)) where 0<c<-4-oo is a constai it;

(iii) If f(x) 0(g(x)), then [f(x)] k = 0([g(x►,	 1, 2, ...;

(iv) [0(xm)] [0(xn)] = 0(xm+n), m, n = 1, 2 ...;

(v) [0(xn")] [0(f)] 0(xm-n), m, n = 1, 2, ... and m > n;

(vi) 0(xm) ± 0(xn) = 0(xmin(i")), m, n = 1, 2, ....

A1.1 Parallel Shift and Linear Approximation

The derivations in this section relate to the definitions in Equations (3.7)-(3.9) and (3.18)-

(3.23) in Chapter 3 for the case of parallel shift anti linear approximation using EDM.
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Proposition 1: The percentage changes in price and quantity are of the same order of

`infinitesimal' as the percentage shift X when	 that is:

(EP)k=O(Xk) and	 (EQ)k=0(X)' ) (k=1,2,...)

Proof:: Refer to Figure 3.1, connect points E 1 and E2 with a straight line and consider the

triangle E 1 E2B. Side E 1 B=K, height E2D=AQ and E I D=AP. Thus it is obvious using Property

(ii) that AP=O(K) and AQ=0(K). Since EP=AP/P 1 , EQ=AQ/Q i and X= K/P 1 , using Property (ii)

again we have 0(EP) = 0(EQ) =0(X). 'Therefore from Property (iii) (EP) k=O(Xk ) and

(EQ)k=0(Xk) (k=1,2,...).	 #

Proposition 2: EP - EP*= [2Q1(T1-6)]	 [S 2)(e 2,)(EP-2)2 - D(2) (c 1 )(EP)21 = 0(X2)

and
	

EQ - EQ* = [2Q1(11-E)] 113 1 2 [11S (2) ' c2)(EP-X)2- eD (2)(c 1 )(EP)2 1 = 0(X2)

when X—>O. In other words, the errors in EDM estimation of price and quantity changes are of

the infinitesimal order of 0(X2) when k-->1).

Proof:: Referring to equations (1)-(3) in the text, expanding the demand function D 1 at point P1

using the Taylor Expansion formula with remainder and taking the value at point P2, we have:

D(F'2) = D(P 1 ) + D(1)(P1)(P2-P1) + (1/2)D(' (

that is: Q2 = Qi + D (1)(P1)PIEP + (1/2)D(2)(c1 )1,121Ep2

or	 EQ = (Q2-Q1)/Qi = D(1)(P1)P I/Q) EP + (2Q1)-1P12D(2)(c1)(EP)2

(A.1.1)	 = 1EP + (2Q1)- 1 2D (2)(c )(Ep) 2

where D(i) (.) is the ith derivative of the demand !Unction, is the demand elasticity at point Pi

and P C 1 P1. Similarly, Taylor expanding Ihe new supply function S2 at point P i +K and

evaluating at point 132, we have:

)( P2-P1)2

Q2 = S(P2-K) = S(P1) + S(1) (P1)(P2--P1 -K) (1/2)S(2)(c2)( P2-P1-K)2
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where Sw(.) is the ith derivative of the supply function and P2 S c2 S P1 is a constant. Thus:

EQ = (Q2-Q1)/Qi = S (1)(POPI/Qi (EP-X) 4 (2Q1)-1 p i 2s(2)(c2)(Ep X)2 , or

(A.1.2)EQ = E(EP-X) + (2QI) -1 p 1 2,s (2)(c2)( Ep_x)2

Solving (A.1.1) and (A.1.2) jointly, we have:

EP = XE/(E-11) + [2Q1(1-E)] 1 [S(2) (C 2)( P2-1 )1 -
As )2 D( 2)(c )( p2 p 1 )2]

EQ = XnE/(E-i) + [2Q 1 (1-E)] -1 13 1 2 InS (2)(c 2,)(EP-X)2- ED(2)(c1)(EP)2]

or

(A.1.3 )EP- EP* = [2Q 1 01-0] -IP 1 2 [S(2)(C2)(EP-k): - D(2)(C1)(EP)21

(A.1.4)EQ - EQ* = [2Qi	 c)] -1 F/ 1 2 [is2) ( c.2)(Ep X)2- ED(2)(ci)(Ep)2]

Since IEP-Xl RI and IEPI IXI (from Figure 1), (EP-X) 2 =0(X2) and (EP)2 =0(X2) when X,—A.

Thus:

I EP-EP* = 0(X2)	 (X-->0)

EQ-EQ * I = 0(X2) (X—>0)	 It

Remark 1: EP=EP * and EQ=EQ* when the den land and supply curves are linear around the

neighbourhood of the initial equilibrium point. This is obvious when D (2) (c 1 ) and S (2) (c2) are

zero in equations (A.1.3) and (A.1.4).

Remark 2: If we assume that the demand function is always increasing and concave and

supply function is always decreasing and convex. that is:

(A.1.5)	 E > 0, 5 (2) (P) < 0
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(A.1.6)	 r <0, D (2)(P) > 0

the upper bounds for the errors will be:

(A.1.7) IEP- EP * I I2Q I(E-11)1 1 (p 2A
,2) p(2)(c )

S's2)(C2)1	 and

(A.1.8) EQ - EQ* �- 1 2Q1(E-11)I -1 (P
1 2X2) max( IllS (2)(c2)1, IED(2) (c1)1 )•

This is because I EP-XI IXI, IEP I S IXI and, from assumptions (A.1.5) and (A.1.6), S(2)(c2)(EP-

X)2 5 0, D (2)(c 1 )(EP)2 �0, rS 2)(c2)(EP-X) 2�0 and id)(2)(c1)(EP)2�0. #

Remark 3: From assumptions (A.1.5) and (A.1.(,), the error term in equation (A.1.3) is always

nonnegative. Thus:

(A.1.9)	 EP EP*

The empirical implication of this result is given in the main text. #

Remark 4: The sign in the error term in (A.1.4) is indeterminate depending on the relative

2sizes of iS (2) (c2)(tr-A) and eD (2)(c1)(EP)` . Henc,; EQ can be over or under estimated. #

Proposition 3:	 ACS - ACS *. - [20.1-01 -1 P 1 3 [S( 1)(C2)(EP-X) 2 - D(2) (C 1 ) (EP)21

- [2(i-e)] -1 11P1 3 [S (2) (c2)(EP-X) 2EP* - D (2 ( 1. i)(EP)2EP *J- (1/6)P, 3 D (2) (c 1 ) (EP)3

- [8Q1(i-0 2] -1 11P1 5 [S (2)(c2)(EP-20 - 1) (2) ( ci)(EP)2] 2 - (1/6)P1 3 13(2)(c i ) (EP)3

= 0(X,2),

that is, the estimate of consumer surplus change; using Equation (3.18) involves error of the

infinitesimal order OW) when X---40.

Proof: Expanding Q = D(P) at point P1
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D(P) = D(P i ) + D(1)(P1)(P-P1) + (1/2) D(2)(ci)(P-P1)2

PI

Thus
	 ACS = SD(P)dP

P2

(A.1.10)
	

= -P1Q1EP - (1/2)TIPIQI(EP) 2 -(1/6)P 1 3 D (2)(c 1 ) (EP)3

From (A.1.3):

(A.1.1 1)
	

EP = EP * + [2Q1(1-E)] -Ip 1 2 [s(2kc )(EP-2)2 D(2)(ci)(Ep)2] = EP*+ Ap
 -

Substituting EP*+ Ap, for EP in (A.1.10) we have:

ACS = -P1Q1(EP *+ Ap )-(1/2)TIPIQ(EP*+ Np)2 -(1/6)P 1 3 D(2)(c i ) (EP)3

= -PIQIEP* (1+0.5EQ *)- PIQAp-11PIQIECAp-(1/6)P1 3 D(2)(c 1 ) (EP)3

(using EQ*=TIEP* from Equation.,' (3.11) and (3.12))

= ACS * - P IQ'Ap- 11P1Q1EP *Ap-(1/6)P1 3 D	 ) (EP)3

(A.1.1:2)	 ACS = ACS *- [20-1 -0f 1 P 1 3 [S(2)(c ),,EP-X)2 - D(2)(c1)(EP)2]

- [2(r1-E)] -1 11P 1 3 [S 2)(c2)(EP-X) 2EP * - D(2)(ci)(EP)2EP*]

- [8Q1(11-0 2] 111P 1 5 [ S(2)(C2)(EP-XY - D (2) (131)(EP)21 2

- (1/6)P i 3 D(2)(c i ) (EP)3

Since IEP-X1=0(X), IEP1=0(k) and IEP * I=0(k) Mien k—)0, we have

ACS - ACS *= 0(X2) + 0(X3 ) + 0(A 4) = a X2) (Property (vi)) #
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Remark 1: The estimate of the consumer surplus change using (3.18) is exact when the

demand and supply curves are strictly lineal around the neighbourhood of the initial

equilibrium point. It is obvious that ACS = ACS * when D(2) (c 1 ) and S (2) (c2) are zero in equation

(A.1.1:2). #

Remark 2: Considering the signs of the 0(X2), 0(X3) and 0(X4) terms in the error expression

in (A.1.12) under the assumptions in (A.1.5) and (A.1.6), and noting that IEP-X1 � 1X1 and IEPI

� 1 XI, the upper bound for the error in consumer surplus change is:

(A.1.13)
	

ACS - ACS * � 1 2 (11-01 -113 1 3 1 1)(2)(; 1)-S(2)(c2) I X2

+ max ( l[2(TI-E)] -1 11 P 1 3 [S (2)(c2)- D(2)(ci)]l, 1(1/6)P1 3 D (2)(ci)1 )X3

+1 [8Q101-0 21 -111P 1 5 [S(2) (c2) - D(2)(ci)1214

When X is very small, the error in ACS * can be roughly estimated by the 0(X2) term, that is:

(A.1.14)
	

ACS - ACS * 	 12(E-i1)i -1 P1 3 1D (2 (ci)-S(2)(c2) I X2 #

Remark 3: When X is very small,

(A.1.15)	 ACS	 ACS*,

since, from the above proof, ACS - ACS *= - P I Q I AT + 0(X3) where -P 1 Q 1 A = 42(i-E11-1

P1 3 [S (2)(c2)(EP+X) 2 - D(2)(c 1 )(EP)2 1 0.	 #

Proposition 4: APS - APS * = [20-1-0]- 1 13 1 3 1 S (2)(c2 i(EP-k) 2 - D(2)(c1)(EP)2]

+ [2(r1-0] -1 01 3 (EP*-k)[S (2) (c2)(EP-X) 2 - D (21 (c 1 )(EP) 2] + (1/6)P 1 3 S(2)(c2)(EP-X)3

[8Q101 02] -1 01 5 [s ( 2)(c2)(Ep x)2 D (2) (c 1)(Ep)2] 2 = 
0(X2)

Proof: Expanding S i : Q=S(P-K) at point P1 +K:
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S(P-K) = S(P 1 ) + S(1)(1)1)(P-P1-K) + (1/2)S(2)(c2)(P-Pi-K)2

P2

Thus APS = IS(P– K)dP
P1+K

(A.1.16)	 = PiQi(EP-X) + (1/2)eP 1 Q 1 (EP-X) + (1/6)P 1 3 S (2) (c2) (EP-X)3

= PiQi(EP* -k+Ap) + (1/2)EP I Q I (EP*-k+A )2 + (1/6)P 1 3 S (2)(c2) (EP-X)3 (using (A.1.11))

= PiQi(EP*- X)(1+0.5EQ*)+ P 1 Q 1 0p + (1/2)EPIQ112(EP *-X)Ap+ Ape]

+ (1/6)P 1 3 S (2)(c2) (EP-X) 3 (using EQ*=e(EP*-A) from (4) & (5))

(A.1.1'7)
	 = APS * +[2(i-s)]-1P13[S(2)(c2)(EP-02- D(2)(c1)(EP)2]

+ {2(mE)T 1 EP1 3 (EP*-X)[S(2)(c2)(EP-X) 2 - 1)(2) ( c 1 )(EP)2] + (1/6)P 1 3 S (2)(c2) (EP-X)3

+ [8Q1(r -6)2] 1 81) 1 5 {S (2) (C2)(EP-2)2 D(2)(C )(EP)21 2

= APS * + 0(X2) + 0(X3 ) + 0(X4) = 0(X2) (Property (vi))

