
CHAPTER 3

Methodology

Rationale

The Information Processing and Technology (IPT) syllabus for Senior students in

Queensland (BSSSS 1991, 12) specifies that an aim of the Algorithms and

Programming topic is to cultivate software development expertise in students

with a focus on the solution of practical problems. It is also contended that

secondary students of information technology courses should be involved in

exciting and stimulating developmental work (Clarke 1992, 6; Newlands and

Teague 1993, 15).

This study seeks to establish an effective way of achieving the above objectives

by supplementing students' programming projects with a sophisticated user

interface within either a procedural or an object-oriented programming

environment. The traditional style of procedural programming is complemented

with object-oriented programming because the evolving complexity of software

interfaces makes object-oriented programming a necessity rather than an option

(Cox 1986, 28; Martin 1993, 18).

The effectiveness of achieving the above objectives is to be measured within a

framework of school learning as proposed by Bloom. Bloom (1976) accounts for

variation in student achievement within a model of three interdependent

variables. These variables are the provision of instruction, the treatment in this

study; student cognitive entry behaviours, represented by general cognitive skills

32

33

within this study; and student affective characteristics which, within this study,

are partially represented by student attitude towards programming and student

persistence .

Research questions

The overall objective of the thesis

The research question may be broadly stated as: How do Year twelve students'

achievement in procedural programming and achievement in object-oriented

programming compare. The comparison being made on the basis of cognitive

skill variables selected within a framework of school learning as proposed by

Bloom (1976). A subsidiary question is whether the addition of a sophisticated

user interface to students' programming projects improves students' attitudes

towards programming?

Definition of dependent and independent variables
Independent variables

The instructional treatment - attaching a sophisticated user interface to

students' projects within a procedural programming environment or within

an object-oriented programming environment.

Learning style - the composite of characteristic cognitive, affective, and

psychological factors that serve as relatively stable indicators of how a

learner perceives, interacts with, and responds to the learning environment

(Keefe and Monk 1990, 1). The appropriate factors are defined in table 3.

34

Dependent variables

Achievement (posttest only).

Attitude to(wards) programming (pretest and posttest).

Analytic skill	 To identify simple figures hidden in a complex field; to use
the critical element of a problem in a different way.

Spatial skill
	

To identify geometric shapes and rotate objects in the
imagination; to recognise and construct objects in mental
space.

Discrimination skill 	 To visualise the important elements of a task; to focus
attention on required detail and avoid distractions.

Categorisation skill

Sequential processing skill

To use reasonable versus vague criteria for classifying
information; to form accurate, complete, and organised
categories of information.

To process information sequentially and verbally; to readily
derive meaning from information presented in a step-by-step,
linear fashion.

Simultaneous processing skill 	 To grasp visuospatial relationships; to sense an overall
pattern from the relationships among component parts.

Memory skill	 To retain distinct versus vague images in repeated tasks; to
detect and remember subtle changes in information.

Persistence orientation 	 Willingness to work at a task until completion.

Table 3.	 The relevant subscales of the learning style profile (Keefe and Monk
1990, 5).

Hypotheses
1	 Student achievement in adding a sophisticated user interface within a

familiar procedural programming environment will be significantly greater

than student achievement in adding a sophisticated user interface within a

relatively unfamiliar object-oriented environment.

2	 A significant positive relationship exists between each of the cognitive skill

subscales of the Learning Style Profile, and students' achievement within

each of the programming environments.

35

3	 The addition of a sophisticated user interface to students' programming

applications will improve students' attitude towards programming.

4	 The magnitude of improvement in students' attitudes towards

programming following the addition of a sophisticated user interface will

not differ significantly between the procedural and object-oriented

environment groups.

Experimental design

Subjects

The students involved in the study were all forty-eight Year twelve students in a

rural high school studying the subject 'Information Processing and Technology'

(IPT). The forty-eight IPT students were part of a Year twelve population of one

hundred and twenty students. These students, at the end of Year ten, selected

IPT from an offering of the 'Board approved' subjects IPT, Music and Biology,

and school subjects Manual Arts A and Introduction to Catering. The majority of

tertiary-oriented Year twelve students study IPT. Two teachers teach Year

twelve IPT and work together as a cooperative unit.

Instructional resources

Two computer laboratories and a large open space teaching room were available.

The licensed programming environments accessible at the school were Turbo

Pascal 7.0 (Borland 1992), Turbo Vision - an object library (Borland 1992),

TechnoJock's Object Toolkit - an object library (TechnoJock Software 1991) and

TechnoJock's Turbo Toolkit - a procedural toolkit (TechnoJock Software 1989).

It was decided to use the two TechnoJock toolkits. Both toolkits, being devised

by the same company and used in conjunction with Turbo Pascal, have similar

philosophical structure to the extent of having parallel nomenclature for source

36

files. The essential difference between the two toolkits is that one is procedural

and the other is object-oriented. The use of other user interface libraries may

have introduced an extraneous variable into the study as a result of philosophical

differences in the ways in which the libraries have been structured. The use of

the TechnoJock toolkits also allows the avoidance of event-driven programming.

