
CHAPTER 5

Summary and conclusions

Restatement of the problem

An information processing model based on cognitive skills provided the

framework within which student achievement in traditional procedural

programming was compared with student achievement in object-oriented

programming. Bloom (1976) modelled a theory of school learning which

proposes that three interdependent variables: cognitive entry characteristics,

affective entry characteristics, and quality of instruction, account for the greatest

degree of variance in achievement in student learning.

Cognitive entry behaviours are the knowledge, skills, and competencies which

are essential prerequisites to the learning to be undertaken. It is estimated that

cognitive entry behaviour may account for one half of the variance in cognitive

educational achievement (Bloom 1976, 31).

In seeking diagnostic information about cognitive entry behaviours, this study

accepted Letteri's assertion that cognitive controls are skills (analytic, spatial,

discrimination, categorisation, memory, sequential processing, simultaneous

processing) which students use to control the operations of their information

processing systems (Letteri 1988, 33). An appropriate instrument to measure

these cognitive skills was constructed by Keefe, Monk, Letteri, Languis, and

Dunn (1989).

79

80

An analysis of the context of senior secondary school programming in

conjunction with an appraisal of the literature review suggests that object-

oriented programming may have practical and pedagogical benefits for students.

In an attempt to answer some of the questions about an introduction of object-

oriented programming into the curriculum, this study makes a comparison of

procedural programming achievement and object-oriented programming

achievement in relation to cognitive skills. The potential of object-oriented

programming to inherit user interfaces formed the contextural justification for

also considering the possibility that the addition of sophisticated user interfaces

would enthuse students and provide more stimulating and exciting

developmental work.

The research question may be broadly stated as: How do Year twelve students'

achievement in procedural programming and achievement in object-oriented

programming compare in relation to cognitive skills? A consequential subsidiary

question is whether the addition of a sophisticated user interface to students'

programming projects improves students' attitudes towards programming.

The general research question, in the context of the literature review, provided

the skeleton for a set of hypotheses:

Student achievement in adding a sophisticated user interface within a

familiar procedural programming environment will be significantly greater

than student achievement in adding a sophisticated user interface within a

relatively unfamiliar object-oriented environment.

A significant positive relationship exists between each of the cognitive skill

subscales of the Learning Style Profile, and students' achievement within

each of the programming environments.

81

Whether a sophisticated user interface is added to students' programming

applications within a procedural environment or within an object-oriented

environment will have no significant effect upon students' attitude

towards programming.

The addition of a sophisticated user interface to students' programming

applications will improve students' attitude towards programming.

Summary description of procedures

The study was conducted over a four week period in July 1995. The students

involved in the study comprised all forty-eight Year twelve students studying the

subject 'Information Processing and Technology' (IPT) in a rural high school.

One randomly assigned group of twenty-four students received instruction and

laboratory experience on software development of a 'School Athletics Records'

problem within a procedural programming environment supplemented with a

sophisticated user interface. The other randomly assigned group of twenty-four

students studied an identical problem but within an object-oriented programming

environment.

The study involved two independent variables, one independent variable being

the instructional treatment, procedural programming or object-oriented

programming. The instructional technique in both environments involved a

template approach in which students concentrate on the reading, modification,

and amplification of non-trivial, well designed working programs. Cognitive

skills, measured just prior to the study and transformed by factor analysis to a

two point ordinal value, was the second independent variable.

82

There were two dependent variables. Student programming achievement was

measured in three areas of programming competence (knowledge of syntax,

program modification, and program composition) by student solution to a

'Property Rentals' problem. Student attitude to(wards) programming was

measured by a specially developed scale both pretest and posttest.

Major findings

The comparison of student programming achievement within a procedural

environment and an object-oriented environment indicated that there was no

significant difference in achievement even though object-oriented programming

was relatively new to the students.

It was expected that the object-oriented concepts of encapsulation and

inheritance would have been more demanding of students' knowledge of syntax,

program modification, and program composition. The statistical evidence within

this study suggests that student achievement is not affected by a shift from

procedural programming to object-oriented programming

Hypothesis 2 essentially compared the cognitive skill demands of object-oriented

programming with the cognitive skill demands of procedural programming with

respect to achievement. The achievement test assessed three programming

component skills contained within Shneiderman's syntactic and semantic model

of programming competence (Shneiderman, 1980, cited in Foreman 1988, 6).

Knowledge of syntax, the ability to design and generate codes (program

composition) and the ability to restructure a program by adding and changing

codes (program modification) formed the three programming component skills.

Statistical analysis revealed no significant interaction between cognitive skill

factors and instructional treatment. The differences in programming

83

achievement of students with varying cognitive skills (low, high) are independent

of the programming environment (procedural programming, object-oriented

programming). In the absence of interaction, focus shifted to an analysis of the

main effects.

Cognitive skill factor B significantly accounted for syntax achievement within an

object-oriented programming environment (p = 0.04-) and within a procedural

programming environment (p = 0.04-). This finding was not unexpected because

a major cognitive component of factor B is memory. Knowledge of syntax,

within the context of students having already experienced an introductory

programming course and being provided with templates, is heavily reliant on

memory. A notable observation was that the contribution of factor B to

knowledge of syntax achievement within a prodedural environment (R 2 = 0.13)

was similar to that of an object-oriented environment (R 2 = 0.14).

An important finding was that there are significant relationships between

cognitive skill factor B and achievement in program modification (p = 0.00,

R 2 = 0.39) and program composition (p = 0.00, R 2 = 0.44) within an object-

oriented programming environment. The extent of this relationship is of a similar

magnitude to that conjectured by Bloom (1976, 31). Cognitive skill factor B is

composed of the Learning Style Profile cognitive variables simultaneous

processing, persistence, and memory. The interpretation of the significance may

be that the object-oriented concepts of encapsulation, the construct of

combining data, procedures, and functions together to form an object data type,

requires the simultaneous processing abilities of integrating elements into a

whole (Keefe 1988, 9).

Within a procedural programming environment, a significant relationship was

established between cognitive skill factor A and achievement in program

composition (p = 0.02, R 2 = 0.17). Cognitive skill factor A is composed of the

Learning Style Profile cognitive variables analytical, sequential processing,

84

discrimination, spatial and categorisation skills. This finding is supported by

other studies.

A number of studies have explored the relationship between cognitive style,

generally restricted to analytical skill, and aggregrate programming achievement

(Fletcher, 1984; Webb, 1984, 1985; Bradley, 1985; Pommershein, 1986; Werth

1986; McCoy and Burton, 1987). These studies generally found a relationship

between analytical skill and programming achievement in a variety of courses

(LOGO, BASIC, PASCAL) which would have more relationship to procedural

programming than to object-oriented programming. Bishop-Clark (1992), in a

meta-analysis of similar studies, concluded that although there is not an

established causal link between analytical skill and achievement, the studies

clearly revealed that analytical skill is positively related to achievement in

computer programming classes.

Few studies have examined specific cognitive predictors with regard to

programming component skills (Linn 1985; Foreman 1988, 6). Foreman (1988)

used a set of programming achievement components which are similar to the

achievement components of this study and significantly related analytical skill to

all three components. This study found a similar relationship between cognitive

skill factor A and program composition but not with program syntax or program

modification. Werth (1986) also found a significant relationship between

analytical skill and procedural program composition only.

The absence of a relationship between cognitive skill factor A and program

syntax or program modification may be explained by the use of templates.

Learning the component skills of syntax and modification by use of a template

approach may not be as cognitively demanding as the method of learning used

within the Foreman study. Support for this explanation is provided by Bishop-

Clark (1992, 16) who believes that the use of structured support, as provided by

the templates, would help apply a structure to programming for analytically

85

deficient students. Foreman was also investigating the acquisition of initial

computer programming competence as opposed to the students of this study

who have experienced an introductory programming course.

Foreman (1988), in accordance with this study, also found that spatial skill

within a procedural programming environment was related to program

modification but not to syntax or program composition. It is reasonable to

assume that spatial skill, a component of cognitive skill factor A, the ability to

transform one image into another, may be important in changing programs.

The relationships between programming achievement and cognitive

characteristics, apart from the above studies, has not been well researched. No

studies examine the relationship between cognitive skills and object-oriented

programming achievement.

The posttest attitude to(wards) programming data with pretest attitude data as

covariate and analysed in hypotheses 2 and 3, indicated that there was no

interaction between instructional treatment and cognitive skill factors. The main

effects of instructional treatment (procedural, object-oriented) and cognitive skill

factors (factor A, factor B) have no significant effect on attitude to(wards)

programming.

This study indicated that liking programming, programming difficulty, and

programming usefulness attitudes were not significantly affected by the

programming environment (procedural or object-oriented).

86

Conclusions

The main focus of this study was a comparison of procedural programming

achievement with object-oriented programming achievement within an

information processing framework. The findings indicate that while there is no

significant difference in student achievement between each instructional

treatment, the cognitive demands of each programming environment do differ.

Object-oriented programming achievement in the areas of program modification

and program composition is significantly related to cognitive skill factor B.

Cognitive skill factor B is composed of learning style profile cognitive variables of

simultaneous processing, persistence, and memory (Keefe, Monk, Letteri,

Languis, Dunn 1989). It would appear that higher order achievement in object-

oriented programming requires students to have adequate levels of skill in

simultaneous processing, memory, and persistence.

Contemplation of the introduction of object-oriented programming into the

curriculum will require attention to student skill in being able to process

information simultaneously and to students being able to integrate elements into

a whole (Keefe 1988, 9) as is expected by the object-oriented feature of

encapsulation. Instructional strategies should also give attention to sensing an

overall pattern from the relationships among component parts (Keefe and Monk

1990, 5). Das, Manos, and Kanungo (1975) suggest that this cognitive skill is

amenable to change.

Memory skill, a significant factor of cognitive skill factor B, refers to the retaining

of distinct versus vague images in repeated tasks and to the detection and

remembering of subtle changes in information (Keefe and Monk 1990, 5).