Remark 1: The EDM estimate for the producer surplus change APS * from (3.19) is exact when

demand and supply are strictly linear around the neighbourhood of E 1 . It is obvious that APS =

APS * when D(2)(c 1 ) and S (2)(c2) are zero in the error expression (A.1.17). #

Remark 2: Considering the signs of the 0(X2), 0(X3) and 0(X4) terms in the error expression

in (A.1.17) under the assumptions in (A.1.5) and ( A.1.6) and noting that IEP-XI 5- I XI and IEPI

IXI, the upper bound for the error in producer surplus change is:

(A.1.18)
	

APS - APS * I	 12(1-01-1P13iD(2)((1)-S(2)(c2) I 2\s2

+ max ( l[201-Eg1 EP1 3 [S (2) (c2)- D(2) (c1)11, i(116)P1 3 S (2)(c2)1 ) X3
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+ 
[8Q101_02] -1 6p 1 5 [s(2)(c2) D(2) ci 1 21 4

When X is very small, the 0(X3) and 0(k t) terms are much smaller than the 0(X2) term. Thus

the error in APS * is approximately equal to the 0(X2) term, that is:

(A.1.19)
	

I APS - APS * I �---'12(11-0 1 P1 3 1 S(2) (c2) - D(2) (ci) I X2

Remark 3: We almost always underestimate producer surplus gain under the assumptions

(A.1.5) and (A.1.6). From (A.1.17), APS - APS = P i Q i Ap + 0(X3) where the 0(X2) term

PIQtAp= [2(11-E)]-1 Pi 3 [S (2) (c2)(EP-X)2 - D(2)(c t)(E13)2] 0. Therefore when X is very small,

(A.1.20)	 APS .� ,...--APS*

Proposition 5: ATS - ATS * = - [4(1-0] -1 1P i 3E1 [S(2)(c2)(EP-X)2- D(2)(ci)(EP)21

+ (1/6)13 1 3 [S 2)(c2)(EP-X) 3 - D(2) (c i )(EP)3]

+ [4(11-0] -1 EPI 3 (EP-X)[S (2)(c2)(EP -2) 2 - D(2) (c i )(EP) 21 = 0(X3)

In other words, the EDM total surplus change measure from Equation (3.20) involves

infinitesimal error of order 0(X3), which is muc h smaller than the errors in the estimates of

producer or consumer surplus change.

Proof: ATS = ACS + APS

= -P1QIEP - (1/2)r1P I Qi(EP)2 41/6)13 1 3 D(2) (c i ) (EP)3

+ P I Q I (EP-k) + (1/2)EPIQI (EP-X) 1 + (1/6)13 1 3 S (2) (c2) (EP-7)3

= X, P' Q, - (1/2 )11 13 1Q1(EP*4-Ap)2 + (1/2)EPiQi(EP *+Ap -X)2

+ (1/6)13 1 3 [S 2)(c2)(EP-X)3 -	 ►(EP)3]
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Using EQ*= riEP* and EQ*= e(EP*-X) from (4) & (5), we have:

ATS = XP 1 Q 1 + (l/2)XP 1 Q 1 EQ * - (1/2)11PIQIEPAp

+ (1/6)P1 3 [S(2)(C2)(EP-X)3 - D (2) (C )(EP ) 3 1 + (1/2)EPIQ1Ap(EP-X)

(A.1.21) = ATS * - [401-01 -1 TIP I 3EP[S (2) (c2 )(EP-X ) 2 - D(2)(C1)(EP)2]

(1/6)P1 3 S (2)(C2)(EP-X)3 - I) (2) (C1)( EP)3]

+ [401 -0] -1 01 3 (EP-X)LS (2) (C 2)( EP-,F%,) 2 - D(2)(C1)(EP)21

= 0(X3) #

Remark 1: The EDM measure of total surplus change ATS * is exact for local linear demand

and supply functions. This is obvious when D (2)(( i ) and S (2)(c2) are zero in the error expression

(A.1.21).	 #

Remark 2: The upper bound for the error in total surplus change is:

I ATS - ATS *	max( 1(511-201, 13E1 ) 11 2 (T1 -01 -113 1 3 1 S(2) (C2) D (c 1)1 X3

Denote the three terms in the error expression as ATS - ATS * = T 1 + T2 + T3. Under the

assumptions in (A.1.5) and (A.1.6), T 1 <O, T2 <0 and T3>0, and also IEP-XI RI and IEPI RI.

Therefore, I ATS - ATS *	max( IT 1 + T21, 1T31) S max( 1(511-201, 1 3E 1 )1 12(T1-01-1P 1 3 1 S(2)(c2) -

D(2)(c 01 X3	 #

Remark 3: ATS can be over or under estimated depending on the relative sizes of IT I -FT 2I and

IT3I.	 #

Proposition 6: If the price and quantity changes were known, that is, EP=EP* and EQ=EQ* , the

errors in the surplus measures would only be of the order of 0(X 3) when X-0, that is, if we

define
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(A.1.22)	 ACS- = -PIQIEP(1+0.5EQ)

(A.1.23)	 APS- = P1Q1(EP-k)(1+0.5EQ)

(A.1.24)	 ATS- = -XP1Q1(1+0.5EQ),

then

(A.1.2:5)	 IACS - ACS1 = 0(X3)

(A.1.26)	 IAPS - APS1 = 0(X3)

(A.1.27)	 IATS - ATS1 = 0(X3)

Proof: From equation (A.1.10):

ACS = -P 1 Q 1 EP - (1/2)flPIQI(EP)2 .-(1/6)P 1 3 D(2) (c 1 ) (EP)3

= -P 1Q1 EP - (1/2)11301(EP)2 + 0(?j)

Also, from equation (A.1.1):

EQ TIEP + (2Q 1 ) -1 13 1 2D(2)(c 1 )(EP)2 = rIEF) + 0(X2)

ACS =	 - (1/2)P 1 Q 1 EP(EQ+0(X2)) + 0(X3)

= -PIQIEP(1+0.5EQ) - (1/2)P 1 Q 1 EP 0(X2 ►+ 0(X3) (Properties (ii) & (vi))

= ACS - + 0(X3 )	 and (A.1.25) is thus proven.

Similarly, from (A.1.16):

APS = P 1 Q 1 (EP-X) + (1/2)00 1 (EP-2) 2 + r 1/6)P 1 3 S (2)(c2) (EP-X)3
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= P 1Q1(EP-X) + (1/2)EP 1 Q 1 (EP-X)2 + 0(X3)

From (A.1.2): EQ = E(EP-X) + (2Q 1 ) -1 1) 1 2S (2) (c2)( EP-X)2 = E(EP-X) + 0(X2)

SAPS = PiQi(EP-X)(1+0.5EQ) + (1/2)P1Q EP-X)0(X2) + 0(X3)

= SAPS" + O(X3)	 (Properties ("ii) & (vi))

This proved (A.1.26). (A.1.27) is obvious since A US=ACS+APS and ATS - =ACS-+APS - . #

A1.2 Proportional Shift and Log-Linear Approximation

The derivations in this section relate to the specifications in Equations (3.13)-(3.15) and (3.29)-

(3.34) in Chapter 3 for the case of proportional shift and log-linear approximation using EMT.

For convenience of mathematical manipulation,..assume that the demand and supply functions

in Equations (3.1) and (3.2) can be expressed in logarithmic relationships as

(A.1.28)	 Su: U = SL(V)
	

initiid supply curve

(A.1.29)	 Du: U = DL(V)
	

initial demand curve

where

(A.1.30)	 U = lnQ	 and V =1nP

Define percentage change as

(A.1.31)	 E(.) = Aln(.)

Assume that a new technology will cause a proportional supply shift by a constant percentage X

along the price direction, which, according to tile definition in (A.1.31), is equilvalent to a
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parallel shift of SL on the (U,V), or (1nQlnP), plane by a constant X, along V direction'. The

new supply curve will be

(A.1.32)
	

SL2:	 U SL(V-X)	 new supply curve

where k<0 representing a downward supply shift. On the (U,V) plane, the initial equilibrium

point is E 1 (U 1 ,V 1 ) and the new equilibrium point is denoted as E 2(U2,V2), where U i=lnQi and

Vi=lnPi (i=1,2). From Equation (3.14),

(A.1.33)	 EP = V2 - V1 and EQ = U 2 - t

Similar results as for the linear case can be shown by Taylor expanding S L(.) and DL(.) on the

(U,V) plane, instead of S(.) and D(.) on the (Q,P) plane.

Proposition 7: Under the specifications in Equations (3.13)-(3.15), when X-->0,

(A.1.34)	 EP - EP *= [2(r1-e)] -1 [SL(2) (k2)(EP-2 )2 - DL(2)(1(1)(EP)2] = 0(X2)

(A.1.35)	 EQ - EQ* = [2(ri-c)] 1 [11 S L (:)(k2)(EIP-X)2- EDL(2)(k i )(EP)2] = 0(X2)

Proof. Taylor expanding demand function Du at point V 1 =lnP 1 using Taylor Expansion

formula with remainder and taking the value at point V2=1nP2, we have

DL(V2) = DL(V 1) + DL(1)(V 1 )(V2-V1, + (1/2 IDL(2)(k i )( V2-V1)2

ie.	 U2 = U1 + DL(1 )(V )EP ( 1 /2)DL(2) (k )(EP)

or	 EQ =: U2 - U1= DL(I)(V i )EP + (1/2)DL(2)(ki'(EP)2

(A.1.36)	 = iEP + (1/2)DL(2)(ki)(EP)2

'If percentage change is defined as E(.)=A(.)/(.), a parallel shift on the (U,V) plane by a constant X along the V
direction is equivalent to a proportional shift by a constant percentage (l-e -k), instead of X. The new supply curve
on the (Q,P) plane will be S2: Q = S(P-P(1-e-)), instead of Q = S(P-XP). The difference between X and (l -e -k)is a
higher order infinitesimal 0(X 2) which is caused by the diffeient definitions of percentage change Aln(.) and
A(.)/(.). The difference of the two percentage changes is 0(A .0).
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where DL(')(.) is the ith derivative of DL(.) 11 is the demand elasticity at point P 1 and V2 � ki 5_

V 1 . Similarly, Taylor expanding new supply function SL2 in equation (A.1.32) at point VI-1-X

and evaluating at point V2, we have

U2 = SL(V2-A) = SL(V 1) SL(1) (V1) 1,V2-V1	 + (1/2)SL(2)(k2)( V2-V1-X)2

where SL(' ) (.) is the ith derivative of SL(.) and V2 ! ; k2 V 1 is a constant. Thus

(A.1.37)	 EQ = U2 - U1= £ (EP-X) + (1/2)S ink2)(EP-X)2, or

Solving (A.1.36) and (A.1.37) jointly, we have

EP = Xd(e-1) + [2(T1-8)] -1[SL(2)(k2)( EP-A,1 2 - DL(2)(ki)(EP)2]

EQ = Xid(e-n) + [2Q1(11-6)] -1 [11SI(2) (c2)(EP-X) 2- EDL(2)(ci)(EP)2]

or

EP- EP* = [2 (T1-8)] 1 [SL(2)(k2)(EP-X) 2 -	 (2)(k1)(EP)2]

EQ EQ* = [2(1-8)] [iSL(2)(k2)(EP-X)2- EDL(2)(ki)(EP)21

Since IEPAI � RI and 1 E11 IXI (obvious from Figure 3.1), (EP-? )2 =0(X2) and (EP)2 =0(X2)

when X—>0. Thus

EP-EP* 1= 0(X2)	 (X—>0)

EQ-EQ * I = 0(k2) (X—>0)

Remark 1: EP=EP * and EQ=EQ* when the demand and supply are log-linear around the

neighbourhood of the initial equilibrium point. This is obvious when DL(2) (k i ) and SL(2)(k2) are

zero in equations (A.1.34) and (A.1.35). 	 #

Remark 2: The upper bounds for the errors will be
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(A.1.38)	 IEP- EP* I � 12(a-i)I-1 A,2 (IDL: 2)(k i ) I + ISL (2)(k2) I)

(A.1.39)	 EQ - EQ *	12(E-r1)1-1 k2( IEDL(2) (11( 1 )1+ liSL(2)(k2)I )

This is because I EP-XI RI and IEPI Ikl.