Event-driven programming is a mandatory paradigm within the use of Object

Windows Library and is a complication which is better avoided within the context

of a study investigating the possible benefits of object-oriented programming for

secondary students.

Explicit instruction involving the teaching of how to design application solutions,

the provision of templates and the modelling of solution strategies, was used

throughout the entire unit. This approach, as opposed to unguided discovery

classes, is supported by a number of sources (Doyle 1983, Eylon and Helfman

1985, Dalbey and Linn 1985).

Instructional sequence and data collection

Because this study was conducted within the researchers' own institution,

access was automatic and data collection was essentially unobtrusive.

Research indicates that the intrinsic motivational characteristics of a topic which

adds value to learning are difficult to implement in a typical classroom

environment (Lepper and Greene 1978; Deci and Ryan 1985; Malone and Lepper

1987). Good and Brophy (1991, 298) suggest that this difficulty is due to the

fact that the whole curriculum must be taught, not just the appealing parts, and

that while intrinsic factors should increase students' enjoyment of the activities,

there is also a need to stimulate student motivation to learn - students might

enjoy the task but not learn the appropriate knowledge and skills. This difficulty

may be alleviated to some extent by firstly completing a course on procedural

programming before introducing object-oriented programming concepts. It is

37

therefore expected that students will have experienced the basic knowledge and

skills such as syntax and modularity concepts of procedures as shown by the

schedule in table 4.

27-2-95
(8 weeks)

28-4-95

2-5-95

(7 weeks)

19-5-95
16-6-95

Introduction to programming.
Control structures (sequence, selection, iteration and modularity).
Data types (integer, real, boolean, character and string). Data

structures (arrays, files and objects).

Software development applications (BSSSS 1991, 12).
Student learning experiences involve observing, analysing and
modifying existing solutions as well as developing solutions
(BSSSS 1991, 15). Examples of applications are: School
athletics records, overdue library books, video store, ticket
booking office, and baby sitting service.
Administration of Learning Style Inventory.
Summative end of unit assessment. Attitude pretest.

3-7-95
	

The study
One randomly assigned group receives instruction and laboratory
experience on software development supplemented with an
object-oriented toolkit. The other randomly assigned group

(4 weeks)
	 receives instruction and laboratory experience on software

development supplemented with a procedural toolkit.

28-7-95

1-8-95

2-8-95
(4 weeks)

1-9-95

Students are presented with a solution to 'school athletics
records' which now incorporates a sophisticated user interface.
Students receive instruction, observe, analyse and modify the
solution. Students also develop solutions to similar problems.

Administration of the achievement instrument.
Administration of attitude to(wards) programming posttest.

Repeat of the treatment
Each group now receives the alternative treatment. The
achievement instrument is again applied.

Table 4.	 The algorithms and programming unit schedule.

The relationship between data collection episodes and instructional sequences is

also outlined in table 4. All data collection was scheduled to occur during normal

lessons in the morning and under supervised conditions. The achievement

instrument and the attitude to(wards) programming instrument were

administered by typical school assessment procedures. The learning style profile

instrument was administered as per instructions (Keefe and Monk 1990, 7).

The experimental design is summarised in Figure 6.

38

The experimental design is summarised in Figure 6.

0 1 	 X1 •	 . 0203

X 0	 0,
04	 • 0506

15 weeks	 RG	 4 weeks

Figure 6.	 The experimental design.

X0 	All students were taught the normal algorithms and programming course

as stipulated in the syllabus (BSSSS 1991, 12-16). The syllabus specified

a maximum of twenty-five weeks be allocated to the Algorithms and

Programming unit within IPT (BSSSS 1991, 5). IPT was timetabled at

eleven forty minute periods per fortnight.

The first eight weeks were intended to introduce students to control

structures (sequence, selection, iteration and modularity), data types

(integer, real, boolean, character and string) and data structures (arrays,

files and objects).

The next seven weeks involved application, within the software

development cycle (BSSSS 1991, 12), to the management of school

athletics records, overdue library books, video store, ticket booking office,

and baby sitting service. Student learning experiences involved observing,

analysing and modifying existing solutions. Students also developed

solutions to similar applications (BSSSS 1991, 15).

00	 All students sat for the formal summative end of unit achievement test.

This achievement test was subject to regional review as part of the normal

certification process. The regional IPT review panel, composed of

practising IPT teachers, reviewed the school's assessment instruments

and student responses with a view to monitoring comparability of student

achievement. The achievement test is presented in Appendix B.

RG	 Random assignment of all forty-eight students to two groups of equal size.

39

0 1 04 The attitude to(wards) programming instrument was administered to all

students as a pretest.