Students with strong memory skills are able to recall accurate information when

required to do so. Success in school is closely related to skill in remembering

information accurately (Jenkins, Letteri and Rosenlund 1990, 47) and the

87

prospect that memory skill is amenable to change suggests that curricular

experiences be designed to help deficit students improve their memory skills

(Santostefano 1985; Jenkins, Letteri and Rosenlund 1990, 47).

Despite the additional cognitive demands of object-oriented programming it

appears that students have no inherent difficulties in learning object-oriented

programming. That object-oriented programming is teachable to students is also

supported by Goldberg and Kay (1977), and Borne and Girardot (1991). This

study has suggested that students' attitude to(wards) programming is

independent of whether the programming environment is procedural or object-

oriented, that students will not feel that object-oriented programming is more

difficult than procedural programming.

The inexpensive packaging of object-oriented programming, object libraries and

procedural programming, combined with the commercial success of object-

oriented software development, presents strong questions about whether

students should begin experiencing object-oriented programming. Some of these

questions have been answered by this study. Assertions that object-oriented

programming is well suited for the development of user interfaces both within

and without an educational context (Cox 1986; Cunningham, Corbett, and Bonar

1987; Milet and Harvey 1989; Borne and Girardot 1991; Greenberg 1991;

Martin 1993) strengthens an argument proposing that students should

experience object-oriented programming.

A claim that the majority of Queensland schools support the algorithms and

programming topic within the Year 11 and 12 Information Processing and

Technology subject with procedural programming is supported by Clarke (1992,

4) and implied by King, Feltham and Nucifora (1994, 21). Within this context, a

sequence in which students experience procedural programming and then later

attach a sophisticated interface within an object-oriented programming

environment may be an acceptable transitional curriculum evolution.

88

This intermeditiary position in which students study both procedural

programming and object-oriented programming has some support (Lawson

1985a, 541; Lawson 1985b, 542; McGrath 1988, 467-484). The support is on

the basis that two programming languages enhance the problem solving

approach and students' view of the use of computer systems for problem

solving.

Recommendations for further investigation

Van Merrienboer (1988, 185) believes that research on cognitive skills and

programming achievement has the potential to provide a model of relationships

between these two variables. The establishment of a model would permit the

design of instructional strategies and materials so that the match between

instruction and student cognitive styles is optimised. Such a model would allow

the improvement of student academic success because learning problems are

more frequently related to the type and level of the cognitive processes required

to learn the material rather than to the difficulty of the subject matter (Letteri

1988, 22). A model of the relationships between student cognitive skills and

programming achievement would also permit direct intervention in the learning

process to provide students with relevant cognitive skills training. An

understanding of the connections and interaction between cognitive skills and

programming achievement would be promoted by examining the following

inquiries:

The reliability indices of the instrument used to measure cognitive skills in

this study ranged from 0.5 to 0.7. While this level of reliability may be

tolerated it does affect the confidence of the findings based on these

measurements. Carmines and Zeller (1979) and Henerson et al. (1987)

both believe that reliabilities at least above 0.7 are desirable. A key focus

89

of further research is thus the development of better instrumentation to

measure cognitive skills.

Cognitive skills are said to be a relatively stable indicator of how a learner

interacts with, and responds, to the learning environment (Claxton and

Ralston 1978; Smith 1982; Keefe, Monk, Letteri, Languis, and Dunn

1989). Establishing a model of relationships between cognitive skills and

programming achievement would very much depend upon the stability of a

learner's cognitive skills. What is the pattern of development of each of

the cognitive skills throughout a students' programming experiences?

Which cognitive skills are easily learned and which cognitive skills are less

malleable or alterable?

There is some support for improving student achievement by the matching

of instructional methods and strategies to the students' level of cognitive

skill (Keefe 1988, 6; Leino et al. 1989, 59). Research is needed to

illuminate the difference it makes if teaching methods are dissimilar to

student cognitive skills. Below what level of cognitive skill would students

gain no benefit from the matching of instruction and cognitive skills?

Jenkins, Letteri and Rosenlund (1990) believe that cognitive skills may be

enhanced by incorporating specific remediation strategies. This support

may be in the form of direct intervention by a 'cognitive resource teacher'

or in the form of augmentation by the class teacher within the classroom.

Further research is needed to determine the potential for remediation of

each of the cognitive skills for students of different ages and at different

levels of cognitive skill.

REFERENCES

Aiken, L.R. 1980, Attitude Measurement and Research, D.A. Payne (ed.), Recent
Developments in Affective Measurement, Josey-Bass, San
Francisco.

Alschuler, A.S., Tabor, D., and McIntyre, J. 1971, Teaching Achievement
Motivation, Education Ventures, Middletown, Conneticutt.

Armour T.E., White, M.A., and Boehm, A. 1987, The Motivational Effects of
Types of Computer Feedback on Children's Learning and Retention
of Relational Concepts, Paper presented at the Annual Meeting of
the American Educational Research Association, Washington, April
20-24, ERIC Document ED 287 446.

Ausburn, L.J., and Ausburn, F.B. 1978, Cognitive Styles: Some Information and
Implications for Instructional Design, ECTJ, vol. 26, no. 4, pp.337-
354.

Bear, G.G. and Richards, H.C., and Lancaster, P. 1987, Attitudes Toward
Computers: Validation of a Computer Attitudes Scale, Journal of
Educational Computing Research, vol. 3, no. 2, 207-218.

Bennett, G.K., Seashore, H.G., and Wesman, A.G. 1959, Different Aptitude
Tests, (3rd edn), Psychological Corporation, New York.

Biggs, J.B., and Moore, P.J. 1993, Process of Learning, (3rd edn), Prentice Hall,
Sydney.

Bishop-Clark, C. 1992, Field Independence and Programming Achievement: A
Meta-Analysis, ERIC Document ED 348 983.

Bloom, B.S. 1976, Human Characteristics and School Learning, McGraw-Hill,
New York.

Board of Senior Secondary School Studies 1991, Senior Information Processing
and Technology, Brisbane.

Board of Senior Secondary School Studies 1994, Provisional QCS Data:
Explanatory Notes, School 304, Brisbane.

Board of Senior Secondary School Studies 1995, Provisional QCS Data:
Explanatory Notes, School 304, Brisbane.

90

91

Bordens, K.S., and Abbott, B.B. 1991, Research Design and Methods: A Process
Approach, (2nd edn), Mayfield, California.

Borland International 1990a, Turbo Pascal 6.0: Turbo Vision Guide, California.

Borland International 1990b, Turbo Pascal 6.0: User's Guide, California.

Borland International 1992, Turbo Pascal 7.0, California.

Borne, I., and Girardot, C. 1991, Object-Oriented Programming in the Primary
Classroom, Computers-and-Education, vol. 16, no. 1, pp. 93-98.

Bradley, C. 1985, The Relationship Between Students' Information Processing
Styles and LOGO Programming, Journal of Educational Computing
Research, vol. 1, no. 4, pp. 427-433.

Brumby, M.N. 1982, Consistent Differences in Cognitive Styles Shown for
Qualitative Biological Problem-solving, British Journal of Educational
Psychology, vol. 52, pp. 244-257.

Bruner, J.S., Goodnow, J.J., and Austin, G.A. 1956, A Study of Thinking,
Wiley, New York.

Canfield, A.A., and Lafferty, S.C. 1974, Manual for the Learning Styles
Inventory, Experiential Learning Methods, Plymouth.

Chiu, L.H. 1967, A Factorial Study of Academic Motivation, Doctoral
dissertation, Teachers College, Columbia University.

Clarke, B. 1992, Information Technology in Education: An Overview of
Information Technology Curricula in Australia and the Implications
of the National Statement on Technology Education, Australian
Educational Computing, vol. 5, no. 2, pp. 3-6.

Clarke, D.E. 1972, The Effects of Simulated Feedback and Motivation on
Persistence at a Task, Organizational Behaviour and Human
Performance, vol. 8, pp. 340-346.

Claxton, C.S., and Murrell, P.H. 1987, Learning Styles: Implications for
Improving Educational Practices, Clearinghouse on Higher Education,
Washington, George Washington University, ERIC Document ED
293 478.

Claxton, C.S., and Murrell, P.H. 1988, Learning Styles: Eric Digest,
Clearinghouse on Higher Education, Washington, George
Washington University, ERIC Document ED 301 143.

92

Claxton, C.S., and Ralston, Y. 1978, Learning Sty/es: Their Impact on teaching
and Administration, AAHE/ERIC Higher Education Research Report
No. 10, American Association for Higher Education, Washington.

Cook, D.A., and Campbell, D.T. 1979, Quasi-Experimentation: Design and
Analysis Issues for Field Settings, Rand McNally, Chicago.

Cox, B.J. 1986, Object-Oriented Programming: An Evolutionary Approach,
Addison-Wesley, Reading.

Cross, K.P. 1976, Accent on Learning, Jossey-Bass, San Francisco.

Cunningham, R.E., Corbett, J.D., and Bonar, J.G. 1987, Chips: A Tool for
Developing Software Interfaces Interactively, Learning Research
and Development Center, Pittsburgh University, Passadena, ERIC
Document ED 290 438.

Curry, L. 1983, An Organization of Learning Styles: Theory and Constructs,
Paper presented at the Annual Meeting of the American Educational
Research Association, ERIC Document ED 235 185.

Dalbey, J., and Linn, M.C. 1985, The Demands and Requirements of Computer
Programming: A Literature Review, Journal of Educational
Computing Research, vol. 1, no. 3, pp. 253-274.

Dalbey, J., Tournaire, F., and Linn, M. 1986, Making Programming Instruction
Cognitively Demanding: An Intervention Study, Journal of Research
in Science Teaching, vol. 23, pp. 427-436.

Das, J.P. 1973, Structure of Cognitive Abilities: Evidence for Simultaneous arid
Successive Processing, Journal of Educational Psychology, vol. 65,
pp. 103-108.

Das, J.P., Kirby, J.R., and Jarman, R.F. 1979, Simultaneous and Successive
Cognitive Processes, Academic Press, New York.