Proposition 8: When the exogenous supply shift is of a proportional nature, the economic

surplus changes associated with the log-linear curves, as shown by SI * , S2 * and D; in Figure

3.2, are given by

(A.1.40)

(A.1.41)

Pi

ACS ** = Area(P1E1E2 *P2 * )	 Di*(P) dP = PiQt(11+1) -1 (1 - el+1)EP*)
P.*

P2*	 Pi

[BPS** = Area(0E2*P2* )-Area(0E ih) =	 S2 * (P) dP -	 S I * (P) dP
0

p lQ1(E+0-1 (em+1)EP* - 1)	 and

(A.1.42)	 ATS** = P	 (01+1)-1 -(6+1) -1 )(1 - (.(1+1)EP*).

Proof: When the parameters for the constant elasticity demand and supply curves, D;, Si * and

S2 *, are assumed, the economic surplus changes can be calculated through integration. Assume

that the constant elasticity demand and supply curves are:

D i * : lnQ = at) + TilnP	 (P>0, Q>0 and ii<0)

or	 Q = eal) Pfl Qi(P/131)11

where ri<0 is the constant demand elasticity and the scale parameter is identified by the base

equilibrium point as ap=lnQ i -ilnP I , and

S i * :	 lnQ = ocs + EInP	 (P>0, Q>0 and a>0)

or	 Q = eus PE =	 1)E
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.
where c>0 is the constant supply elasticity and soc„=lnQ i -ElnP i . The new supply curve S2

* 
is the

proportional shift of S 1 * , which is a parallel shift in the (1nP, lnQ) relationship,

S2* :	 lnQ = as + E(lnP- X) (P>0, Q>0 a nd E>0)

or	 Q = eas-Ex PE = Qi(e-'13/P1)6

Thus

(A.1.4:3)	 ACS** =

	

Pi	 P1

 D i * dP =	 Q i (P/P I ) ndP =	 (1+1)-1( 1311+1 - P2*11+1 )

	

P2*	 P2*

Note that from Equation (3.15),

(A.1.44)	 EP* =1nP2 * -1nP 1 ,	 EQ * = lnQ2' - lnQ1,

which imply that

(A.1.45)
	

P2* = exp(1riPi+EP*) = pieEP*

(A.1.46)
	

Q2* = exp(lnQ i -i-EQ *) =

Substituting equation (A.1.45) for P2 * in (A.1.43) gives:

ACS**	 (I) ieEP* )Ti 4-i )

= PiQi(T1+1)-
1
(

1 e (11-4-1)EP).

Similarly,

	

P2*	 P2*	 Pi

APS ** =	 S2* dP -	 S 1 * dP =	 Q i f e-xP/P I )E dP -	 Q 1 (13/13 1 )E dP

	

0	 0	 0	 0

= (Qi/Pi E) (E+1)-1(e-Ex P2*E+ I P1E+1,

= P1Q1(E+1
)-i(e(e+i)Ep*-Ex - 1)	 (using (A.1.45) for P2*)
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= P I Q I (E+1) -1 (e(1+1)EP* - 1)	 (using EP* = kE/(E-1) from (3.15)),

ATS ** = ACS ** + APS ** =Q1(("11+1114 1)-1 )(1 - e(1+1 )EP*) #

and
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Appendix 2. Derivation of Integrability Conditions

In this appendix, the properties of cost, revenue, profit and utility functions are discussed in

turn and used to derive the required properties for the demand and supply functions and their

implications for the market parameters in the EDM model specification.

A2.1 Cost Functions and Output-Constrained Input Demand

Consider first the properties of the cost function C(w, y) of any multi-output technology as

defined in Equation (4.3.3). To be a cost function, C(w, y) needs to be positive for y>0,

nondecreasing in w, concave and continuous in w, linearly homogenous in w, equal to zero

when :v=0 (as a nxl vector) and nondecreasing in y (Chambers 1991, p262). When C(w, y) is

twice-continuously differentiable, the comparative static properties of the derived output-

constrained input demands in Equation (4.3.6) arc characterised by the requirements that (i) the

derived demands x(w, y)=VwC(w, y) be homogenous of degree zero in w; (ii) the Hessian

matrix VwwC(w, y)=Vwx(w, y) be symmetric and negative semidefinite; (iii) the gradient of

marginal costs V,C(w, y) be homogenous of degree 1 in w; and (iv) (d2C/dwidyi)=0C/dyidwi)

(i=1, k; j=1, n) (Chambers 1991, p262. The definition of gradient V is obvious from the

discussion). These are the four conditions that input demands for the six industry sectors in

Equations (4.4.5)-(4.4.8), (4.4.19)-(4.4.22), (4.428)-(4.4.32) and (4.4.41)-(4.4.46) in the model

need to satisfy in order to be integrable to recover the "proper" cost functions in Equations

(4.3.16)-(4.3.21). As market elasticity values are required to solve the displacement model in

Equations (4.4.1)'-(4.4.58)', the implications of the above integrability conditions for the

elasticities are examined below.

First, x=x(w, y)=(xj(w, y),	 xk(w, y))' homogenous of degree zero (HD(0)) in w implies that

for any X,>0,

(A.2.1)	 xi(X,w, y) = x i(w, y)	 (i = 1,	 k)	 (homogeneity).

The necessary and sufficient condition for a function f(z) =Rzi,	 zk) to be HD(m) is that

,9f (Z) = •	 mf(z) (Euler Theorem. Berck and Sydseter 1992, p15). Thus, x(w, y) is HD(0) in
d zj=1

Xj(W,Y)w =
W if and only if	 0, or 1k 	 Y)  w	 = 0 (i =1,	 k). That is,

j=i	
w 

j	 j=	 dw	 xj(w,Y)
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(A.2.1)1
	

(w ,Y) = 0	 (i =1,	 k)	 (homogeneity),
i=1

where ij (w, y) is the constant-output input demand elasticity of xi with respect to a change in

the input price wi (i, j = 1,	 k). Using Allen-Uzawa's definition of elasticity of input

substitution (McFadden 1978, p79-80)

(A.2.2)	 flii(w, y) = s i (w , Y)a ii (w , y )	 (i, j=1,	 k),

Equation (A.2.1)' can be written as

(A.2.1)"
	 Is (w, y)a (w, y) = 0	 (i = I ,	 k) (homogeneity)

j=1

where si(.) = (wixi/C) is the share of the jth input in total cost and o-ii(w, y) is the Allen-Uzawa

elasticity of substitution between the ith and jth inputs (i, j = 1, ..., k).

Second, by definition the Hessian matrix can be written as

H = VwwC(w, y) = Vwx(w, y) =
d x,(w,y)

dw
i	 kxk

=	 ii(w,y)x,(w,y
w •

When the homogeneity condition is satisfied, the columns of H are linearly correlated

1,1̀ ax, (w,y)	
(isatisfying w j = 0 (t = 1,	 k). This implies that H is singular, or

ji awe

I H = O.

H is symmetric implies that

(A.2.3)
d x,(w,y) _ d xj(w,Y)

d w	 W
1,	 k) (symmetry), or
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fl 1.j (w Y) 1-	 •	
x

(w,Y)---2-
w	 w

(i, j = 1,	 k) (symmetry), or

(A.2.3;)'	 si(w,y)lik,(w,y) = s i (w,y)k(w, y)	 (i, j = 1,	 k) (symmetry),

Using Equation (A.2.2), the above symmetry con( lition becomes

(A.2.3)"
6 ij (w, y) =(i, j = 1,	 k)	 (symmetry).

.1 1	-

In other words, in terms of input substitution, the symmetry condition simply means that the

Allen-Uzawa substitution elasticity is symmetric.

H is negative semidefinite (NSD) if and only if all eigenvalues of H. (b" )	 are nonpositive,
kxk

or if and only if (-1)mH„,�0 where Hr„ is the mth principal minor of H (m=1, k). That is, the

principal minors of H alternate between nonposil ive (when k is odd) and nonnegative (when k

is even). As is already shown in Equation (4.4.4), the kth principal minor Hk= 111 1=0; H is

NSD if and only if

(A.2.4)	 (-1)mHm = (-1)m

bll b12 •••

b21 b22 • • ' b2m

bml bm2 • • km

> 0 (m = 1, ..., k-1) (concavity)

d x. (w, y) . 
jwhere b i .	 	  (t, =1, 	k).

dw

In terms of demand elasticities, for m=1,	 k,

Hm=
xi

wj i=1 wi
)mxml•
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.
Thus, as I 

x
0, H is NSD iff Hn = (r	 is NSD, or, in terms of principal minors of Hn

kxk
i=1 wi

( as it can be shown that Hn is also singular), H is NSD iff

1.111 1112 • ••1ilm

121 1122 —.1)2m
(A.2.4')

1
	 (-1)mHim = (-1)m > 0 (m = 1, ..., k-1) (concavity).

1m2 • •• finim

Similarly, as H im =	 Lin (S • 6 • •J J )mxm =thyKaiiLJ=1	 m
and (n s j ) 0, H is NSD if and

j=1

only if 1-16 =(6,j)kxk is NSD, or, because Ha is also singular under homogeneity,

(A.2.4)"	 (-1)mH6m = (-1)m

611 6 12 •••

621 622 • • 62m

6 m2 • • • 6mm

> 0 (m = 1, ..., k-1) (concavity).

Now consider Conditions (iii) and (iv). Under thc assumptions of separable inputs and outputs

and constant returns to scale, the cost function can be written as C(w, y)= g(y) c(w) as in

Equations (4.3.4) and (4.3.5). Thus, 
dc:(w

'
y) 

= g i(yg(w) (j=1,	 n). This implies that
dy

	

dC	 1C
Condition (iii) that VyC(w, y)=(	 	 , 	 7

0 
—) are HD(1) in w is equivalent to that unit

	

a 

C  ,

y i ay2	a Y n

cost function c (w) is HD(1) in w. This, given the separable cost function, is equivalent to a

cost function C(w, y) with HD(1) in w. As in geni.;ralf(z) is HD(m) in z implies Vi(z) is HD(m-

1) in z (Berck and Sydseter 1992, p15), a HD(i ) C(w, y) means that x(w, y)=V„C(w, y) are

HD(0) in w. In other words, under the three assuii nptions given at the beginning of Section 4.3,

Condition (iii) implies condition (i) in terms of integrability requirements in input demands.

Also, when the cost function is assumed twice- continuously-differentiable, Condition (iv) is

always satisfied. Thus, the integrability conditions for the input demands in the model are

reduced to Conditions (i) and (ii), or, specifically, homogeneity, symmetry and concavity

conditions in Equations (A.2.1), (A.2.3) arid (A.2 4), or their two equivalent forms in Equations

(A.2.0' and (A.2.i)"(i = 1, 3, 4).
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A2.2 Revenue Functions and Input-Constrained Output Supply

To be a multi-output revenue function for a given input bundle x, R(p, x) needs to be

nonnegative, nondecreasing in output price p, FID(1) in p, convex and continuous in p, and

nondecreasing in x (Chambers 1991, p263). Also, if R(p, x) is differentiable in p, the input-

constrained output supply can be derived (Chambers 1991, p264) as

R(p,x) 
j (Th x ) =	(j	 n).

a pi

Based on the above properties, the comparative static properties for a twice-continuously

differentiable R(p, x) and the derived output supplies are that (i) y(p, x) be HD(0) in p; (ii) the

Hessian matrix VppR(p, x)=V7py(p, x) be symmetric and positive semidefinite (PSD); (iii)

VR(p, x) be HD(1) in p; and (iv) (R(p,x)/dxidpi) = (d2R(p,x)/dpidxj) (i=1, k; j=1, n)

(Chambers 1991, p265).

Similar to the analysis of cost function (thus derivation is not repeated here), under the three

assumptions made at the beginning of Section 4.3 (ie. profit maximization, input and output

separability and constant returns to scale), the above comparative static properties are

exhausted lby the following homogeneity, symmetry and convexity restrictions, or their

equivalent forms.

The homogeneity condition is given by

(A.2.5)	 y (A p, x) = A y j (p, x) (VA, > 0; j = 1,	 n) (homogeneity), or

(A.2.5)'
	

(p, x) = 0	 (i=1	 n)	 (homogeneity),
j=1

where eii(p, x) is the input-constrained output supply elasticity of yi with respect to a change in

output price pi (i, j =1, k). Using Allen-I1zawa's definition of elasticity of product

transformation (McFadden 1978, p79-80), ie.

