Optical Sensing of SF₆ Dissociation Levels in Electrical Discharges

Dragan Vukovic Dipl. Ing. (University of Belgrade)

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

March 1997

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any assistance received in the preparation of this thesis, and all sources used, have been acknowledged in this thesis.

Dragan Vukovic

Acknowledgments

I wish to express my thanks and appreciation to my supervisor Associate Professor G. A. Woolsey, for his encouragement and assistance *ct* all stages of this work.

I also wish to extend my gratitude to the following people: My co-supervisor Dr G. B. Scelsi. Graham Hyde for his technical support including the construction of electronic circuitry, and advice on electronic problems. The technical staff of the Physics Department; in particular, Michael Beveridge, Michael Van der Valk and Andrew Gasbarri for the construction of various experimental components; P. Garlick for assistance in the examination of fibre coatings with the electron microscope.

I would like to acknowledge the support of the Australian Government, through an Australian Postgraduate Research Award scholarship.

Much of the laboratory equipment has been acquired through grants from the Australian Research Council and the Australian Electricity Supply Industry Research Board.

Finally, I wish to express my thanks to my fellov, research students and all the other members of the Physics Department who have contributed to this work by discussion and interest.

Contents

Chapter 1	: Introduction	. 1
1.1.	Refractivity measurement	. 2
1.2.	Sulphur deposition on an optical fibre	. 3
1.3.	CO ₂ laser light absorption	. 3
Chapter 2	Properties and applications of SF ₆	. 4
2.1.	Chemical properties	. 4
2.2.	Manufacturing	. 5
2.3.	Applications	. 6
2.4.	Switchgear	10
2.5.	Electrical discharges	14
2.5.1.	Attaching and non-attaching gases	14
2.5.2.	DC glow discharge	15
2.5.3.	Glow discharge in electronegative gases	17
2.5.4.	DC corona or DC partial discharge	18
2.5.4.1	. Positive corona	18
2.5.4.2	2. Negative corona	18

Ch	apter 3	: Experimental discharge systems	20
	3.1.	Glow discharge system	20
	3.2.	Corona discharge system	25
	3.3.	Mass spectrometer	28
Ch	Chapter 4: Refractivity measurement		
	4.1.	Measurement of the refractive indices of SOF_2 and SF_6	31
	4.1.1.	The non-linearity of the refractive index of gases	31
	4.1.2.	Experimental arrangement	33
	4.1.3.	The measurement procedure	34
	4.1.4.	The refractive indices of SOF_2 and SF_6	37
	4.2.	The refractive index in the SF ₆ discharge	39
	4.2.1.	The refractive index in a corona discharge	39
	4.2.2.	A practical monitoring system	40
	4.3.	Determination of separate gas concentration	40
	4.4.	Improvement of the Lee-Woolsey Interferometer	44
	4.4.1.	Matrix treatment	45
	4.5.	Summary	47
Ch	apter 5	: Review of chemical optical fibre sensing	49
	5.1.	Optical fibre sensors	49
	5.2.	Chemical sensing	51
	5.2.1.	Luminescence	51
	5.2.2.	Absorption sensors	55
	5.2.3.	Biosensors	56
	5.2.4.	Evanescent field optical fibre sensors	56
	5.2.4.1.	Source-fibre coupling for FEFA sensors	59
	5.2.4.2.	Sensitivity of FEFA sensors	62
	5.2.5.	Sensors based on the optomechanical effect	66
	5.2.6.	Sensors based on plasmon surface resonance	66
	5.3.	Optical fibres for chemical sensing	68
	5.3.1.	Polymer-clad silica fibres	70
	5.3.2.	Silver halide fibre	70

Chapter 6	Sulphur deposition experiment	72
6.1.	Experimental Arrangement	72
6.1.1.	Optical Fibre Preparation	73
6.2.	Absorption measurements using white light source	74
6.2.1.	Absorption Spectra	74
6.3.	Absorption measurements using a He-Ne laser	75
6.4.	Electron microscope probe analysis	78
6.5.	Experimental results and discussion	81
6.6.	Conclusion	83
Chapter 7	': Experiment on CO ₂ laser light absorption	85
7.1.	Experimental arrangement	86
7.1.1.	The grating laser SYNRAD 48G-2-28w	88
7.1.2.	Source-fibre coupling	90
7.1.3.	Pyrodetectors	92
7.1.4.	The monochromator ORIEL 1/8 m	93
7.2.	Experimental procedure	93
7.2.1.	Calibration procedure	93
7.2.2.	SF ₆ monitoring	94
7.3.	Experimental results	95
7.3.1.	Calibration	95
7.3.2.	SF ₆ in the corona discharge	97
7.4.	Discussion and conclusion	99
Chapter 8	S: Summary and conclusions 1	102
Appendix	1: The estimation of the SOF_4 and SO_2F_2 refractive indices	107
Appendix	2: Data acquisition programs for the refractive index measurement	109
A2.1.	FILL_IN program 1	110
A2.2.	PUMP_OUT program 1	113
Appendix	3: Equations for light propagation in an optical fibre ¹	114
Appendix	4: Evanescent field of totally reflected light from a flat interface	120
Reference	28	122