Das, J.P., Manos, J., and Kanungo, R.N. 1975, Performance of Canadian Native,
Black, and White Children on Some Cognitive and personality Tasks,
Alberta Journal of Educational Research, vol. 21, pp. 183-195.

Deci, E.L., and Ryan, R.M. 1985, Intrinsic Motivation and Self-determination in
Human Behaviour, Plenum, New York.

Deimel, L.E., and Moffat, D.V. 1982, A More Analytical Approach to Teaching
the Introductory Programming Course, Smith, J., and Schuster, M.
(eds), Proceedings of the NECC, pp. 114-118, The University of
Missouri, Columbia.

93

diSessa, A., and Abelson, H. 1986, Boxer: a reconstructible computational
medium, Communications of the ACM, vol. 29, no. 9.

Doyle, W. 1983, Academic Work, Review of Educational Research, vol. 53, no.
2, pp. 159-199.

Dunn, R. 1980, Learning: A Matter of Style, Educational Leadership, vol. 37, no.
4, pp. 360-361.

Dunn, R. 1984, Learning Style: State of the Science, Henson, K. (ed.), Matching
Teaching and Learning Styles, Ohio State University, Ohio.

Dunn, R., Dunn, K., and Price, G.E. 1974, Learning Styles Inventory, Price
Systems Inc., Lawrence, Kansas.

Dunn, R., Debello, T., Brennan, P., and Murrain, P. 1981, Learning Style
Researchers Define Differences Differently, Educational Leadership,
vol. 38, no. 5, pp. 372-375.

Ebel, R.L., and Frisbie, David A. 1986, Essentials of Educational Measurement,
(4th edn), Prentice-Hall, New Jersey.

Feather, N. (ed.) 1982, Expectations and Actions, Erlbaum, Hillsdale, New
Jersey.

Fenton, J. J., and Beck, K. 1989, Playground: an object oriented simulation
system with agent rules for children of all ages, OOPSLA 1989
Proceedings.

Finzer, W., and Gould, L. 1987, Programming by Rehearsal: an Environment for
Developing Educational Software, Scanlon, E and O'Shea, T. (eds),
Educational Computing, John Wiley and Sons, Brisbane, pp. 137-
144,

Fishbean, M., and Ajzen, I. 1975, Belief, Attitude, Intention and Behaviour,
Addison-Wesley, Massachusets.

Fletcher, S. 1984, Cognitive Abilities and Computer Programming, ERIC
Document ED 259 700.

Foreman, K. 1988, Cognitive Style, Cognitive Ability and Acquisition of Initial
Programming Competence, Paper presented at the Annual meeting
of the Association for Educational Communications and Technology,
New orleans, LA, Jan 14-19, 1988, ERIC Document ED 295 638.

94

Fowler, W. 1980, Cognitive Differentiation and Developmental Learning, Rees,
H., and Lipsitt, L. (Eds), Advances in Child Development and
Behaviour, vol 15, Academic Press, New York.

Gardner, R.W. 1953, Cognitive Styles in Categorizing Behaviour, Journal of
Personality, vol. 22, pp. 214-233.

Gardner, R.W., Holzman, P.S., Klein, G.S., Linton, H.B., and Spence, D.P. 1959,
Cognitive Control: A Study of Individual Consistencies, Cognitive
Behaviour, Psychological Issues, vol. 4, pp. 46-52 and pp. 82-89.

Gardner, R.W., Jackson, D.N., and Messick, S.J. 1960, Personality Organization
in Cognitive Controls and Intellectual Abilities, Psychological Issues,
International Universities Press Inc., New York.

Gay, L.R. 1981, Educational Research: Competencies for Analysis and
Application, Charles E. Merrill, Sydney.

Giovanni, P.J. 1992, Software Development using Object-oriented Concepts,
Object-oriented Design, Robinson, Peter, Chapman and Hall, New
York, pp. 130-136.

Goldberg, A., and Kay, A. 1977, Teaching Smalltalk, Technical Report SSL 77-2,
Xerox Palo Alto Research Center.

Good, T.L., and Brophy, J.E. 1991, Looking in Classrooms, (5th edn), Harper
Collins, New York.

Gould, L., and Finzer, W. 1984, Programming by Rehearsal, Technical Report
SCL 84-1, Xerox Palo Alto Research Center.

Greenberg, G. 1991, A Creative Arts Approach to Computer Programming,
Computers and the Humanities, vol. 25, no. 5, pp. 267-273.

Gregorc, A.F. 1984, Gregorc Style Delineator: Development, Technical and
Administrative Manual, Gabrial Systems Inc., Maynard, Ma.

Harris, L.J. 1981, Sex Related variations in Spatial Skill, Liben, L.S., Patterson,
A.A., and Newcombe, N. (eds), Spatial Representation and
Behaviour Across the Life Span, Academic Press, New York.

Harvey, 0.J., Hunt, D.E., and Schroder, H.M. 1961, Conceptual Systems and
Personality Organization, John Wiley and Sons, New York.

Hays, W.L., and Winkler, R.L. 1975, Statistics: Probability, Inference and
Decision, (2nd edn), Holt, Rinehart and Winston, New York.

95

Henerson, M.E., Morris, L.L., and Fitz-Gibbon, C.T. 1987, How to Measure
Attitudes, Sage Publications, London.

Holzman, P.S., and Gardner, R.W. 1960, Leveling-Sharpening and Memory
Organization, Journal of Abnormal and Social Psychology, vol. 61,
pp. 176-180.

Jenkins, J.M. 1982, Teaching to Individual Student Learning Styles, The
Administrator, vol. 6, no. 1, pp. 10-12.

Jenkins, J.M., Letteri, C.A., and Rosenlund, P. 1990, Learning Style Profile
Handbook I. Developing Cognitive Skills, National Association of
Secondary School Principals, Reston, Virginia.

Jobson, J.D., 1991, Applied Multivatiate Data Analysis. Volume 1: Regression
and Experimental Design, Springer-Verlag, New York.

Johnson, D.C., and Anderson, R.E. 1985, Algorithms and Programming as Part
of Computer Literacy - Some Assessment Results with Implications
for Secondary School Mathematics, Duncan, K., and Harris, D.
(eds), Computers in Education, Elsevier Science Publishers B.V.,
North Holland.

Kagan, J., and Kogan, N. 1970, Individual Variation in Cognitive Processes,
Mussen, P. H. (ed.), Carmichael's Manual of Child Psychology,
Volume 1, Wiley, New York.

Kaufman, A., and Kaufman, N. 1983, Kaufman Assessment Battery for Children:
Interpretive Manual, American Guidance Service, Circle Pines, MN.

Kay, R.H. 1993, An Exploration of the Theoretical and Practical Foundations for
Assessing Attitudes Towards Computers: The Computer Attitude
Measure, Computers in Human Behaviour, vol. 9, no. 4, pp. 371-
386.

Keefe, J.W. 1987, Learning Style: Theory and Practice, National Association of
Secondary School Principals, Virginia.

Keefe, J.W. 1989, Learning Style Profile Handbook: II. Accommodating
Perceptual, Study, and Instructional Preferences, National
Association of Secondary School Principals, Reston, Virginia.

Keefe, J.W. (ed.) 1990, Profiling and Utilizing Learning Style, National
Association of Secondary School Principals, Virginia.

Keefe, J.W., and Languis, M.L. 1989, Development of a New Simultaneous
Processing Scale, ERIC Document ED 319 770.

96

Keefe, J.W., Monk, J.S., Letteri, C., Languis, M., and Dunn, R. 1989, Learning
Style Profile, National Association of Secondary School Principals,
Reston, Virginia.

Keefe, J.W., and Monk, J.S. 1988, Learning Style Profile Technical Manual,
National Association of Secondary School Principals, Reston,
Virginia.

Keefe, J.W., and Monk, J.S. 1990, LSP: Examiner's Manual, National
Association of Secondary School Principals, Reston, Virginia.

King, J., Feltham, J., and Nucifora, D. 1994, Novice Programming in High
Schools: Teacher Perceptions and New Directions, Australian
Educational Computing, vol. 9, no. 2, September, pp. 17-33.

Kirby, J.R., and Das, J.P. 1977, Reading Achievement, IQ, and Simultaneous-
Successive Processing, Journal of Educational Psychology, vol. 69,
pp. 564-570.

Kolb, D. A. 1976, Learning Style Inventory: Technical Manual, McBer and Co.,
Boston.

Kolb, D.A. 1984, Experiential Learning, Prentice Hall, Englewood Cliffs, New
Jersey.

Kolb, D.A., and Fry, R. 1975, Toward an Applied Theory of Experiental Learning,
Cooper, C.L. (ed.), Theories of Group Processes, John Wiley,
London.

Krywaniuk, L.W. 1974, Patterns of Cognitive Abilities of High and Low
Achieving School Children, PhD. dissertation, University of Alberta,
Canada.

Lawson Jr, H.W. 1985a, A Comparison of Problem Solving Approaches:
Procedural, Non-procedural and Object Oriented, Duncan, K., and
Harris, D. (eds) Computers in Education, Elsevier Science Publishers,
North-Holland, p. 542.

Lawson Jr, H.W. 1985b, A Modern Approach to Teaching "Programming",
Duncan, K., and Harris, D. (eds) Computers in Education, Elsevier
Science Publishers, North-Holland, p. 541.

Leino, A., Leino, J., and Lindstedt, J.P. 1989, A Study of Learning Styles.
Research Bulletin 72, Department of Education, Helsinki University,
ERIC Document ED 311 419.

97

Lepper, M., and Greene, D. (eds) 1978, The Hidden Costs of Reward: New
Perspectives on the Psychology of Human Motivation, Erlbaurn,
New Jersey.

Letteri, C.A. 1982, Cognitive Profile: Relationship to Achievement and
Development, Proceedings of the 8th Congress of WAER.