(A.2.6)	 x	 yi (p, x)T ij (p, x)
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where z(.) = (piyi/R) is the share of the ith output in total revenue and TO, x) is the Allen-

Uzawa elasticity of product transformation between the ith and jth outputs (i, j = 1, n),

homogeneity can also be written as

(A.2.5)"	 y1 (p, x)1 u (p, x) 0	 (i=1,	 n)	 (homogeneity).
j.i

The symmetry condition is given by

(A.2.7)
dyi(w,y) _dyi(w,y)

dpi	dpi
(i, j = 1,	 n) (symmetry),	 or

(A.2.7)' 'y (p,(p. x) = y.(p, x)	 ( p, x ► (i, j = 1,	 n) (symmetry).
j	 ji

Using Allen-Uzawa's elasticity of substitution, the symmetry condition becomes

1.7(p, x) P i Y  Y	 Yi  Yi
==.	 (P, )

R p	 ./'	 R pi

(A.2.7)"
	

z ij (w, y) = c	 y)	 j = 1,	 n)	 (symmetry).

In other words, the symmetry condition simpl y implies symmetry of Allen-Uzawa product

transformation elasticities.

The convexity condition requires that the Hessian. matrix

H = VppR(p, x) = Vpy(p, x) =
/d yi(p,x)

(913	 nxn

is PSD. It can be shown that H is PSD iff.	 = Ln is PSD, or Hr = (1" nxn is PSD.

Similar to the case of cost function, it can also be shown that under the homogeneity condition,

all three matrices H, H, and Hr are singular. 1 hus, in terms of the principal minors of these

matrices, the convexity condition is equivalent to

2( 9

or
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(A.2.8)	 Hm =

b1 1 b12 • • • kin

b21 b22 • • • b2m
> 0 (m = 1, ..., n-1)	 (convexity)

b,n1 bm2 ••• bnun

dy i (p, x) 
where b,. = 	  (i, j=1,	 n), or

dpi

(A.2.8)'	 Hem =

(A.2.8)"	 H, =

Ell E12 • • •

E21 e22 • • • e2m

Eml Em2 • • • Emm

2 11 2 12 ••• Tim

T 21 2 22 • • • 22m

0 (m = 1, ..., n-1) (convexity), or

0 (m = 1, ..., n-1) (convexity).

T ml 2 m2 • • • Tmm

Thus, the integrability conditions for the output supplies in Equations (4.4.13)-(4.4.16),

(4.4.25)-(4.4.26), (4.4.35)-(4.4.38) and (4.4.51)-(4.4.54) in the model are satisfied if the

homogeneity, symmetry and convexity conditions in Equations (A.2.5), (A.2.7) and (A.2.8), or

their two equivalent forms in Equation (A.2.i)' and (A.2.i)" (i = 5, 7, 8), hold. 'These

conditions will ensure the recovery of the underlying revenue functions in Equations (4.3.22)-

(4.3.27).

A2.3 Profit Functions and Exogenous Factor Supplies

A multioutput (including single output as a special case) profit function 17(p, w) needs to be

nonnegative, nondecreasing in output prices p. nonincreasing in input prices w, convex,

continuous and HD(1) in all arguments (Chambers, 1991, p269). When 11(p, w) is

differentiable, using Hotelling's Lemma, a unique set of profit-maximizing output supplies and

input demands can be derived as

,	 w)	 , w)
(A.2.9) y	

d
j (p, w) =  

11(p 	
and	 x i (p, w) 

d
=  

II(p 	
(i = 1,...,k; j 1,...,n).

	

d p	 d w i
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The comparative static properties for these input demands and output supplies are that (i) z(p,

w) = (y/p, w), -xi(p, w)) are HD(0) in q=(9, iv); and (ii) the Hessian matrix Viz(g)=Voll(g) is

symmetric and PSD.

Similar to the cases of cost and revenue functions, the demand and supply functions in

Equation (A.2.9) need to satisfy homogeneity, symmetry and convexity conditions. 'These

conditions can be expressed in terms of market elasticities. And the exogenous input supplies

of X1, Xn2, Xs2, Fn2, Fn3, Yp, Zme and Zmd in Equal ions (4.4.1), (4.4.3)-(4.4.4), (4.4.17)-(4.4.18),

(4.4.27) and (4.4.39)-(4.4.40) need to satisfy these conditons.

However, if let x represent any one of the exogenous inputs to the model (x = X1, X1,2, X, 2, 17172,

Fn3, Yp, Zme and Zmd), the supply of x is the only equation in the model that is derived from its

supplier's profit function. Other variables influencing the factor supply are assumed exogenous

and kept constant. Thus, the supply of each of these factors needs to satisfy the economic

restrictions associated with the demand and supply of other variables in its supplier's profit

function, but not with any demand or supply specifications within the model. As a result,

homogeneity and symmetry conditions do not impose restrictions on the exogenous factor

supply functions that involve any other equations in the model. The only restriction implied by

a PSD Hessian is that the own-price supply elasticities are non-negative, ie.

(A.2.10)
	

ex > 0	 (x = X1, Xn2, Xs2, Fn Fn3, Yp, Zme and Zmd),

where ex is the own-price supply elasticity of input x.

A2.4 'Utility Functions and Exogenous Product Demands

Now examine the consumer demands for the final products of the beef industry, which are

assumed exogenous to the model. Consumer theory and the relationship between the indirect

utility function, expenditure function and the derived Marshallian and Hicksian demand

functions can be found in many economics textbooks (eg. Varian 1992) and will not be

discussed in detail here.

In brief, the indirect utility function for given income is defined as
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v(p,m) = max {u(x): px � m}

where x is the commodity vector, p is the prictc vector, m is income and u(x) is the utility

function. Using Roy's identity, the Marshal lian demand functions are derived as

d v(p, m) 
d

xi (p,m) = 	
pi 

d v(p,m) 
dm

(i = 1,	 n).

The inverse of the indirect utility function is the expenditure function, or equivalently, the

expenditure function for a given utility level is given by

e(p, u) = min{px: u(x) _� u}.

The Hiicksian demand functions can be derived as,

d e(p,u)	 (i	 n).hi(p,u)= dpi

There are a set of relationships relating v(p, m) x(p, m), e(p, u) and h(p, u) (eg. see Varian

1992, p106). In particular,

xi (p,m) = hi(p,v(p,m)),

ie. Marshallian demand at income m is Hicksian demand at utility v(p, m).

As the expenditure function for a given utility level is completely analogous to a cost function

for a given output level, the properties of e(p, u) are similar to those of the cost function

discussed earlier and will not be repeated (see for example, Varian 1992, p104). Thus,

analogous to the comparative static properties for the conditional factor demand in production

theory, the properties for Hicksian demand are i hat (i) h(p, u)=Vpe(p, u) are HD(0) in p; and

(ii) Hessian matrix Vph(p, u)= Vppe(p, u) is symmetric and NSD.
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However, unlike the case of the cost function where output is observable, Hicksian demand is

not observable because utility is not directly observable. The relationship that links the

derivatives of the unobservable Hicksian and the observable Marshallian demand functions is

the Slutsky equation:

(A.2.11)
dhi(p,u) 

= 
d xi(p,m)	 xi(p,m) 

x.(p,m) (i, j =1, ... ,n).
d pi	pj	 d m

+ -	 	

Using the Slutsky equation, the above comparatil e static properties in terms of the Marshallian

demand functions are that (i) x(p, in) are HD(0;) in (p, m); and (ii) the Slutsky matrix with

elements in Equation (A.2.11) is symmetric aniil NSD. In terms of demand elasticities, the

homogeneity condition becomes

(A.2.12)+1l im = 0	 (i = 1,	 n) (homogeneity), and
i=1

the symmetry condition becomes

(A.2.13)
s.

77 ,j =	 n ji +sj(nin,^ int 	 (i, j =1,...,n) (symmetry),
si

where si (i =1,	 n) is the expenditure share of the ith commodity. A NSD Slutsky Hessian

matrix implies that

(A.2.14) H =

(
x i	 xixj

rh;	 +
pi nxii

is NSD	 (concavity).

Derivation is straightforward and thus omitted.

Now come back to the implications of these conditions to specification of the final beef

demand functions in the model. As discussed in Chapter 2 (Section 2.5.3), the Marshallian

economic surplus areas will be used as measures of welfare, which implies that the marginal

utility of income is constant and the income effect will be ignored. Under this assumption, a

symmetric and NSD Marshallian substitution matrix is equivalent to a symmetric and NSD

Slutsky matrix. As the expenditure on beef is only a small proportion in the consumers' budget,
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this should not introduce a significant error by using the economic surplus as a welfare

measure (Willig 1976).

The two types of beef are assumed non-substitutable in the export market. Thus, no

integrability restrictions with the rest of the model are required for each of these export

demands, except that the own-price demand elasticities are negative to be consistent with the

NSD Hessian, that is

(A.2.1:5)
	

11(Qie, pie)	 0
	

(i = n, s)

As for the domestic demand, the two types of beef are modelled as substitutes and relate to the

utility maximization of the same domestic consumer. Because other competing commodities in

the consumer's budget, as well as income, are assumed exogenously constant and do not

appear in the model, the integrability conditions in the context of this model relate only to the

2x2 sub-Hessian matrix of the two domestic beef products (denoted by x 1 and x2 for

convenience).

In particular, symmetry implies that

ax 1 =ax2
ap2.	 apt

(symmetry), or

(A.2.16) ( 2 \
112 =	 )1121

A
(symmetry),

where (X2/X 1 ) is the relative budget shares of the two commodities, and concavity implies that

(A.2.17)X11 0 and
1111	 1112

11 21	 11 22
> 0	 (concavity).

The 2x2 sub-Hessian matrix and the 2x2 &man elasticity matrix are not necessarily singular

now. For normal situations where and I > 11ii , Equation (A.2.17) are

naturally satisfied. In these situations, homogeneil y also means that
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(A.2.18)

Derivation of Integrability Conditions

1 1 +1112	 -111m 5_ and1121 +122 --Eiji -111m �.°9
j=3	 j=3

which are naturally satisfied. Complete discussion on the integrability problem and the

integrability conditions for the "incomplete demand system" can be found in Epstein (1982),

LaFrance and Hanemann (1989) and LaFrance(1991).
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Appendix 3. Specification of Equilibrium Prices and

Quantities

In this appendix, the specification of equilibrium prices and quantities for all inputs and outputs

of all industry sectors are detailed. The original data sources, assumptions made regarding the

price and quantity relationships among different levels and the derivation of the unavailable

data are given. Refer to Table 4.3 or Figure 4.1 in Chapter 4 for variable definitions. The

resulting set of average prices and quantities for 1992-1997 are summarised in Table 5.1.

A3.1 Quantities

The annual quantities of the four types of cattle/beef products at all production and marketing

stages are required for the period of 1992 to 1997.

Step 1. 0 0 Qse and Ze Zne, Zse, Yne !. Yse and Ye

Qe, Qne and Qse , quantities of total export beef, grainfed export beef and grassfed export beef,

respectively, measured in kilotons shipped weight.. are obtained from Agriculture, Fisheries and

Forestry, Australia (K. Wade, AFFA, per. comm 1998). A data spreadsheet is obtained from

the Quota Administration and Statistics Unit, AFFA that lists the annual quantities of

Australian beef exports, in separate grainfed and grassfed quantities, to more than 100 countries

for the period of 1992-1998. The grainfed figures in these data are based on the exporter

specified grainfed amounts as indicated on the HeAlth Certificate applications.

Ze, the total Australian export beef in k ilotons carcass weight, is taken from Table 150,

Australian Commodity Statistics (ABARE 1998).

The saleable yield for converting the export carcass weight to the export shipped weight is

obtained as the ratio of Qe to Ze . The average of this ratio for 1992-1997 is about 68%. This

same yield percentage is used to derive the carcass weights for both export grainfed and export

grassfed beef; that is Zne=Q„ e/0.68 and Zse=Qse/0.68.

A commonly used conversion factor of 0.55 (Gri ffith, Green and Duff 1991) is applied to all
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four beef categories to convert the cattle live weights to beef carcass weights. In particular,

Ynez--Zne10.55, Yse=Zse10.55 and Y Yne+- .17 ve.

Step 2. Zd Yd and Y

Zd, the total domestic beef consumption in kilotons carcass weight, is obtained from Table 150,

Australian Commodity Statistics (ABARE 1998). Live weight total domestic beef quantity Yd

is derived using the 0.55 conversion percentage, ie. Yd=Zd/0.55. The total cattle live weight is

calculated as Y. Yd+Ye.

Step 3. Derivation of Average Slaughtering Weights WPH(Yne) and WPH(Yn)

The total domestic beef quantity is given in Step 2. However there is no published information

available on the separate quantities for grainfed and grassfed domestic consumption. The only

information is an estimated figure of domestic g rainfed quantity for 1994 in a MRC research

report (MRC 1995).

In this MRC commissioned study, the total domestic grainfed production was derived from the

information on numbers of grainfed cattle slaughtered by major retailers and factored up by

their estimated market share in comparison with the butchers. Then, the domestic feedlot-

finished cattle was assumed to equal the throughput of major feedlots servicing the domestic

grainfed market and the residual assumed to be grain supplemented. As a result, from their

discussions with the national beef retail managers of Woolworths and Coles and with a major

Sydney retailer, and based on the information from the AMLC commissioned Nielsen Survey

and from LMAQ and NSW saleyard reports, they estimated that the total number of domestic

grainfed cattle is in the order of 1.2 million head, of which 390,000 head are fed in major

feedlots and the residual of 811,000 head grain supplemented. Based on this information, they

estimated the number of cattle slaughtered and the total carcass weight for each market segment

for 1994 (Chart 3.1 and 3.2, MRC 1995).

In the current study, information on separate domestic grainfed and grassfed cattle for the

period of 1992-1997 is required. The slaughtering weight per head for the major feedlot

finished cattle in 1994 from the MRC study is taken and assumed unchanged for other years.

This, together with the cattle turn-off number in major feedlots described in Step 4 below, is
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used to derive the domestic grainfed (major feedlot finished for the purpose of this study) cattle

quantity.

Specifically, in Table A3.1, the number of cattle slaughtered, the total carcass weight and the

average carcass weight per head for the various market segments for 1994 are assembled based

on the information in the above mentioned MRC report (MRC 1995). These market segments

include domestic feedlot finished (ynd(feedlot)), domestic grain supplemented (y,d(suppl.)),

domestic grassfed (ysd(grass)), export grainfed yne) and export grassfed (y") cattle. For the

purpose of this study, the domestic grainfed Ynd only includes ynd(feedlot), ie. Ynd=ynd(feedlot)

and l'sd=ysd(grass)+y,d(suppl.). The slaughtering numbers and carcass weights marked with (.)*

are taken from MRC (Chart 3.1 and 3.2, 199i). An assumption is made that the average

slaughtering weight for total domestic grainfed "ale (y nd(feedlot)+ysd(suppl.)) derived from the

MRC figures is the same for its two components (y nd(feedlot) and ysd(suppl.)). Based on this

assumption, the figures in (.)*** are derived. In particular, the average carcass weight for y„ is

332kg and for yn(feedlot) is 292kg per head. In live weight, WPH(Yne)=332/0.55=604kg(l.w.)

and WPH(Yn)=292/0.55=531kg(l.w.). These figures are used in the derivation of other data

below.

Step 4. N, Nn and WPH(Yn) Yn and Ys

The total cattle slaughtering number in thousands of heads, N, for each year of 1992-1997 is

taken from the Australian Commodity Statistics (Table 150, ABARE 1998). The cattle 'off-

feed' numbers from the major feedlots are obtained from feedlot survey information (C. Toyne,

ABARE, per. comm. 1998). Using the average weight per head for feedlot finished cattle in

1994 for all other years, the total feedlot finished cattle live weight can be derived as

Yn.--(Nn)(WPH(Y,)). The total grassfed cattle (including grain-supplemented) live weights can

be obtained accordingly as Ys=Y-Yn.

Step 5. Yn,	 Yne and _Y se	 Ynd, Ysd, Znd and Zsd

Domestic grainfed and grassfed quantities can be calculated as Y nd=Y n—Y ne and Y,d= Ys—  Yse.

Using the conversion factor of 0.55 as discuss,.;c1 in Step 1, the carcass weights for the two

domestic products is calculated as Znd=0.55Ynd and Zsd=0.55Ysd.
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Table A3.1 Derivation of Avera ge Slaughterint Weights for Various Market Segments
Cattle
Number

(`000 heads)

Total Carcass
Weights

(k.t c.w.)

WPH(Weight
Per Head)

(kg c.w.)

WPH(Weight
Per Head)

(kg 1.w.)

Yndfeedlot) 390* 81.9*** 210** 382***

YsAsuppl.) 811* 170.3* * 210** 382***

Ynd(feedlot)

-1-Ysd(sup pl.) 1201* 252.2' 210*** 382***

ysd(grass) 2419* 425* 176*** 320***

Yne 782* 260* 332*** 604***

Yse 3842* 881.5* 229*** 416***

Y 8244* 1818 221*** 402***

Ys = Ysd(grass)
+Ysd(SuPpl.) 7072*** 1476.8 209*** 380***

+Yse

Yn= Ynd(feedlot)

+Yne
* **1 172 341.9**' 292*** 531***

* MRC (1995);
** Assuming that the feedlot finished cattle for domestic market have the same average slaughtering weight as the
grain supplemented cattle for domestic market;
*** Derived from data in (.)* and (.)**.

Step 6. Rqd/Qd) -- Domestic Saleable Yield Percentage

The quantities for domestic retail cuts are not reported in published sources. A saleable yield

percentage R(zdiQd) is used to convert the carcass weights to the weights of saleable cuts. R(zdiQd)

need to be consistent with the various retail cuts that are included in the measurements of the

prices and quantities. In the model, the major cuts that comprise a beef carcass are included in

the calculation of domestic retail beef quantities and prices. They include rump steak, sirloin,

topside, chuck, blade and mince. Based on a study by Griffith, Green and Duff (1991), these

cuts comprise 72% of the weight of a beef carcass. Thus a yield percentage R (z&Q,d)=0.72 is

specified. The derivation of the associated retail price Pd is given in Section A3.2 in this

Appendix.

Step 7. Znd and Zsd Qnd and Qsd

Based on the discussion above in Step 6. the domestic retail beef quantities are calculated as
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Qnd=0,32Znd and Qsd=0.72Zsd.

Step 8. WITI(Y Yne and Nn Nne and Nndne,, ne

Using the average slaughtering weight per head (WPH(Yne)) and the total slaughtering weight

for export grainfed cattle (Yne), the cattle numbers for the export grainfed beef are derived as

Nne= Yne/WPH(Yne). The domestic feedlot•finish( d cattle number is then calculated as Nnd= Nn-

Nne.

Step 9. Derivation of WPH(Fnie),WPH(FnId), WPH(Xne) and WPH(Xnd)

Data on cattle quantities at feeder and weaner levels are not available from published sources.

They are derived from information on the average per head weights of export quality feeders

(WPH(Fnje)) and weaners (WPH(Xne)) and domestic quality feeders (WPH(Fnid)) and weaners

(WPH(Xnd)). As summarised in Table 4.2, the cattle weight requirements at different

production stages for the various Japanese, Korean and domestic grainfed market segments are

provided in MRC (1995, p93-102). These include feeder weights after backgrounding and

weaner weights before backgrounding. Market shares for the four Japanese grainfed categories

are also given in MRC (1995, p57). Percentages of Japanese and Korean components in the

total export grainfed beef are from the data pros ided by AFFA (K. Wade, AFFA, per. comm.

1998). Based on this information, a spreadsheet is established to derive the average per head

weights for grainfed export and domestic cattle at feeder and weaner levels for each year of

1992-1997.. The derivation for the 1992-1997 average figures is outlined in Table A3.2. The

mid-points of the weight ranges for various market segments are weighted by their market

shares to derive the average feeder and weancr weights per head for export and domestic

markets.

Step 10. WPWF nie), WPH(F nid), Nne and Nnd Fnie and Fnid

The feeder quantities for export and domestic mirkets are calculated as Fnie=(WPH(Foe))(Nne)

and F n d= ( WPH(Fni d))(N nd) •
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Table A3.2 Derivation of Average Feeder and Weaner Weights Per Head

Japan
B3	 B2	 B1	 Yearling

Korean
K1	 Fullset

Domestic

Feeder*(kg):
weight range 380-420	 400-500	 400-500	 290-350 250-430	 330-470 330-350
mid-point 400	 450	 450	 320 340	 400 340

Weaner*(kg):
weight range 250-280	 210-240	 190-240	 170-220 150-170	 160-190 170-220
mid-point 265	 225	 215	 195 160	 175 195

Sub-group
weights * 0.18	 0.37	 0.34	 0.11 0.5	 0.5 1

Weighted.*
Average	 :

feeder
weaner

426.7kg
225.5kg

370kg
167.5kg

340kg
195kg

Exp. Market
Shares (92-97 0.92 0.08 n/a
Ave.) **
WP11:***:

WPH(Fnid)
feeder WPH(Fnie) = 422kg = 340kg

WPH(Xnd)
weaner WPH(X,,e) = 221kg = 195kg

* MRC (1995)
** AFFA (1998)
*** Derived from figures in (.)* and (.)**.

Step 11. WPH(Xne), WPH(Xnd), Nne, Nnd and N Xn i and Xs/

Total weaner quantities for feedlot finishing are derived as X0=(WPFI(Xne))(Nne)

+WPI-1(Xnd )(Nnd). As discussed in Chapter 4, it is assumed in this study that the weaner cattle

are not differentiated in quality regardless of whether they are for grain or grass finishing. Thus,

the average weaner weight per animal for grass -finishing is assumed as the same as that for

grain-finishing. The average weight for we aners for grain-finishing is calculated as

WPH(X0)=X0/Nn, and the quantity for ∎ eaners for grass-finishing is derived as

Xs] =IVPH(Vni )(NO •

Step 12. Derivation of F n2

Feedgrain consumption F„ 2 is estimated from the "per kilogram liveweight gain feedgrain

consumption" calculated from the data in a fe;dlot case study of the Beef CRC (Meppem

1995). In this study, the feed cost per kilogram liveweight gain for cattle on feed 150 days is

$1.02. The feed composition is 88% of feedgrain, 10% of roughage and 2% of
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additives, and the prices of the three components are $150, $110 and $1000 per tonne

respectively. From these data, the feedgrain consumption per kilogram liveweight gain is

calculated as 5.51 kilograms. The annual feedgi ain consumption is calculated by multiplying

this amount by the total liveweight gail each year; that is, Fi, 2=5.51(Y +Y F* ne -	 rtle—Frid)•

Details of the derivation is in Zhao and Griffith ( I 999).

A3.2 Prices

The prices for the four types of cattle/beef at all production and marketing stages and the prices

for feedgrain for the period of 1992 to 1997 are given in Zhao and Griffith (1999). The original

data sources, assumptions made regarding the price relationships and the derivation of all

prices are given below. The resulting average prices for all inputs and outputs for 1992-1997

are listed in Table 5.1.

Step 1. V d, V e-str, V e-hfr and V e-cow

The Australian Commodity Statistics (ABARE 1998) publishes annual saleyard prices for

domestic yearling, export ox (301-350kg, c.w. ) and export cow (201-260kg, c.w.). Another

source for finished live cattle prices is The Land newspaper (NLRS 1998), which reports

weekly 'over the hook' (OTH) prices for v.trious local and export cattle categories. In

particular, during 92-96, it reports the OTH prices for two domestic yearling/steer grades (140-

180 and 180-220), two export steer grades (240-320 and 320-400), two export heifer grades

(180-250 and 250-320) and three export cow grades (150-180, 180-220 and 220+). Since 1997,

even more categories for both domestic and export markets are reported. For example, prices

on cattle to specific countries such as Japan, Korea, EU and US are reported from 1997. The

annual averages of these weekly prices are obtained from the National Livestock Reporting

Services (A. Galea, NLRS, per. comm. 1998).

However, before November 1997, the prices reported do not differentiate between grainfed and

grassfed cattle. Only since November 1997 are separate grassfed and grainfed cattle prices are

reported for various domestic, Korean and Japanese categories.

In order to specify the four finished cattle prices according to export/domestic and

grassfed/grainfed for 1992 to 1997, the aggrepted domestic prices (v d), export ox/steer prices
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(ve_str), export heifer prices (ve_hfr) and export cow prices (ve_cow) are obtained from the above

described sources. Then using the weekly inforniation on separate grainfed and grassfed prices

since November 1997, a grainfed price premium for each category is obtained through

regressing over the weekly observations. The four required prices v ne , vse , vud and vsd for the

period of 1992-1997 are derived using these prin.:: premium results.