Letteri, C.A. 1987, Mathematics as a Cognitive Science, Kupari, P. (ed.)
Mathematics Education Research in Finland. Yearbook 1986,
Institute for Educational Research, University of Jyvaskyla, Series B,
vol. 18, pp. 1-5.

Letteri, C.A. 1988, The NASSP Learning Style Profile and Cognitive Processing,
Keefe, J.W. (ed.), Profiling and Utilizing Learning Style, National
Association of Secondary School Principals, Virginia., pp. 22-34.

Lewin, K. 1951, Field Theory in Social Science, Harper and Row, New York.

Linn, M.C. 1985, The Cogntive Consequences of Programming Instruction in the
Classroom, Educational Researcher, vol. 14, no. 5, pp. 14-29.

Linn, M.C., Sloane, K.D., and Clancy, M.J. 1987, Ideal and Actual Outcomes
from Precollege Pascal Instruction, Journal of Research in Science
Teaching, vol. 24, no. 5, pp. 467-490.

Luria, A.R. 1973, The Working Brain, Penguin, London.

Malone, T., and Lepper, M. 1987, Making Learning Fun: A Taxonomy of Intrinsic
Motivation for Learning, Snow, R., and Farr, M. (eds) Aptitude,
Learning, and Instruction: Ill. Cognitive and Affective Process
Analysis, Erlbaum, New Jersey.

Martin, J. 1993, Principles of Object-Oriented Analysis and Design, Prentice Hall,
New Jersey.

Maxwell, T.W. (ed.) 1992, Thesis and Dissertation Guide: For Students in the
Faculty of Education, Nursing and Professional Studies, University
of New England, Armidale.

Mayer, R. E. 1979, A Psychology of Learning BASIC, Communications of the
ACM, pp. 589-593.

McCoy, L., and Burton, J. 1987, The Relationship of Computer Programming and
Mathematics in Secondary Students, Paper presented at AERA
annual meeting, Washington, D.C., April.

98

McGrath, D. 1988, Programming and Problem Solving: Will Two Languages do
it?, Journal of Educational Computing Research, vol. 4, no. 4, pp.
467-484.

McGuiness, D. 1976, Sex Differences in the Organization of Perception and
Cognition, Lloyd, B., and Archer, J. (eds) Exploring Sex Differences,
Academic Press, New York.

Melear, C.T. 1990, Profile of the Non-Major in College Biology by Learning Style,
Paper presented at the Annual Meeting of the Association for
Psychological Type regional Meeting, ERIC Document ED 325 369.

Messick, S., and Associates. 1976, Individuality in Learning, Jossey-Bass, San
Francisco.

Messick, S. 1984, The Nature of Cognitive Styles: Problems and Promise in
Educational Practice, Educational Psychologist, vol. 19, no. 2, pp.
59-74.

Metzler, J., and Shepard, R.N. 1974, Rotational of Tri-Dimensional Objects,
Solso, R.L. (ed.) Theories in Cognitive Psychology: The Loyola
Symposium, Wiley, New York.

Milet, L.K., and Harvey, F.A. 1989, An Exploration and Analysis of the
Relationships among Object Oriented Programming, Hypermedia,
and Hypertalk, Paper presented at the International Meeting of the
Association for the Development of Computer-Based Instructional
Systems, Washington, 31st November, ERIC Document ED 327
153.

Miller, A. 1987, Cognitive Styles: An Integrated Model, Educational Psychology,
vol. 7, no. 4, pp. 251-268.

Mishler, E. 1984, Meaning in Context: Is There any Other Kind?, Hauser-Cram,
P., and Martin, F. (eds), Essays on Educational Research:
Methodology, Testing, and Application, Harvard Educational
Review, Cambridge.

Morse, F.K., and Daiute, C. 1992, I LIKE Computers versus I LIKERT Computers:
Rethinking Methods for Assessing the Gender Gap in Computing,
Paper presented at the Annual Conference of the American
Research Association, California, April 20-24, ERIC Document ED
349 939.

Myers, I.B. 1962, The Myers-Briggs Type Indicator, Consulting Psychologists
Press, Palo Alto.

99

Newlands, D., and Teague, J. 1993, C as a First Programming Language: Its
Suitability at Tertiary and Secondary Level, Australian Educational
Computing, September, pp. 12-15.

Nunnally, J.C. 1967, Psychometric Theory, McGraw-Hill, New York.

O'Brien, L. 1991, Inherit the Window, Computer Language, vol. 8, no. 9, pp.19-
20.

O'Donnel, J.P., Paulson, K.A., and McGann, J.D. 1978, Matching Familiar
Figures Test: A Unidimensional Measure of Reflection-Impulsivity?,
Perceptual and Motor Skills, vol. 47, pp. 1247-1253.

Oppenheim, A.N. 1992, Questionnaire Design, Interviewing and Attitude
Measurement, (2nd edn) Pinter Publishers Ltd, London.

Pea, R.D. 1986, Language-independent Conceptual 'Bugs' in Novice
Programming, Journal of Educational Computing Research, vol. 2,
no.1, pp. 25-36.

Pea, R.D., Kurland, D.M., and Midian, D. 1983, On the Cognitive Prerequisites of
Learning Computer Programming, Technical Report no. 18, New
York, Bank Street College of Education, Center for Children and
Technology.

Pea, R.D., Kurland, D.M., and Midian, D. 1984, On the Cognitive Prerequisites of
Learning Computer Programming: A Critical Look, Technical Report
no. 9, New York, Bank Street College of Education, Center for
Children and Technology.

Pemberton, C.L. 1952, The Closure Factors Related to Temperament, Journal of
Personality, vol. 21, pp. 159-175.

Pettigrew, T.F. 1958, The Measurement and Correlates of Category Width as a
Cognitive Variable, Journal of Personality, vol. 26.

Piaget, J. 1954, The Construction of Reality in the Child, Basic Books, New York.

Piaget, J., Vinh-Bang, H.S., and Mantalon, B. 1958, Note on the Law of the
Temporal Maximum of Some Optico-Geometric Illusions, American
Journal of Psychology, vol. 71, pp. 277-282.

Pizzo, J. 1982, Learning Styles: Teaching through Small Group Techniques, Early
Years, vol. 12, no. 9, pp. 32-35.

Pommershein, J.P. 1986, Computer Programming Achievement, Cognitive Styles,
and Cognitive Profiles, AEDS Journal, vol. 19, pp. 51-59.

100

Reinert, H. 1980, Edmunds Learning Style Identification Exercise, Edmunds
School District No. 15, Edmunds, Washington.

Richards, P.S., Johnson, D.W., and Johnson, R.T. 1986, A Scale for Assessing
Student Attitudes Toward Computers: Preliminary Findings,
Computers in the Schools, vol. 3, no. 2, pp. 31-38.

Richter, R. 1992, A Critical Evaluation of Cognitive Style Assessment, Human
Sciences Research Council, Pretoria, ERIC Document ED 355 016

Riding, R.I., and Buckle, C.F. 1990, Learning Styles and Training Performance,
Sheffield Training Agency.

Ross, S.M., and McCormick, D. 1989, Computer Access and Flowcharting as
Variables in Learning Computer Programming, Paper presented at
the Annual Meeting of the Association for Educational
Communications and Technology, Dallas, February 1-5, ERIC
Document ED 308 835.

Rubenking, N.J. 1992, PC Magazine Turbo Pascal for Windows: Techniques and
Utilities, Ziff-Davis Press, California.

Santostefano, S.A. 1978, A Bio-developmental Approach to Clinical Child
Psychology: Cognitive Control, Cognitive Theory. Personality Series,
John Wiley and Sons, New York.

Santostefano, S.A. 1985, Cognitive Control Therapy with Children and
Adolescents, Pergammon Press, New York.

Schlesinger, N.J. 1954, Cognitive Abilities in Relation to Susceptibility to
Inteference, Journal of Personality, vol. 22, pp. 354-374.

Searle, J.R. 1983, Intentionally, Cambridge University Press, Cambridge.

Sewall, T.J. 1986, The Measurement of Learning Style: A Critique of Four
Assessment Tools, Wisconson University, ERIC Document ED 267
247.

Seymour, S.L., Sullivan, H.J., Story, N.O., and Mosley, M.L. 1986,
Microcomputers and Continuing Motivation, Paper presented at the
Annual Convention of the Association for Educational
Communications and Technology, Las Vegas, January 16-21, ERIC
Document ED 267 791.

Sheil, B.A. 1981, The Psychological Study of Programming, Computing Surveys,
Vol. 13, pp. 101-120.

101

Shneiderman, B. 1976, Exploratory Experiments in Programmer Behaviour,
International Journal of Computer Science, vol. 5, pp. 123-143.

Shneiderman, B. 1980, Software Psychology: Human Factors in Computer and
Information Systems, Wintrop, Cambridge.

Shrigley, R. 1990, Attitude and Behaviour are Correlates, Journal of Research in
Science Teaching, vol. 27, no. 2, pp. 97-113.

Singer, R.N., Korienek, G., Jarvis, D., McColskey, D., and Candeletti, G. 1981,
Goal Setting and Task Persistence, Perceptual and Motor Skills, vol.
53, pp. 881-882.

Sleeman, D., Putman, R.T., Baxter, J.A., and Kuspa, L.K. 1984, Pascal and High-
School Students: A Study of Misconceptions, Technology Panel
Study of Stanford and the Schools. Occasional Report #009,
Stanford University, ERIC Document ED 258 552.

Smith, R.M. 1982, Learning how to Learn: Applied Theory for Adults, Cambridge
University Press, New York.

Soloway, E., and Ehrlich, K. 1984, Emperical Studies of Programming
Knowledge, IEEE Transactions on Software Engineering, vol. 10, no.
5, pp. 595-609.

Sprecht, H. 1976, Simultaneous Successive Processing, Mathematics and
Reading Achievement in Low Achieving High School Students,
Centre for the Study of Mental Retardation, University of Alberta,
Canada.

Sutton, R. 1991, Equity and Computers in the Schools: A Decade of Research,
Review of Educational Research, vol. 61, no. 4, pp. 475-503.

Sutton-Smith, B. 1977, The Play of Girls, Koop, C.B. (ed.) Perspectives on
Development, Plenum, New York.

TechnoJock Software, 1989, TechnoJock's Turbo Toolkit: Version 5.0, Houston,
Texas.

TechnoJock Software, 1991, TechnoJock's Object Toolkit, Houston, Texas.

Tittle, C.R., and Hill, R.J. 1967, Attitude Measurement and Prediction of
Behaviour: An Evaluation of Conditions and Measurement
Techniques, Sociometry 30 , pp. 199-213.

Todman, J., and File, P. 1990, A Scale for Children's Attitudes to Computers,
School Psychology International, vol. 11, pp. 71-75.

102

Tuckman, B.W. 1978, Conducting Educational Research, (2nd edn) Harcourt
Brace Jovanovich, New York.

Turkle, S., and Papert, S. 1992, Epistemological Pluralism and the Revaluation of
the Concrete, Journal-of-Mathematical-Behavior, vol. 11, no. 1, pp.
3-33.

Vallerand, R.J. 1992, The Academic Motivation Scale: A Measure of Intrinsic,
Extrinsic, and Academic Motivation in Education,
Educational-and-Psychological-Measurement, vol. 52, no. 4, pp.
1003-1017.

van Merrienboer, J.J.G. 1988, Relationship between Cognitive Learning Style
and Achievement in an Introductory Computer Programming Course,
Journal of Research on Computing in Education, vol. 21, no. 2, pp.
181-186.

Webb, N. 1984, Microcomputer Learning in Small groups: Cognitive
Requirements and Group Processes, Journal of Educational
Psychology, vol. 76, no. 6, pp. 1076-1088.

Weiskamp, K., Flamig, B., and Heiny, L. 1991, Object-oriented Programming
with Turbo Pascal Version 6.0, Scott Foresman Professional Books.

Werth, L. 1986, Predicting Student Performance in a Beginning Computer
Science Class, ACM-SIGSCE Bulletin, vol. 18, no. 1, pp. 138-142.

Wiersma, W. 1991, Research Methods in Education, Allyn and Bacon, Sydney.

Witkin, H.A., and Goodenough, D.R. 1981, Cognitive Styles: Essence and
Origins - Field Dependence and Field Independence, Psychological
Issues. Monograph 51, International Universities Press, New York.

Witkin, H.A., Moore, C., Goodenough, D., and Cox, P. 1977, Field-Dependent
and Field-Independent Cognitive Styles and Their Educational
Implications, Review of Educational Research, vol. 47, no. 10, pp.
1-64.

Witkin, H.A., Oltman, P.K., Raskin, E., and Karp, S.A. 1971, Group Embedded
Figures Test, Consulting Psychologists Press Inc., Palo Alto,
California.

103

Appendix A	 Specific algorithms and programming objectives

6.2 Algorithms and programming
(19wks with 14wks core and 5wks extension)
(S3 - Semester 3, S4 - Semester 4)

The aim of this topic is to develop software development expertise and
programming skills in students. This topic focuses on the design and
implementation of algorithms for the solution of practical problems.

A general problem solving algorithm has been defined by Polya:
Define the problem
Plan a solution
Implement the solution
Look back.

This can be expanded to the software development cycle which is used when
solving a problem using an algorithmic approach. The software development
cycle can be defined as:

Define the problem
Specify the solution
Design the algorithm
Implement the algorithm
Document the program
Test the program
Evaluate the solution.

In this topic students will learn to solve problems using an algorithmic approach
and will therefore need to study these processes.

Alpha criterion

the student should have a knowledge of:
S3	 the software development cycle
S3	 the importance of accurate problem definition and program specification
S3	 basic algorithm specification procedures
S3	 the nature and importance of algorithms
S3	 algorithm design procedures using pseudocode
S3	 basic algorithm elements
S3	 standard control structures such as sequence, selection, iteration and

modularity
S3	 common data structures such as simple variables and arrays
S3	 one or more algorithm description methodologies
S3	 the syntax and structure of the procedural language Turbo Pascal

104

S3	 the importance of documentation both internal and external to the program
S4	 testing techniques
S4	 the user interface and its importance
S4	 the appropriate layout and content of user manuals
S4 data structures such as files and objects
S4 recursion

the student should be able to:
S3	 specify a solution to a problem
S3	 identify selection, iteration, modularity in a given algorithm
S3	 write algorithms which have meaningful identifiers
S3	 choose appropriate data structures for a given problem
S3	 make appropriate use of constants and variables
S3	 make input of data by the user easy and unambiguous
S3	 provide clear, concise, suitably formatted output
S3	 make appropriate use of selection constructs
S3	 make appropriate use of iteration
S3	 use a consistent system of indentation and use comments to ensure the

program is legible and easily maintained
S3	 run, compile to memory or disk and save a Pascal program
S3	 classify an error as syntactic, semantic or logical
S3	 systematically test and correct errors
S4 make use of data structures such as files and objects

Beta criterion

the student should be able to:
S3	 define a problem in appropriate language given a verbal or written

description
S3	 specify the solution to a problem
S3	 design and present an algorithm that solves a given problem
S3	 correctly trace through a given algorithm
S3	 choose appropriate data structures for a given problem
S3	 implement an algorithm in a given programming language (Turbo Pascal)
S3	 produce well structured, modular algorithms and programs
S4	 present programs appropriately, including internal documentation
S4	 write adequate explanatory documents to accompany programs
S4	 systematically test and correct errors
S4 provide an appropriate user interface to their programs
54 write programs that involves the use of procedures, functions and

objects
S4 use toolboxes to provide appropriate user interfaces
S4	 write operating instructions and other supporting documentation suitable

for use as manuals

105

Learning experiences

Students may gain a knowledge of the above concepts and processes in a
variety of ways. Students might:

observe, analyse and modify existing solutions to problems
develop partial solutions to problems (carry out a single step of the
software development cycle)
develop complete solutions to problems given varying amounts of
guidance.

Students should gain experience in solving problems in a variety of domains (for
example, numerical calculation, text manipulation, sorting, simple data storage,
graphics, sound). At least one exercise involving a complete software
development process from determination of user requirements through analysis,
design, implementation and testing against specification is essential.

106

Appendix B	 Normal end of unit achievement test applied prior to the
study.

STANTHORPE STATE HIGH SCHOOL

IPT

Algorithmic Languages

Question 1	 (8a)

Make Pascal variable declarations for each of the following:
a) A variable, Surname which needs to be able to hold a person's surname of

up to 20 characters.	 (1)
b) A variable, Length which needs to be able to hold measurements, eg.

46.25m.	 (1)
c) A variable, Choice which needs to be able to hold single letters, eg. 'a' or

'S'
	

(1)
d) A variable, Completed which needs to be able to hold a value of true or

false	 (1)
e) A variable, Chairs which needs to be able to hold the number of chairs in a

room, eg. 35	 (1)
f) A variable, Code which needs to be able to hold the state and postcode

number, eg. Q 4380 or NSW 2415 	 (1)
g) A variable, Subjects which needs to be able to hold the names of all Board

subjects at once. The are 45 Board subjects and the longest name is
'Information Processing and Technology'. 	 (1)

h) A variable, IPTresults which is a text file containing results.	 (1)

Question 2	 (2a)

Given that Ord(' a') = 97, evaluate:
a) Ord('e')
b) Chr(105)
c) Succ('c')
d) Pred('d')
e) Val(102)

Page 1 of 4 pages

107

Question 3	 (11a)

Show the value of the following Pascal statements given the variable values
shown:
count	 value	 index	 name
21.6	 37	 7	 Monkey

a) value mod index	 (1)

b) value div index	 (1)
c) Trunc(count)	 (1)
d) Round(count)	 (1)
g) 35 + 10 / 5 - 2 * 4	 (1)
h) 5 * (4 + 6) - 7	 (1)
i) Sqr(5 * Sqrt(9) - Sqrt(49)) 	 (1)
j) Not(Sqrt(100) < 2000)	 (1)
k) (5 > 3) AND (Chr(100) = 'd') 	 (1)
I)	 (Not(True)) OR (Sqr(3) < 2)	 (1)
m)	 Copy(name,2,3)

Question 4	 (3a)

a) What is the essential difference between a REPEAT-UNTIL and a WHILE-
DO loop?
	 (1)

b) Replace the following Pascal code with
i) a nested IF THEN ELSE
ii) a CASE statement

if choice = 'A' then writeln('Apple');
if choice = 'B' then writeln('Bear');
if choice = 'C' then writeln('Cat');

	 (2)

Question 5	 (5a)

Write a procedure to sort the array of students into ascending order of OP. The
type and variable declarations are shown below:

Type person = record
name : string[25];
school : string[20];
OP : integer;

end;

var	 students : array[1..100] of person;

Page 2 of 4 pages

108

Question 6	 (12a)
a) Describe the three ages of computer languages.	 (3)

b) What are two advantages of Object Oriented Programming (OOP)? Give a
brief explanation of each of the advantages you nominate.	 (2)

c) Rewrite the following program using OOP:	 (4)

Program Circle;
Uses CRT;
Var radius : real

Procedure Initialise;
Begin

ClrScr;
Write('What is the radius');
Readln(radius);

End;

Procedure Area;
Begin

Writeln('The area = ',3.14*radius*radius);
End;

BEGIN	 {of the main program}
Initialise;
Area;

END.

d) Extend the program, using inheritance, to also calculate the circumference.
(Circumference = 2*3.14*radius). 	 (3)

Question 7	 (12a)
Write the method AddMovie. The method should allow a user to add data about
a new movie to the file. The type and variable declarations are shown below:

Type Movies = Object
id	 : integer;
title	 : string[25];
type : string[15];
Procedure MenuChoice;
Procedure WriteToFile;
Procedure ReadTheFile;
Procedure AddMovie;
Procedure DeleteMovie;

end;
Var MoviesRecords : Array[1..1000] of Movies;

MoviesAction : Movies;	 Page 3 of 4 pages

109

Question 8	 (4p)

Write a program which will accept a sentence that has been entered in a mixture
of uppercase and lowercase letters. The program should then report the
frequency of each of the vowels in the sentence.