As there are inconsistencies in the NLRS reported categories for 1992-1996 and 1996-1997, the

domestic finished cattle prices, vd, are taken from the saleyard yearling prices on ABARE

(Table 143, 1998). The domestic yearling saleyai d prices published by ABARE (1998) are very

similar to the two yearling/steer prices by NLRS (A. Galea, NLRS, per. comm. 1998).

Similarly, for consistency purposes, ve, and ve _ .„,„ are taken from the export quality ox (301-

350kg) and cow (201-260kg) prices inn ABARE (Table 143, 1998). They are very similar to

the prices in the relevant categories reported by NLRS (1998). v e _hfr are taken from the export

heifer (180-250kg) prices for 1992-1996 and export heifer (170-230kg) price for 1997 from

NLRS (A. ,Galea, NLRS, per. comm. 1998).

Step 2. Saleyard Grainfed Price Premiums for Domestic (ry(dom)) and Japanese (ry, JP))

Markets

Twenty weekly OTH price observations during 1998 for grainfed and grassfed cattle for two

domestic categories and two Japan categories are collected from The Land newspaper (NLRS

1998a). The grainfed prices are regressed on thc relevant grassfed prices in each of the above

four categories. When the intercept is allowed to be non-zero in the regressions, three out of the

four regressions show statistically insignificant intercepts, but all four categories show very

strong significance of the grassfed price variable. Thus a proportional price premium is

assumed, and the regressions are run again without intercepts. Remarkably, the two local

catergories show the same price parameters of 1.11 (t-values are 118 and 121 respectively) and

the two Japanese grades have price parameters of 1.082 and 1.085 (t-values are 125 and 82)

respectively. Therefore, 11 % and 8% are assumed as the grainfed price premiums for the

domestic and Japanese markets, ie. rywomy---. 11% ;Ind ry(Jp):---8%.
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Step 3. V e-str, V e-hfr, V e-cow and rnjp)	 V ne and V se

As can be seen in Table 4.1, during 1992-1997, on average 14% of the Australian export beef

are grainfed. In the export grassfed category, more than one-third are to the US market. The

majority of the beef to the US is low quality manufacturing beef such as cows. For example,

almost all beef to the US during 1996 and 1997 was low quality frozen meat rather than chilled

(AMLC 1996/97). ve _cow is assumed to account 1 or the US's share of the total grassfed export

price. An average of ve, and ve _hfr, denoted ve n„„.„,,,,, is taken as the price for export cattle

excluding cows. Then using the 8% grainfed premium for the cattle to Japan, separate grainfed

and grassfed export prices for export cattle excluding cows are derived from the aggregated

prices Ve-noncow• That IS, Ve_noncow-grassfed cowl(l±rY(JP)* P(n./noncow)) and Ve-noncow-grainfed =

(l+ry(tP)(Ve-noncow-grassfed), where p(inonc„,,,,) is the proportion of grainfed cattle in the total export

cattle excluding the US segment, and the grainfed premium ry (Jp)=0.08. Note that Japan

accounts for 92% of the total grainfed export for the modelled time period. Finally, the export

grassfed price for finished cattle is the weighted average of Ve-noncow-grassfed and ve-cow, ie. Vse=

P(US/se)Ve(cow) ( 1 -13(US/se))Ve-noncow-grassfed, where p( ,jy„) is the proportion of US component in the

total grassfed export cattle obtained from AFFA (K. Wade, AFFA, per. comm., 1998). As cows

are not part of the grainfed segment, Vne = Ve- Details of the derivation are in Zhaononci,w-grainfed.

and Griffith (1999).

Step 4. vd and ry(dom) Vnd and vsd

Using the grainfed price premium specified in Step 2, the domestic grassfed and grainfed prices

for finished cattle are calculated from the aggregated domestic price vd as V sd=1;d1(1+ rY(dom)*

P(nd/d)) and 14,1=(1+ rYwono)vsd, where P(nd/d))=Yndl rd is the proportion of feedlot finished cattle in

the domestic market and ry(d„,n)=0.11 is the dome stic grainfed cattle premium.

Step 5. lid, V d and dud-vd and and Usd

The domestic processed beef carcass prices (4,,) are taken from the monthly averages of the

wholesale price survey data inn The Australian Meat Industry Bulletin (Nielson Marketing

Research 1997a). There is no information published on separate grainfed and grassfed

wholesale prices. Assume that the costs of slaug htering and processing per kilogram cattle into

beef carcass are the same for both grainfed and grassfed. This implies that the two domestic
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categories have the same price mark-up as the observed aggregated price difference Aud_vd= ticr-

vd/0.55 where dud-vd is measured as per kilogram carcass weight. That is, the domestic

wholesale price grainfed carcass is und=vn,,10.55+Aud-vd and for grassfed carcass is

usd=vs10.55+Aud_vd.

Step 6. ve and dud-vd	 tie, line and Use

Information on export beef carcasses is not often reported. Unlike the domestic market where

the cattle are slaughtered in abattoirs and then cut and packed into retail cuts in supermarkets

and local butchers, the cattle for export are often slaughtered, cut, boned, trimmed, processed

and then packed into boxes within abattoirs. Physically the export marketing sector may be

simply the boning and packing rooms in abattoirs. The model is structured with a separate

export marketing sector in order to be consistent with the domestic market for the joint

processing sector. As the carcass quantities for export beef are converted from live weights in

the same way as domestic beef (ie. with a 55% conversion factor), it is reasonable to assume

that the cost for slaughtering and processing per kilogram of export cattle to beef carcass is the

same as that of domestic cattle. Under this assumption, the export carcass prices are calculated

as Une:=Vnei0.55 -I-Aud-vd, Use=7-Vse10.55+Aud-vd and tle=Ve10.55+Aud-vd.

Step 7. pe and —Apne-pse Pne and Pse

The prices for shipped weight export beef are obtained from the unit values of Australian

export beef and veal in ABARE (Table 146, 1998). The prices are reported in financial years.

The calendar year prices for pe are estimated as the averages of prices of each two adjacent

financial years.

Information on separate grainfed and grassfed export shipped weight prices is not available. A

price premium is estimated based on the prices on principal overseas markets reported on Table

145 in ABARE (1998). If the 'Japan boneless chilled' price in this table is taken as an export-

grainfed price indicator, 'Japan boneless frozen' price as a good-quality or non-cow grassfed

export price, and 'US boneless frozen' as a US cow/manufacturing beef price, the price

differences between the grainfed and the two gr, tssfed types are $2.8 and $2.6 per kg (f.o.b.) on

average for 1992-1997. As the information only serves as a rough guide, the difference between

the f.a.s. (free alongside ship) and f.o.b. (free on board) prices, ie. the loading charges, is
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ignored. Roughly one-third of export-grassfed beef are US manufacturing beef. In light of all

these, a $2.6 price premium is assumed for the export market, ie. Apne _pse= $2.6/kg (shipped

weight). The grainfed and grassfed prices are then calculated as pse=pe-2.6*P(neie) and P ne=

Pse+2.6, where n,(neve)= 17 nen' e is the proportion of grainfed beef in total export. As the same

quantity conversion percentages (ie. 55% and 68'0 are used for both grainfed and grassfed, the

grainfed proportion is the same at live, carcass and shipped weight levels.

Step 8. pd and Apnd-psd Pnd and psd

The retail beef prices reported by ABARE (Table 144, 1998) are price averages of selected beef

cuts that do not include some lower quality cuts. As discussed in Step 6 of 5.2.1, six major

retail cuts are included in the domestic retail quantity and price calculation, which gives a

domestic saleable yield percentage R(zdio(1)=72%. The weights for the six cuts are taken from

Griffith, Green and Duff (1991); they are: 9.4% for rump steak, 15.3% for sirloin, 13.5% for

top side, 19% for chuck, 15.7% for blade, and 2' 1 .1% for beef mince. The prices for these cuts

are taken from the national averages of the monthly retail selling prices published on the

Australian Meat Industry Bulletin (Nielsen Mai keting Research 1997b). The domestic retail

price pd is calculated as the weighted average price of the six cuts.

A graiinfed premium is needed in order to derive the grainfed and grassfed prices from the

aggregated price pd. Australia has no domestic grading system that could provide the

information on quantity or price of grainfed beef that is sold through the retail outlets. Based on

talks with people from the industry (for example, B. Gaden, NSW Agriculture, per. comm.

1998), a grainfed premium of $2.5 per kilogram is assumed. That is Apnd-Psd=$2.5/kg(retai 1

cuts).

The domestic retail grainfed and grassfed beef Prices for the quantities in Step 7 of 5.2.1 are

calculated as psd=p,--2.5*p ( ncl/d) and pnd=psd+2.5.

Step 9. sn1d and snie

The Land newspaper (NLRS 1998b) reports the weekly feeder cattle prices in three categories:

domestic feeder steers under 320kg, domestic feeder heifers under 320kg and export feeder

steers over 400kg. The annual averages of these prices are obtained from NLRS (A. Galea,
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NLRS, per.. comm. 1998). The average of the two domestic feeder prices is used as domestic

feeder price snid, and the over 400kg price as export feeder price snie•

Step 10. wl

The Land newspaper (NLRS 1998c) also reports weekly the weaner prices in the CALM

system in terms of location, weight rang .3, average weight, whether it is for restock and the

price in c/kg live weight and $/head. As described in Step 11 of A3.1 in this Appendix, the

average weight for all the weaners is at the level of 208kg live weight. Around 100 weaner

price observations from the CALM report, that are for restock and have reasonable weight

ranges, are chosen and entered to a spreadsheet. Average weaner prices (w i ) are calculated for

each year and then for the whole 1992-1997 period.

Step 11. sn2

The feed barley prices reported by ABARE (Tall .►le 45, 1998) are used as the feedgrain prices

for the cattle feedlots. Barley is the preferred feed in cattle feedlots. The financial year prices of

every adjacent two years are averaged to ai3proxii nate the calendar year figures.
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Appendix 4. SHAZAM Code for Sensitivity Simulation

*Shazam program for sensitivity simulation in Chapter 8.

set nowarn
set nodoecho
set ranseed=66

file 11 xlpsfm.o
file 12 xlpsot.o
file 13 xlcs.o

file 14 xlrpsfm.o
file 15 xlrpsot.o
file 16 xlrcs.o

file 21 zit.o
file 22 zsigccl.o
file 23 zsigcc2.o
file 24 zsigcol.o
file 25 zsigco2.o
file 26 zsigco3.o
file 27 zsigco4.o
file 28 zipsl.o
file 29 zips2.o
file 30 ztaul.o
file 31 ztau2.o
file 32 ztau3.o

genl n=2000

sample 1 1

*set exog shifter values
genl tx1=-0.01
genl txn2=-0
genl txs2=-0
genl tfn2=-0
genl tfn3=-0
genl typ=-0
genl tzme=-0
genl tzmd=-0
genl nqne=0
genl nqse=0
genl nqnd=0
genl nqsd=0