For example, if the program was given the sentence, 'On Earth, England is
opposite Australia', the output would be:

Vowel	 Frequency
A	 5
E	 3
I	 3
0	 3
U	 1

Question 9	 (6[3)

A simple way of encrypting a message is to shift each letter two places along.
For example, the letter 'A" becomes 'C', the letter 'B' becomes 'D', the letter 'C'
becomes 'E', the letter 'Y' becomes 'A' and the letter 'Z' becomes 'B'. Assume
that all letters are in uppercase in this question.

Encrypting the word 'PLAY' produces 'RNCA'
Decrypting 'RNCA' produces 'PLAY'

a) Plan a procedure to encrypt a message.
b) Plan a procedure to decrypt a message.
c) Write a program which allows an operator to choose between encrypting

and decrypting a message.

Question 10	 (1 op)

A textfile has been sorted and stored on a disk. It contains a list of names
sorted alphabetically. A new file is required, sorted in the opposite order.

The number of names in the file does not exceed 150, but could be less.

Using an array to reverse the order of the names, write a Pascal program which
would read this file, count the number of names, and create the new file in
reverse order.

N.B. There should be no blank lines at the beginning of the new textfile,
regardless of the length of the original textfile.

Page 4 of 4 pages

110

Appendix C	 Object-oriented 'Athletics records' code with attached interface.

Program SHSSAthleticsRecords;
{***4******************A}
{ Definition of the problem
{ The sports master wants a computer program to store the school's }
{ athletics records. There are 120 events as shown on the attached }
{ list. Records stored in the file RECORDS.DAT. 	 }
{ Sample data is shown below. 	 }

Event:	 U14 Girls 100m	 1

Record:	 13.0s	 1

Record holder:	 K Perry	 1
Record date:	 1977	 1

House:	 Withers

1
{ Specification of the solution 	 }
{ The solution will provide the operator with five choices
1	 1	 Create a file of athletics records	 1

2	 Alter a record	 1
3	 List all records	 1

1	 4	 Sort records by holder name 	 1
{	 Q	 Quit the program	 }

*	 * * * * * *	 * * * * * * * * *	 *	 * * * * * * *	 * * * *	 *	 * * * * *

Uses Crt, Printer, Dos,
TOTMENU, TOTFAST, TOTMSG, TOTI01, TOTIO2,
TOTLOOK, TOTLIST, TOTSTR;

Const max no events - 20;_ _

Type Athletics = Object
event	 : string[15];
records	 : string[15];
holder : string[15];
date	 : integer;
house	 : string[7];
choice	 : byte;
Procedure Initialize;
Procedure MenuChoice;
Procedure WriteToFile;
Procedure ReadTheFile;
Procedure CreatelnitialFile;
Procedure AlterRecord;
Procedure ListRecords;
Procedure SortRecords;

end;

Var AthleticsRecord : array[1..max no_events] of Athletics;
AthleticsAction : Athletics;
numberofrecords : integer;

- Athletics Methods 	 1
Procedure Athletics. Initialize;
{This method initializes the screen, menu, window look}
begin

Screen.Attrib(1,1,80,25,23);
ShadowTOT^.SetShadowStyle(DownRight,Black,");
Lo0kTOTA.SetMenu(23,30,19,78,79,30,31,9);
LookTOT^.SetWindow(23,31,19,30);

end; {of the method Athletics.Initialize}

Procedure Athletics.MenuChoice;
{This method allows the user to make a menu choice}
Var main : MenuObj;
begin

Screen.Clear(lightgray,chr(177));
main.init;

main.Addltem(");
main.AddFullltem(' - C - reate file	 ',1,67,'Caution-creates a new file',nil);
main.AddFullItem(' - A - lter a record ',2,65,'Change a record',nil);
main.AddFullltem(' - 1.. - ist all records',3,76,'Show all records',nil);
main.AddFullltem(' - S - ort records	 ',4,83,'Sort records by holder name',nil);
main.AddFullltem(' - Q - uit	 ',5,81 ,'Quit the program',nil);
main.Addltem(");
main.SetStyleTitle(1,' Main Menu ');
Choice := main.Activate;
main.Done;

end;	 {of the method MenuChoice}

Procedure Athletics.WriteToFile;
{This method writes the athletics records to the file records.dat}
Var RecordsFile : text;

number	 : integer;
Begin

Assign(RecordsFile, 'records.dat');
Rewrite(RecordsFile);
for number := 1 to numberofrecords do begin

Writeln(RecordsFile, AthleticsRecord[number].event);
Writeln(RecordsFile, AthleticsRecord[number].records);
Writeln(RecordsFile, AthleticsRecord[number].holder);
Writeln(RecordsFile, AthleticsRecord[number].date);
Writeln(RecordsFile, AthleticsRecord[number].house);

end;
Clcse(RecordsFile);

End; {of the method WriteToFile}

111

Procedure Athletics.ReadTheFile;
{This method reads the athletics records data from the file}
Var RecordsFile : text;

number	 : integer;

Begin
Assign(RecordsFile,'records.dat');
Reset(RecordsFile);
number := 0;
While not EoF(RecordsFile) do begin

number := number + 1;
Readln(RecordsFile, AthleticsRecord[number].event);
Readln(RecordsFile, AthleticsRecord[number].records);
Readln(RecordsFile, AthleticsRecord[number].holder);
Readln(RecordsFile, AthleticsRecord[number].date);
Readln(RecordsFile, AthleticsRecord[number].house);

end;
numberofrecords := number;
Close(RecordsFile);

End; {End of the method ReadTheFile}

Procedure Athletics.CreateInitialFile;
{ This procedure creates the initial file of athletics records }
Var ListWin : ListArrayObj;

number, selected : integer;
more : char;
nomoreneeded	 boolean;
items : array[1..max_no_events] of string[15];
events, rec, holders, houses : StringIOOBJ;
dates : IntIOOBJ;
keys : ControlKeysIOOBJ;
manager : FormOBJ;
MsgWin : PromptOBJ;
result, ActionCode : tAction;

Begin
number := 0;
Repeat

number := number + 1;
Screen.Clear(lightgray,chr(177));

Screen.WriteCenter(25,yellow,'Press TAB to switch fields. Press F10 to end.');
Screen.TitledBox(25,7,55,18,23,30,31,1,' Enter record data ');
events.Init(35,9,15);
events.SetLabel('Event');
rec.Init(35,11,15);
rec.SetLabel('Record');
holders.Init(35,13,15);
holders.SetLabel('Holder');
dates.Init(35,15,4);
dates.SetLabel('Date');
houses.Init(35,17,15);
houses.SetLabel('House');
keys.init;

112

manager.init;
manager.AddItem(keys);
manager.AddItem(events);
manager.AddItem(rec);
manager.AddItem(holders);
manager.AddItem(dates);
manager.AddItem(houses);
result := manager.go;
AthleticsRecord[number].event := events.getvalue;
AthleticsRecord[number].records := rec.getvalue;
AthleticsRecord[number].holder := holders.getvalue;
AthleticsRecord[number].date := dates.getvalue;
AthleticsRecord[number].house := houses.getvalue;

Screen.Clear(lightgray,chr(177));
MsgWin.Init(1,' Message ');
MsgWin.AddLine(");
MsgWin.AddLine('Do you want to enter another record?');
MsgWin.AddLine(");
MsgWin.SetOption(1,' -Y-es ',89,Stopl);
MsgWin.SetOption(2,' -N-o ',78,Stop2);
ActionCode := MsgWin.Show;
MsgWin.done;
nomoreneeded := (ActionCode 	 Stop2);

Until nomoreneeded;
numberofrecords := number;
WriteToFile;

end; { End of the method CreatelnitialFile }

Procedure Athletics .AlterRecord;
{This method allows an atheletics record to be changed}
Var. ListWin : ListArrayObj;

number, selected : integer;
items : array[1..max no events] of string[15];
events, rec, holders, houses : StringIOOBJ;
dates : IntIOOsBJ;
keys : ControlKeysIOOBJ;
manager : FormOBJ;
result : tAction;

Begin
selected :- 0;
Screen.Clear(lightgray,chr(177));

Screen.WriteCenter(25,yellow,'Press enter to select. Press F10 to end.');
Athletics.ReadTheFile;
for number := 1 to numberofrecords do
items[number] := AthleticsRecord[number].event;

ListWin.Init;
ListWin.AssignList(items,numberofrecords,15,true);
ListWin.Win^.SetSize(25,7,55,18,2);
ListWin.Win^.SetTitle(' Records ');
ListWin.SetColWidth(0);

113

114

ListWin.Go;
for number := 1 to numberofrecords do
if ListWin.GetStatus(number,O) then selected := number;

ListWin.Done;
Screen.Clear(lightgray,chr(177));
Screen.WriteCenter(25,yellow,'Press TAB to switch fields. Press F1() to end.');
Screen.TitledBox(25,7,55,18,23,30,31,1,' Change the record ');
events.Init(35,9,15);
events.SetLabel('Event');
events.SetValue(AthleticsRecord[selected].event);
rec.Init(35,11,15);
rec.SetLabel('Record');
rec.SetValue(AthleticsRecord[selected].records);
holders.Init(35,13,15);
holders.SetLabel('Holder');
holders.SetValue(AthleticsRecord[selected].holder);
dates.Init(35,15,4);
dates.SetLabel('Date');
dates.SetValue(AthleticsRecord[selected].date);
houses.Init(35,17,15);
houses.SetLabel('House');
houses.SetValue(AthleticsRecord[selected].house);
keys.init;
manager.init;
manager.Addltem(keys);
manager.AddItem(events);
manager.AddItem(rec);
manager.AddItem(holders);
manager.Addltem(dates);
manager.Addltem(houses);
result := manager.go;
AthleticsRecord[number].event := events.getvalue;
AthleticsRecord[number].records := rec.getvalue;
AthleticsRecord[number].holder := holders.getvalue;
AthleticsRecord[number].date := dates.getvalue;
AthleticsRecord[number].house := houses.getvalue;
WriteToFile;

end; (Of the method AlterRecord}

Procedure Athletics.ListRecords;
{This method will show each of the stored athletics records}
Var MsgWin	 PromptOBJ;