*set price and quantity values and calculate quantity, cost and revenue shares:

genl qsd=404
genl qnd=92
genl psd=7.81
genl pnd=10.31
genl tvzqd=qnd*pnd+qsd*psd

genl rqsd=(qsd*psd)/tvzqd
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genl rqnd=1-rqsd

genl qse=665
genl qne=110
genl pse=3.06
genl pne=5.66
genl tvzqe=qse*pse+qne*pne

genl rqse=(qse*pse)/tvzqe
genl rqne=1-rqse

genl znd=128
genl zsd=561
genl und=2.70
genl usd=2.45

genl kzsd=(zsd*usd)/tvzqd
genl kznd=(znd*und)/tvzqd
genl kzmd=1-kzsd-kznd

genl zse=974
genl zne=161
genl use=2.13
genl une=2.45

genl kzse=(zse*use)/tvzqe
genl kzne=(zne*une)/tvzqe
genl kzme=1-kzse-kzne

genl tvyz=zse*use+zsd*usd+zne*une+znd*und
genl rzse=zse*use/tvyz
genl rzsd=zsd*usd/tvyz
genl rzne=zne*une/tvyz
genl rznd=znd*und/tvyz

genl yse=1772
genl ysd=1019
genl yne=293
gent ynd=232
genl vse=1.03
genl vsd=1.21
genl vne=1.20
genl vnd=1.34

genl kyse=(yse*vse)/tvyz
genl kysd=(ysd*vsd)/tvyz
genl kyne=(yne*vne)/tvyz
genl kynd=(ynd*vnd)/tvyz
genl kyp=1-kyse-kysd-kyne-kynd

genl tvfyn=yne*vne+ynd*vnd
genl ryne=(yne*vne)/tvfyn
genl rynd=1-ryne

genl fn1e=205
genl fn1d=172
genl fn2=819
genl sn1e=1.12
genl sn1d=1.02

genl sn2=0.176
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genl kfn1e=fnle*sn1e/tvfyn
genl kfn1d=fnld*sn1d/tvfyn
genl kfn2=fn2*sn2/tvfyn
genl kfn3=1-kfn1e-kfn1d-kfn2

genl tvxys=yse*vse+ysd*vsd
genl ryse=yse*vse/tvxys
genl rysd=l-ryse

genl tvxfn=fn1e*sn1e+fn1d*sn1d
genl rfnle=fnle*snle/tvxfn
genl rfn1d=1-rfn1e

genl xn1=206
genl xs1=1542
genl x1=xn1+xs1
genl w1=1.12

genl kxn1=(xnl*w1)/tvxfn
genl kxn2=1-kxnl

genl kxs1=(xs1*w1)/tvxys
genl kxs2=1-kxs1

genl rhoxn1=xn1/x1
genl rhoxsl=l-rhoxnl

?do %=1,n

*draw elasticity values:

* ipx1-N(0.9,0.2**21>0)

?do $=1,100
genl z=nor(1)
genl ipx1=0.9+0.2*z
?endif(ipx1.gt.0)
*genl dripx1=$
*print dripxl
endo

* itd: itss-N(-1.1,0.2**21<0), itnn-N(1.5*it;s,0.1**21itnn<itss),
* itsn-N(0.3,0.1**21itsn>0, itsn<-itss, itns:3.3itsn<-itnri)

?do $=1,100
genl z=nor(1)
genl itqsdsd=-1.1+0.2*z
?endif(itqsdsd.lt.0)
endo

?do $=1,100
genl z=nor(1)
genl itqndnd=1.5*itqsdsd+0.1*z
?endif(itqndnd.lt.itqsdsd)
endo

?do $=1,100
gent z=nor(1)
genl itqsdnd=0.3+0.1*z
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genl itqndsd=irqsd/rqnd)*itqsdnd
?endif((itqsdnd.ge.0).and.(itqsdnd.lt.(-itqsdsd)).and.(itqndsd.lt.(-itqndnd)))
endo

*ite: itse-N(-5,1.2**21itse<0,1itsel>litsdsal),
itne-N(-2.5,1**21itne<0,1itnel>litndn61,1itnel<litsel)

?do $=1,100
genl z=nor(1)
genl itqsese=-5+1.5*z
?endif((itqsese.le.0).and.(itqsese.lt.itqsdsd))
endo

?do $=1,100
genl z=nor(1)
genl itqnene=-2.5+0.7*z
?endif((itqnene.le.0).and.(itgnene.lt.ltqndrd).and.(itqnene.gt..itqsese))
endo

*ipfn2-N(0.8,0.1**21>0)
?do $=1,100
genl z=nor(1)
genl ipfn2=0.8+0.1*z
?endif(ipfn2.gt.0)
?endo

*all 6 of ips(others) center at the mixed dist'n:
* 50% N(5, 1.7**2) and 50% 4.5+exp(0.2)

?do $=1,100
genl z=nor(1)
genl ipxn2=5+1.7*z
?endif(ipxn2.ge.0)
?endo

genl lam=0.2
genl p=uni(1)
genl u=uni(1)
genl xx=4.5+(-log(u))/lam
if(p.gt.0.5) ipxn2=xx

?do $=1,100
genl ipxs2=ipxn2+nor(0.5)
?endif(ipxs2.gt.0)
endo

?do $=1,100
genl ipyp=ipxn2+nor(0.5)
?endif(ipyp.gt.0)
endo

?do $=1,100
genl ipzme=ipxn2+nor(0.5)
?endif(ipzme.gt.0)
endo

?do $=1,100
genl ipfn3=ipxn2+nor(0.5)
?endif(ipfn3.gt.0)
endo
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?do $=1,100
genl ipzmd=ipxn2+nor(0.5)
?endif(ipzmd.gt.0)
endo

*tau(Fnle,fnld)and tau(yse,ysd): N(-2,0.5**21<0). Note, higher chance of >2?)
?do $=1,100
genl z=nor(1)
genl taufed=-2+0.5*z
?endif(taufed.lt.0)
endo

?do $=1,100
genl z=nor(1)
gen]. tauysed=-2+0.5*z
?endif(tauysed.lt.0)
endo

*sig(cattle,cattle): all 9 of them around N(0.05,0.1**21>0)

?do $=1,500
genl z=nor(1)
genl sigysesd=0.05+0.1*z
?endif(sigysesd.ge.0)
endo

?do $=1,100
genl sigfed=sigysesd+nor(0.025)
?endif(sicrfed.ge.0)
endo

?do $=1,100
genl sigysene=sigysesd+nor(0.025)
?endif(sicrysene.ge.0)
endo
?do $=1,100
genl sigysend=sigysesd+nor(0.025)
?endif(sigysend.ge.0)
endo
?do $=1,100
gen]. sigysdne=sigysesd+nor(0.025)
?endif(sigysdne.ge.0)
endo
?do $=1,100
genl sigysdnd=sigysesd+nor(0.025)
?endif(sigysdnd.ge.0)
endo
?do $=1,100
genl sigynend=sigysesd+nor(0.025)
?endif(sigynend.ge.0)
endo

?do $=1,100
genl sigzsdnd=sigysesd+nor(0.025)
?endif(sigzsdnd.ge.0)
endo

?do $=1,100
genl z=nor(1)
genl sigzsene=sigysesd+0.025*z
?endif(sigzsene.ge.0)
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endo

*sig(cattle,others)all around mixed 70%N(0.065,0.1**2)plus 30% 0.08+exp(4.1).

?do $=1,500
genl sigxs12=0.065+nor(0.1)
?endif(sigxs12.ge.0)
endo

genl lam=4.1
genl p=uni(1)
genl u=uni(1)
genl zz=0.08+(-log(u))/lam
if(p.lt.0.3) sigxsl2=zz

?do $=1,500
genl sigxn12=sigxs12+nor(0.05)
?endif(sigxn12.ge.0)
endo

?do $=1,500
genl sigfe2=sigxs12+nor(0.05)
?endif(sigfe2.ge.0)
endo

?do $=1,500
genl sigfe3=sigxs12+nor(0.05)
?endif(sigfe3.ge.0)
endo

?do $=1,500
genl sigfd2=sigxs12+nor(0.05)
?endif(sigfd2.ge.0)
endo

?do $=1,500
genl sigfd3=sigxs12+nor(0.05)
?endif(sigfd3.ge.0)
endo

?do $=1,500
genl sigf23=sigxs12+nor(0.05)
?endif(sigf23.ge.0)
endo

?do $=1,500
genl sigysep=sigxs12+nor(0.05)
?endif(sigysep.ge.0)
endo

?do $=1,500
genl sigysdp =sigxs12+nor(0.05)
?endif(sigysdp.ge.0)
endo

?do $=1,500
genl sigynep=sigxsl2+nor(0.05)
?endif(sigynep.ge.0)
endo

?do $=1,500
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genl sigyndp=sigxs12+nor(0.05)
?endif(siqyndp.ge.0)
endo

?do $=1,500
genl sigzsdmd=sigxs12+nor(0.05)
?endif(siqzsdmd.ge.0)
endo

?do $=1,500
gent sigzndmd=sigxs12+nor(0.05)
?endif(siqzndmd.ge.0)
endo

?do $=1,500
genl sigzseme=sigxs12+nor(0.05)
?endif(siqzseme.ge.0)
endo

?do $=1,500
genl sigzneme=sigxs12+nor(0.05)
?endif(siqzneme.ge.0)
endo

*tau(cattle,cattle) around N(-0.05, 0.1)

?do $=1,500
genl z=nor(1)
genl tauyned=-0.05+0.1*z
?endif(tauyned.le.-0.01)
endo

?do $=1,500
genl tauzsesd=tauyned+nor(0.025)
?endif(tauzsesd.le.0)
endo

?do $=1,500
genl tauzsene=tauyned+nor(0.025)
?endif(tauzsene.le.0)
endo

?do $=1,500
genl tauzsend=tauyned+nor(0.025)
?endif(tauzsend.le.0)
endo

?do $=1,500
genl tauzsdne=tauyned+nor(0.025)
?endif(tauzsdne.le.0)
endo

?do $=1,500
gent tauzsdnd=tauyned+nor(0.025)
?endif(tauzsdnd.le.0)
endo

?do $=1,500
genl tauznend=tauyned+nor(0.025)
?endif(tauznend.le.0)
endo
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?do $=1,500
genl taugsene=tauyned+nor(0.025)
?endif(taugsene.le.0)
endo

?do $=1,500
genl taugsdnd=tauyned+nor(0.025)
?endif(tauqsdnd.le.0)
endo

write(21) itqsdsd itqndnd itqsdnd itqndsd itqsese itqnene
write(22) sigysesd sigysene sigysend sLgysdne sigysdnd sigynend
write(23) sigfed sigzsdnd sigzsene
write(24) sigxsl2 sigxnl2
write(25) sigfe2 sigfe3 sigfd2 sigfd3 sigf23
write(26) sigysep sigysdp sigynep sigyndp
write(27) sigzsdmd sigzndmd sigzseme sigzneme
write(28) ipxl ipfn2
write(29) ipxn2 ipxs2 ipfn3 ipyp ipzme ipzmd
write(30) taufed tauysed
write(31) tauyned taugsene tauqsdnd
write(32) tauzsesd tauzsene tauzsend tauzsdn tauzsdnd tauznend

sample 1 1
?nl 58 / ncoef=58 solve coef=epq numeric it?r=15000

*Equation numbers are as in 'model-intEg1-9M99.

*1-4
?eq exl-ipx1*(ew1-tx1)
?eq ex1-rhoxn1*exn1-rhoxs1*exs1
?eq exn2-ipxn2*(ewn2-txn2)
?eq exs2-ipxs2*(ews2-txs2)

*5-8
?eq exn1+kxn2*sigxn12*(ew1-ewn2)-efn1
?eq exn2-kxn1*sigxn12*(ew1-ewn2)-efn1
?eq exs1+kxs2*sigxs12*(ew1-ews2)-eys
?eq exs2-kxs1*sigxs12*(ew1-ews2)-eys

*9-12
?eq kxn1*exn1+kxn2*exn2-rfn1e*efn1e-rfnld*efuld
?eq kxn1*ew1+kxn2*ewn2-rfn1e*esn1e-rfn1d*esn:d
?eq kxs1*exsl+kxs2*exs2-ryse*eyse-rysd*eysd
?eq kxs1*ew1+kxs2*ews2-ryse*evse-rysd*evsd

*13-18

?eq efn1e+rfn1d*taufed*(esn1e-esn1d)-exn
?eq efn1d-rfn1e*taufed*(esn1e-esn1d)-exn
?eq eyse+rysd*tauysed*(evse-evsd)-exs
?eq eysd-ryse*tauysed*(evse-evsd)-exs
?eq efn2-ipfn2*(esn2-tfn2)
?eq efn3-ipfn3*(esn3-tfn3)

*19-22
?eq efn1e+(kfnid*sigfed+kfn2*sigfe2+kfn3*sigfe3)*esn1e-kfn1d*sigfed*esnld&
-kfn2*sigfe2*esn2-kfn3*sigfe3*esn3-eyn
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?eq efn1d-kfnle*sigfed*esn1e-kfn2*sigfd2*esn2-kfn3*sigfd3*esn3&
+(kfn1e*sigfed+kfn2*sigfd2+kfn3*sigfd3)*esn1d-eyn

?eq efn2-kfn1e*sigfe2*esn1e-kfn1d*sigfd2*esnLd-kfn3*sigf23*esn3&
+(kfn1e*sigfe2+kfn1d*sigfd2+kfn3*sigf2:,)*esn2-eyn

?eq efn3-kfn1e*sigfe3*esn1e-kfn1d*sigfd3*esnLd-kfn2*sigf23*esn2&
+(kfn1e*sigfe3+kfn1d*sigfd3+kfn2*sigf2:)*esn3-eyn