ActionCode : tAction;
number : integer;

begin
number := 0;
Screen.Clear(lightgray, chr(177));
ReadTheFile;
Repeat

number := number + 1;
Screen.Clear(lightgray, chr(177));
MsgWin.Init(1,' Record number '+ IntToStr(number));

115

MsgWin.AddLine(");
MsgWin.AddLine(' Event: '+ AthleticsRecord[number].event);
MsgWin.AddLine(' Record: '+ AthleticsRecord[number].records);
MsgWin.AddLine(' Name: '+ AthleticsRecord[number].holder);

MsgWin.Addline(' Year: ' + IntToStr(AthleticsRecord[number].date));
MsgWin.AddLine(' House: 	 '+ AthleticsRecord[number].house);
MsgWin.AddLine(");
MsgWin.SetOption(1,' -N--ext ',88,Finished);
MsgWin.SetOption(2,' -A-bort ',65,Escaped);
ActionCode := MsgWin.Show;
MsgWin.Done;

Until (ActionCode = Escaped) OR (number = numberofreccrds);
end; {of the method ListRecords}

Procedure Athletics.SortRecords;
{This method will sort the records in alpha order of holder name}
Var MsgWin : PromptOBJ;

ActionCode : tAction;
had=ochange : boolean;
eventtemp,recordstemp,holdertemp,housetemp	 string[15];
datetemp, number : integer;
no : string[2];

begin
Screen.Clear(lightgray, chr(177));
ReadTheFile;
Repeat

hadtochange := false;
for number := 1 to (numberofrecords - 1) do

if AthleticsRecord[number].holder > AthleticsRecord[number + 1].holder then
begin

eventtemp := AthleticsRecord[number].event;
recordstemp := AthleticsRecord[number].records;
holdertemp := AthleticsRecord[number].holder;
datetemp := AthleticsRecord[number].date;
housetemp := AthleticsRecord[number].house;

AthleticsRecord[number].event : = AthleticsRecord[number -F 1].event;
AthleticsRecord[number].records : = AthleticsRecord[number + 1].records;
AthleticsRecord[number].holder : = AthleticsRecord[number + 1].holder;
AthleticsRecord[number].date : = AthleticsRecord[number + 1].date,
AthleticsRecord[number].house : = AthleticsRecord[number + 1].house;
AthleticsRecord[number+1].event := eventtemp;
AthleticsRecord[number+1].records := recordstemp;
AthleticsRecord[number+1].holder := holdertemp;
AthleticsRecord[number+1].date := datetemp;
AthleticsRecord[number+1].house := housetemp;
hadtochange := true;

end;	 {of the if}
Until hadtochange = false;

1 1 6

number := 0;
Repeat

number := number + 1;
str(number,no);
Screen.Clear(lightgray, chr(177));
MsgWin.Init(1,' Record number '+ no);
MsgWin.AddLine(");
MsgWin.AddLine(' Event: '+ AthleticsRecord[number].event);
MsgWin.AddLine(' Record: '+ AthleticsRecord[number].records);
MsgWin.AddLine(' Name: '+ AthleticsRecord[number].holder);

MsgWin.Addline(' Year: ' + IntToStr(AthleticsRecord[nunnbed.date));
MsgWin.AddLine(' House:	 '+ AthleticsRecord[number].house);
MsgWin.AddLine(");
MsgWin.SetOption(1,' --N-ext ',88,Finished);
MsgWin.SetOption(2,' -Abort ',65,Escaped);
ActionCode := MsgWin.Show;
MsgWin.Done;

Until (ActionCode = Escaped) OR (number = numberofrecords);
end; { of the method Athletics.SortRecords}

End of the Athletics Methods 	 	 1

BEGIN {of the main program}

Repeat
AthleticsAction.lnitialize;
AthleticsAction.MenuChoice;
case AthleticsAction.choice of 1 : AthleticsAction.CreatelnitialFile;

2: AthleticsAction.AlterRecord;
3: AthleticsAction.ListRecords;
4: AthleticsAction.SortRecords;

end; {of the case}
Until AthleticsAction.choice = 5;

END. {of the main program}

117

Procedural 'Athletics records' code with attached interface.

Program SHSSAthleticsRecords;
f***1
{ Definition of the problem	 }
{ The sports master wants a computer program to store the school's }
{ athletics records. There are 120 events as shown on the attached }
{ list. Records stored in the file RECORDS.DAT.
{ Sample data is shown below.

Event:	 U14 Girls 100m
Record:	 13.0s
Record holder:	 K Perry
Record date:	 1977
House:	 Withers

{ Specification of the solution
{ The solution will provide the operator with five choices

1	 Create a file of athletics records
2	 Alter a record
3	 List all records
4	 Sort records by holder name

Quit the program
* * -A- * * 4- * * * * -k	 -k -A- * -A- * *	 * * -k * * * * -A- 4,- * * * *	 * * -k * * * * * *	 4- 4- * -A- * * * 4- 4- 4- }

Uses Crt, Printer,
DIRTTT5, STRNTTT5, LISTTTT5, FASTTTT5,	 {TTT Toolkit Units}
WINTTT5, KEYTTT5, MENUTTTE, IOTTT5, MISSCTTT5; {TTT Toolkit Units}

Const Max no events = 20;

Type Athletics = record
event	 : string[15];
records : string[15];
holder	 : string[15];
date	 : string[4];
house	 : string[7];

end; {of record declaration}

Var AthleticsRecord : array [1..max_no_events] of AthLetics;
choice, numberofrecords : integer;

118

Procedure MenuChoice;
Var AthleticsMenu : Menu Record;
begin

ClrScr;
FiliScreen (1,1,80,25,LightGray,blue,chr(177));
Menu_ Set(AthleticsMenu);
With AthleticsMenu do begin

Headingl	 := 'Athletics Records';
Heading2	 := 'Main Menu';
Topic[1]	 := 'Create an athletics file';
Topic[2]	 := 'Alter a record';
Topic[3]	 := 'View the records';
Topic[4]	 :=	 'Sort records';
Topic[5]	 :=	 'Quit';
TotalPicks	 := 5;

AddPrefix	 := 4;	 {Highlights the first letter}
TopLeftXY[1] := 0;	 {Menu is centre of x axis}
TopLeftXY[2] := 5;	 {Menu starts on fifth line down}
Margins	 := 3;	 {No of spaces between border and items}

end;
choice := 1;
DisplayMenu(AthleticsMenu,false,choice,retcode);

end;

Procedure WriteTo File;
Var RecordsFile : text;

number	 : integer;
begin

Assign(RecordsFile, 'RECORDS.DAT');
Rewrite(RecordsFile);
for number := 1 to numberofrecords do begin

Writeln(RecordsFile, AthleticsRecord[number].event);
Writeln(RecordsFile, AthleticsRecord[number].records);
Writeln(RecordsFile, AthleticsRecord[number].holder);
Writeln(RecordsFile, AthleticsRecord[number].date);
Writeln(RecordsFile, AhtleticsRecord[number].house);

end;
Close(RecordsFile);

End; {of the procedure WriteToFile}

Procedure ReadTheFile;
Var RecordsFile : Text;

number	 : integer;
Begin

Assign(RecordsFile,'records.dat');
Reset(RecordsFile);
number := 0;
While not EOF (RecordsFile) do begin

number := number + 1;
Readln(RecordsFile, AthleticsRecord[number].event);

119

Readln(RecordsFile, AthleticsRecord[number].records);
Readln(RecordsFile, AthleticsRecord[number].holder);
Readln(RecordsFile, AthleticsRecord[number].date);
Readln(RecordsFile, AhtleticsRecord[number].house);

end;
numberofrecords := number;
Close(RecordsFile);

End; {End of the procedure ReadTheFile}

Procedure CreateFile;
Var number : integer;
begin

number := 0;
Repeat
number := number + 1;
FillScreen(1,1,80,25,LightGray,Blue,chr(177));
FBox(25,7,53,17,Yellow,Blue,2);
WriteAt(30,9,White,Blue,'Event No: '+ Int to Str(number));
WriteAt(27,11,White,Blue,'Event :');
WriteAt(27,12,White,Blue,'Record:');
WriteAt(27,13,White,Blue,'Holder:');
WriteAt(27,14,White,Blue,'Year	 :');
WriteAt(27,15,White,Blue,'House :')
WriteAt(20,1,Yellow,Blue,

'Press F10 to complete input.Esc to quit.');
Create Tables(1);_
Create Fields(5);	 {create 5 input fields}
Add Fi-eld(1,5,2,5,2,36,11);
String Field(1,AthleticsRecord[number].event,'***************');
Add Field(2,1,3,1,3,36,12);
String Field(2,AthleticsRecord[number].records,1***************');
Add Field(3,2,4,2,4,36,13);
String Field(3,AthleticsRecord[number].holder,'***************');
Add Field(4,3,5,3,5,36,14);
String Field(4,AthleticsRecord[number].date,'***');
Add Field(5,4,1,4,1,36,15);
String Field(5,AthleticsRecord[number].house,'*******');
Activate-Table(1);
Process _Input(1);	 {allow the user to input data}
Dispose Fields;
Dispose Tables;

Until (number = numberofrecords) OR (GetKey = #27);
WriteToFile;

end; lend of the procedure CreatelnitialFile }

Procedure AlterRecord;
{This procedure allows an athletics record to be changed}
Var events : array[1..max_no events] of string[15];

counter, number : integer;
begin

ReadThe File;
for counter := 1 to numberofrecords do

120

events[counter] := AthleticsRecord[counter].event;
FillScreen(1,1,80,25,LightGray,Blue,Chr(177));
LTTT.End Chars := [#13];
LTTT.BoxFcol := Cyan
Show List(events,15,numberofrecords);
number := L Pick;
FillScreen(1,1,80,25,LightGray,Blue,chr(177));
FBox(25,7,53,17,Yellow,Blue,2);
WriteAt(30,9,White,Blue,'Event No: '+ Int_to_Str(number));
WriteAt(27,11,White,Blue,'Event :');
WriteAt(27,12,White,Blue,'Record:');
WriteAt(27,13,White,Blue,'Holder:');
WriteAt(27,14,White,Blue,'Year	 :');
WriteAt(27,15,White,Blue,'House :');
WriteAt(20,1,Yellow,Blue,

'Press F10 to complete input.Esc to quit.');
Create Tables(1);_
Create Fields(5);	 {create 5 input fields}
Add Fi-eld(1,5,2,5,2,36,11);
String Field(1,AthleticsRecord[number].event,'***************');
Add Field(2,1,3,1,3,36,12);
String_Field(2,AthleticsRecord[number].records,1***************');
Add Field(3,2,4,2,4,36,13);
String Field(3,AthleticsRecord[number].holder,'***************');
Add Field(4,3,5,3,5,36,14);
String Field(4,AthleticsRecord[number].date,'****');
Add Field(5,4,1,4,1,36,15);
String Field(5,AthleticsRecord[number].house,1*******1);
Activate-Table(1);
Process _Input(1);	 {allow the user to input data}
Dispose Fields;
Dispose Tables;
If GetKey <> #27 then WriteToFile;

end; {of the procedure AlterRecord}

Procedure ShowRecords;
{This procedure will show each of the stored athletics records}
Var number : integer;

begin
FillScreen(1,1,80,25,LightGray,Blue,chr(177));
number := 0;
Repeat
number := number + 1;
WriteAt(20,1,Yellow,Blue,

'Press enter for next record. Esc to quit');
MkWin(25,9,55,19,Yellow,Blue,7);
WriteAt(33,11,Yellow,Blue,'Event No: '+ Int_to Str(number));
WriteAt(28,13,White,Blue,'Event 	 : '+

AthleticsRecord[number].event);
WriteAt(28,14,White,Blue,'Record	 '+

AthleticsRecord[number].records);

121

WriteAt(28,15,White,Blue,'Holder	 : '+
Athleticsrecord[number].holder);

WriteAt(28,16,White,Blue,'Date	 : '+
AthleticsRecord[number].date;

WriteAt(28,17,White,Blue,'House	 : '+
AthleticsRecord[number].house);

Until (number = numberofrecords) OR (GetKey = #27);
end; {of the procedure ShowRecords}

Procedure SortRecords;
{This procedure will sort the records in alpha order of holder name}
Var number	 : integer;

hadtochange : boolean;
eventemp,recordstemp,holderstemp,housetemp : stririg[15];
datetemp : string[4];

begin
ClrScr;
ReadTheFile;
Repeat
hadtochange := false;
for number := 1 to (numberofrecords - 1) do
if AthleticsRecord[number].holder >

AthleticsRecord[number+1].holder then begin
eventtemp := AthleticsRecord[number].event;
recordstemp :=AthleticsRecord[number].records;
holdertemp := AthleticsRecord[number].holder;
datetemp := AthleticsRecord[number].date;
housetemp	 AthleticsRecord[number].house;
AthleticsRecord[number].event :=

AthleticsRecord[number+1].event;
AthleticsRecord[number].records :=

AthleticsRecord[number+1].records;
Athleticsrecord[number].holder :=

AthleticsRecord[number+1].holder;
AthleticsRecord[number].date := AthleticsRecord[number+1].date;
AthleticsRecord[number].house :=

AthleticsRecord[number+11.house;
AthleticsRecord[number+1].event := eventtemp;
AthleticsRecord[number+1].records := recordstemp;
AthleticsRecord[number+1].holder := holderstemp;
AthleticsRecord[number+1].date := datetemp;
Athleticsrecord[number+1].house :=housetemp;
hadtochange := true;

end;
Until hadtochange = false;
ShowRecords;

end; [of the procedure SortRecords}

BEGIN {of the main program}
Repeat

MenuChoice;
case choice of 1 : CreateFile;

2 : AlterRecord;
3 : begin

ReadTheFile;
ShowRecords;

end;
4 : SortRecords;

end;	 {of the case}
Until (choice = 5);

END. {of the main program}

122

STANTHORPE STATE HIGH SCHOOL
IPTYear 12 90 min. s

28-7-95

123

Appendix D	 Programming Achievement Instruments.

Conditions and Assumptions:

1. Assume that the procedures WriteToFile and ReadTheFile have been
written to use the following data structures.

2. The handouts explaining toolkit procedures may be used during this test.

Program PropertyRentals.{ 4 4- 4-	 *	 *	 * -A- *	 -A- '4c'	 *	 * -k	 4- 4- 4- -A- -A- -k 	 -A. -A- 4. -A- 	*	 * -A- 4- -A. *	 * * *	 *	 * * * *	 *	 *	 * *

{ Definition of the problem 	 }
{A real estate agent wants a computer program to monitor
{house rentals in Stanthorpe. The real estate agent has 54 }
{houses listed at the moment. It is unlikely that the number}
{of rental properties would exceed 150. Sample data is shown}
{below.	 }
{	 }
{ Specification of the solution	 }
{ The solution will provide the operator with five choices 	 }

1

1	 Create a file of rentals (RENTALS.DAT)	 }
2	 Alter details (chosen on address)
3	 Show each rental stored in the file	 }
4	 Display each unrented property
5	 Quit the program

{**** * ******** * ******* * ******* * ******* * ******** * ******* * *****}

Page 1 of 2

Use the following data structure:

Program PropertyRentals;

Uses Crt,DIRTTT5,STRNTTT5,LISTTTT5,FASTTTT5,WINTTT5,
KEYTTT5,MENUTTT5,10TTT5,MISCTTT5;

Const maxrentals = 150;

Type Rentals = record
address : string[15];
style : string[10];
rent	 : string[4];
tenant : string[10];

end; {of record declaration}

Var RentalRecord : array[1..maxrentals] of Rentals;
choice, numberlisted : integer;

Sample data

Address 2/17 Lock St 11 College Rd
Style 3 bed unit 2 bed brick
Rent $120 $95
Tenant Gunn,Les

3/87 High St 21 Bridge St 18 McGlew St
2 bed unit 3 bed brick 4 bed Brick
$105 $100 $180
Ross,Lyn Orson,Bill

124

Page 2 of 2

Marks 30a,	 Algorithmic Languages

125

Conditions and Assumptions:

1. Assume that the procedures WriteToFile and ReadTheFile have been
written to use the following data structures.

2. The handouts explaining toolkit procedures may be used during this test.

Program PropertyRentals;
-k•	 * *	 * *	 * * * -k	 * * * *	 * * * * *	 *	 *	 *	 * * -k -k	 * -k -k *

{ Definition of the problem	 }
	{A real	 estate agent wants a computer program to monitor 	 }

{house rentals in Stanthorpe. The real estate agent has 54 }
{houses listed at the moment. It is unlikely that the number}
{of rental properties would exceed 150. Sample data is shown}

	

{below.	 }

{ Specification of the solution
{ The solution will provide the operator with five choices

	

1	 Create a file of rentals (RENTALS.DAT)

	

2	 Alter details (chosen on address)

	

3	 Show each rental stored in the file

	

4	 Display each unrented property

	

5	 Quit the program

	

-k	 * -k-	 * * -A- -k * * -k	 * * -k	 -k * *	 -k *	 --k * * * * * -k -k * -k * -4c * * -k * * }

Page 1 of 2

Use the following data structure:

Program PropertyRentals; { $D-,L-,R-,V-}

Uses Crt, Printer, Dos, TOTMENU, TOTFAST, TOTMSG, TOTI01,
TOTIO2, TOTLOOK, TOTLIST, TOTSTR, TOTINPUT;

Const maxrentals = 1 50;

Type Rentals = Object
address : string[1 5];
style	 : string[1 5];
rent	 : string[4];
tenant : string[1 5];
choice : byte;
Procedure MenuChoice;
Procedure WriteToFile;
Procedure ReadTheFile;
Procedure CreateFile;
Procedure AlterRecord;
Procedure ListRecords;
Procedure ShowVacants;

end;

Var RentalRecord : array[1..maxrentals] of Rentals;
RentalAction : Rentals;
numberlisted : integer;

Sample data

Address 2/17 Lock St 11 College Rd
Style 3 bed unit 2 bed brick
Rent $120 $95
Tenant Gunn,Les

3/87 High St 21 Bridge St 18 McGlew St
2 bed unit 3 bed brick 4 bed Brick
$105 $100 $180
Ross,Lyn Orson,Bill

1 26

Page 2 of 2

127

Appendix E	 Attitude to(wards) Programming Instrument.

The following statements are intended to measure attitudes towards
programming, and in particular, attitude towards liking, usefulness and difficulty
of programming.

Please indicate whether you strongly agree (SA), agree (A), unsure (U), disagree
(0) or strongly disagree (SD) with each of the following statements.

S
D

D U A S
A

1 I hate the thought of writing programs

2 Writing programs is good fun

3 I have no idea why other people like to write programs

4 Writing programs is boring

5 I really enjoy the challenge of writing programs

6 I would like to do more programming after year 12

7 Of all the IPT topics, I hate programming most

8 I really enjoy programming

9 I hate programming

10 I find programming really interesting

11 Writing programs is simple

12 Programming is easy to understand

13 Every program I write has errors

14 It is easy to get a program to work on the computer

15 I can't understand why people have trouble programming

16 I could teach a Year 8 how to write programs

17 Programming is difficult

18 Everyone benefits from programming

19 Programming is a load of crap

20 There is no need whatsoever to learn to program

21 My parents didn't have to learn programming, so why should I?

22 Why learn programming? I will get by without knowing how to
program.

23 The programs we write are no use to anyone

24 Programming is a waste of time

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