*23-27
?eq kfn1e*efn1e+kfn1d*efn1d+kfn2*efn2+kfn3*efn3-ryne*eyne-rynd*eynd
?eq kfn1e*esn1e+kfn1d*esn1d+kfn2*esn2+kfn3*em3-ryne*evne-rynd*evnd
?eq eyne+rynd*tauyned*(evne-evnd)-efn
?eq eynd-ryne*tauyned*(evne-evnd)-efn
?eq eyp-ipyp*(evp-typ)

*28-32
?eq eyse+(kysd*sigysesd+kyne*sigysene+kynd*sLgysend+kyp*sigysep)*evse&
-kysd*sigysesd*evsd-kyne*sigysene*evne-kynd*;igysend*evnd-kyp*sigysep*evp-ez

?eq eysd-kyse*sigysesd*evse+(kyse*sigysesd+k(ne*sigysdne+kynd*sigysdnd&
+kyp*sigysdp)*evsd-kyne*sigysdne*evne-kynd*si_gysdnd*evnd-kyp*sigysdp*evp-ez

?eq eyne-kyse*sigysene*evse-kysd*sigysne*ev;d+(kyse*sigysene+kysd*sigysdne&
+kynd*sigynend+kyp*sigynep)*evne-kynd*sigyneld*evnd-kyp*sigynep*evp-ez

?eq eynd-kyse*sigysend*evse-kysd*sigys6nd*ev;d-kyne*sigynend*evne+(kyse&
*sigysend+kysd*sigysdnd+kyne*sigynend+Ryp*si,ryndp)*evnd-kyp*sigyndp*evp-ez

?eq eyp-kyse*sigysep*evse-kysd*sigysdp*evsd-cyne*sigynep*evne-kynd*sigyndp*evnd&
+(kyse*sigysep+kysd*sigysdp+kyne*sigynep+kynil*sigyndp)*evp-ez

*33-34
?eq kyse*eyse+kysd*eysd+kyne*eyne+kynd*eynd+yp*eyp&
-rzse*erse-rzsd*ersd-rzne*ezne-rznd*eznd

?eq kyse*evse+kysd*evsd+kyne*evne+kynd*evnd+yp*evp&
-rzse*euse-rzsd*eusd-rzne*eune-rznd*eund

*35-38
?eq erse+(rzsd*tauzsesd+rzne*tauzsene+rznd*t(mzsend)*euse&
-rzsd*tauzsesd*eusd-rzne*tauzsene*eune-rznd*'auzsend*eund-ey

?eq ersd-rzse*tauzsesd*euse-rzne*tauzsdnekeu):.e-rznd*tauzsdnd*eund&
+(rzse*tauzsesd+rzne*tauzsdne+rznd*tauzsdnd)'eusd-ey

?eq ezne-rzse*tauzsene*euse-rzsd*tauzsdnekeu:A-rznd*tauznend*eund&
+(rzse*tauzsene+rzsd*tauzsdne+rznd*tauznend)-eune-ey

?eq eznd-rzse*tauzsend*euse-rzsd*tauzsdndkeu:A-rzne*tauznend*eune&
+(rzse*tauzsend+rzsd*tauzsdnd+rzne*tauznend)'eund-ey

*39-40
?eq ezmd-ipzmd*(eumd-tzmd)
?eq ezme-ipzme*(eume-tzme)

*41-46
?eq ersd+(kznd*sigzsdnd+kzmd*sigzsdmd)*eusd&
-kznd*sigzsdnd*eund-kzmd*sigzsdmd*eumd-eqd

?eq eznd-kzsd*sigzsdnd*eusd-kzmd*sigzndmdkeuud&
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+(kzsd*siqzsdnd+kzmd*sigzndmd)*eund-eqd

?eq ezmd-kzsd*sigzsdmd*eusd-kznd*sigzndmd*eund&
+(kzsd*siqzsdmd+kznd*sigzndmd)*eumd-eqd

?eq erse+(kzne*sigzsene+kzme*sigzsemer'euse&
-kzne*sigzsene*eune-kzme*sigzseme*eume-ege

?eq ezne-kzse*sigzsene*euse-kzme*sigzneme*eume&
+(kzse*siqzsene+kzme*sigzneme)*eune-eqe

?eq ezme-kzse*sigzseme*euse-kzne*sigzneme*eune&
+(kzse*siqzseme+kzne*sigzneme)*eume-eqe

*47-50
?eq kzsd*ersd+kznd*eznd+kzmd*ezmd-rqsd*eqsd-rqnd*eqnd
?eq kzsd*eusd+kznd*eund+kzmd*eumd-rqsd*epsd-cqnd*epnd

?eq kzse*erse+kzne*ezne+kzme*ezme-rqse*eqse-ccine*eqne
?eq kzse*euse+kzne*eune+kzme*eume-rqse*epse-rqne*epne

*51-54
?eq eqsd+rqnd*taugsdnd*(epsd-epnd)-ezd
?eq eqnd-rqsd*taugsdnd*(epsd-epnd)-ezd
?eq eqse+rqne*taucisene*(epse-epne)-eze
?eq eqne-rqse*taugsene*(epse-epne)-eze

*55-58. Note: need to impose constraint to 55-56.
?eq eqsd-itqsdsd*(epsd-nqsd)-itqsdnd*(epnd-nand)
?eq eqnd-itqndsd*(epsd-nqsd)-itqndnd*(epnd-nind)

?eq eqse-itqsese*(epse-nqse)
?eq eqne-itqnene*(epne-nqne)

*?coef ey 0 ep 0 ew1 0 ew2 0 ex1 0 ex2 0
?end

=gent ex1t=epq:1
genl ewlt=epq:2
genl exnit=epq:3
genl exslt=epq:4
genl exn2t=epq:5
genl ewn2t=epq:6
genl exs2t=epq:7
gent ews2t=epq:8
genl efnit=epq:9
genl eyst=epq:10
genl efn1et=epq:11
genl efn1dt=epq:12
genl esn1et=epq:13
genl esn1dt=epq:14
genl eyset=epq:15
genl eysdt=epq:16
genl evset=epq:17
genl evsdt=epq:18
genl exnt=epq:19
genl exst=epq:20
genl efn2t=epq:21
genl esn2t=epq:22
genl efn3t=epq:23
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genl esn3t=epq:24
genl eynt=epq:25
genl eynet=epq:26
genl eyndt=epq:27
genl evnet=epq:28
genl evndt=epq:29
genl efnt=epq:30

genl eypt=epq:31
genl evpt=epq:32
genl ezt=epq:33
genl erset=epq:34
genl ersdt=epq:35
genl eznet=epq:36
genl ezndt=epq:37
genl euset=epq:38
genl eusdt=epq:39
genl eunet=epq:40
genl eundt=epq:41
genl eyt=epq:42
genl ezmdt=epq:43
genl eumdt=epq:44
genl ezmet=epq:45
genl eumet=epq:46
genl eqdt=epq:47
genl eqet=epq:48
genl eqsdt=epq:49
genl eqndt=epq:50
genl epsdt=epq:51
genl epndt=epq:52
genl eqset=epq:53
genl eqnet=epq:54
genl epset=epq:55
genl epnet=epq:56
genl ezdt=epq:57
genl ezet=epq:58

*values and surplus are measured in millions of Australian dollars ($(A)m)

genl dpsxl = wl*xl * (ewlt - txl) * (140.5*e<lt)

genl dpsxn2 = kxn2*tvxfn * (ewn2t - txr..2) * (1+0.5*exn2t)
genl dpsxs2 = kxs2*tvxys * (ews2t - txE2) * (1+0.5*exs2t)

genl dpsfm=dpsxl+dpsxn2+dpsxs2

genl dpsfn2=kfn2*tvfyn*(esn2t-tfn2)*(140.5*eFm2t)
genl dpsfn3=kfn3*tvfyn*(esn3t-tfn3)*(140.5*efta3t)

genl dpsyp=kyp*tvyz*(evpt-typ)*(1+0.5*Eypt)
genl dpszme=kzme*tvzqe*(eumet-tzme)*(140.5*emet)
genl dpszmd=kzmd*tvzqd*(eumdt-tzmd)*(140.5*emdt)

genl dcsqne = rqne*tvzqe * (nqne - epnet) * (1+0.5*eqnet)
genl dcsqse = rqse*tvzqe * (nqse - epset) * (1+0.5*eqset)
genl dcsqe = dcscine+dcsqse

genl dcsqnd = rqnd*tvzqd * (nqnd - epn6t) * (1+0.5*eqndt)
genl dcsqsd = rqsd*tvzqd * (nqsd - eps6t) * (1+0.5*eqsdt)
genl dcsqd=dcsqnd+dcsqsd
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genl dts = dpsx1+dpsxn2+dpsxs2+dpsfn2+dpsfn3S,
+dpsyp+dpszme+dpszmd+dcsgne+dcsgse-rdcsqnd+dcsgsd

write(11) dpsx1 dpsxn2 dpsxs2 dpsfm
write(12) dpsfn2 dpsfn3 dpsyp dpszme dpszmd
write(13) dcsqne dcsqse dcsqe dcsqd dts

genl rpsx1=dpsx1/dts
genl rpsxn2=dpsxn2/dts
genl rpsxs2=dpsxs2/dts
genl rpsfm=dpsfm/dts
gent rpsfn2=dpsfn2/dts
genl rpsfn3=dpsfn3/dts
genl rpsyp=dpsyp/dts
genl rpszme=dpszme/dts
genl rpszmd=dpszmd/dts
genl rcsgne=dcsgne/dts
gent rcsgse=dcsgse/dts
genl rcsge=dcsge/dts
genl rcsqd=dcsqd/dts

write(14) rpsxl rpsxn2 rpsxn2 rpsfm
write(15) rpsfn2 rpsfn3 rpsyp rpszme rpszmd
write(16) rcsqne rcsqse rcsqe rcsqd

?endo

sample 1 n

do %=21,32
rewind %
endo

read(21) iqsdsdv iqndndv iqsdndv iqndsdv igs?.sev ignenev
read(22) sysesdv sysenev sysendv sysdnev sysendv synendv
read(23) sfedv szsdndv szsenev
read(24) sxsl2v sxnl2v
read(25) sfe2v sfe3v sfd2v sfd3v sf23v
read(26) sysepv sysdpv synepv syndpv
read(27) szsdmdv szndmdv szsemev sznemev
read(28) ipx1v ipfn2v
read(29) ipxn2v ipxs2v ipfn3v ipypv ipzmev iozmdv
read(30) tfedv tysedv
read(31) tyned.v tqsenev tqsdndv
read(32) tzsesdv tzsenev tzsendv tzsdnev tzslndv tznendv

stat iqsdsdv iqndndv iqsdndv iqndsdv iqsesev ignenev
stat sysesdv sysenev sysendv sysdnev szsdndv synendv
stat sfedv szsdndv szsenev
stat sxsl2v sxnl2v
stat sfe2v sfe3v sfd2v sfd3v sf23v
stat sysepv sysdpv synepv syndpv
stat szsdmdv szndmdv szsemev sznemev
stat ipx1v ipfn2v
stat ipxn2v ipxs2v ipfn3v ipypv ipzmev ipzmdf
stat tfedv tysedv
stat tynedv tqsenev tqsdndv
stat tzsesdv tzsenev tzsendv tzsdnev tzsdndv tznendv

do %=11,16
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Appendix 4	 SHAZAM Code

rewind %
endo

read(11) dpsxlv dpsxn2v dpsxs2v dpsfmv
read(12) dpsfn2v dpsfn3v dpsypv dpszmev dps2mdv
read(13) dcsqnev dcsqsev dcsqev dcsqdv dtsv

read(14) rpsxlv rpsxn2v rpsxs2v rpsfmv
read(15) rpsfn2v rpsfn3v rpsypv rpszmev rps2mdv
read(16) rcsqnev rcsqsev rcsqev rcsqdv

stat dpsxlv dpsxn2v dpsxs2v dpsfmv
stat dpsfn2v dpsfn3v dpsypv dpszmev dpszmdv
stat dcsqnev dcsqsev dcsqev dcsqdv dtsv

stat rpsxlv rpsxn2v rpsxs2v rpsfmv
stat rpsfn2v rpsfn3v rpsypv rpszmev rpszmdv
stat rcsqnev rcsqsev rcsqev rcsqdv

stop
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