X1	 One group of students (24) received four weeks of further instruction and

laboratory experience on software development supplemented with an

object-oriented toolkit. Students were presented with a solution to 'school

athletics records' which used the object-oriented toolkit to produce an

acceptable user interface. The code is presented in Appendix C. Students

received instruction, observed, analysed and modified the solution.

Students also developed solutions to similar applications.

X2	 The other group of students (24) received four weeks of further

instruction and laboratory experience on software development

supplemented with a procedural toolkit. Students were presented with a

solution to 'school athletics records' which used the procedural toolkit to

produce an acceptable user interface. The code is presented in Appendix

C. Students received instruction, observed, analysed and modified the

solution. Students also developed solutions to similar applications.

02
	 Under supervised exam conditions, students modified and adapted the

'school athletics records' solution to provide a solution to a 'property

rentals' application. The object-oriented toolkit was used to produce a

similar interface.

05
	 Under supervised exam conditions, students modified and adapted the

'school athletics records' solution to provide a solution to a 'property

rentals' application. The procedural toolkit was used to produce a similar

interface.

0 3 06 The attitude towards programming instrument was again applied to all

students as a posttest.

40

Threats to validity

Contamination and experimenter bias (Gay 1981, 219) was a definite possibility

within this study because the researcher was the instructor of both the object-

oriented treatment, X 1 , and the procedural treatment, X 2 . The rotation of each

group through instruction and laboratory on each successive lesson may have

provided some control while supported by a conscious effort to provide similar

learning materials and similar learning experiences to both groups.

Internal threats to validity

Internal threats to validity arose from the influence of variables other than the

independent variable on the dependent variable. Internal validity is a measure of

the extent to which the results of the study are attributable to manipulation of

the independent variable (Gay 1981, 211).

History. Interruption by school events was minimal. If a class period was lost

then the rotation of the groups through instruction and laboratory was still able

to be continued in the following class period ensuring that one group did not

receive more time or less time than the other group. Critical events, such as the

absence from class of the instructing teacher, did not occur.

Testing. The period of study was only four weeks and thus testing effects may

have been a problem. The attitude to(wards) programming variable used the

same test in both the pretest and the posttest and thus the testing threat will

need to be considered during the analysis of the results. The achievement

variable was measured by posttest only and thus was less susceptible to the

testing threat to internal validity. The nature of continuous assessment within

IPT promoted the view amongst students that testing was a naturally occurring

event and thus was not likely to be noticed.

41

Maturation. The short period of the study, four weeks, should have hopefully

controlled this threat to internal validity.

Instrumentation. The pretest and posttest for the attitude variable used the

same measuring instrument and was applied to both groups at the same time.

Similar conditions were applied for the posttest as for the pretest, same time of

the day and day of the week. The achievement variable was treated as a

posttest only and both 0 2 and 0 5 were almost identical in format.

Statistical regression. Because all students were randomly assigned to each of

the two groups and not assigned on the basis of extreme pretest scores, it was

expected that the threat posed by the tendency for regression would be

controlled.

Differential selection of students. The random assignment of all IPT students to

each of two groups controlled this threat to internal validity.

Mortality. No student dropped out of the subject within the short period of the

study (four weeks).

Selection-maturation interaction, etc. The random assignment of all students to

each of the two groups combined with the period by period rotation of each

group through the instructing teacher and the laboratory supervising teacher

controlled interactional threats to internal validity.

External threats to validity

External threats to validity arise from the inability to generalise results of the

experimental study to situations outside of the experimental setting (Gay 1981,

212).

42

Pretest-treatment interaction. The pretest attitude to(wards) programming

instrument combined with the short period, four weeks, of the treatment may

have had some impact upon external validity. It was hoped that students will

make little connection between the attitude instrument and the use of a

procedural/object-oriented toolkit to enhance user interface appearance. The

achievement instrument, being a posttest only, was expected to have little

impact on this threat to external validity.

Selection-treatment interaction. The random assignment of students to each of

the two groups was expected to provide some control of this threat. Credibility

in being able to generalise the results of the study to the population of IPT

students in Queensland was supported by the Queensland Core Skills Test

(QCS). The QCS test, used for scaling purposes in producing tertiary entrance

scores, suggested that the school was not atypical.

1995 number mean sdeviation

Stanthorpe SHS (all students) 74 134.2 29.0
State (all students) 27 425 131.2 30.0

Stanthorpe IPT students 47 137.5 31.7
State IPT students 3 230 138.2 28.1

Table 5.	 QCS comparison of school and State IPT students (BSSSS 1995).

Reactive arrangements. Control for the Hawthorne effect was attempted by

providing similar materials and learning situations to each group, alternating the

groups after the four week study so that both groups experienced both

treatments, making all students aware of the work program at the beginning of

the twenty-one week algorithms and programming unit, and by the students not

knowing which section of the unit formed the study.

Multiple-treatment interference. The same group of students received each

treatment in successsive four week blocks. This multiple treatment was applied

more for reasons of equity than as condition of the study. The study comprised

43

only the first instance in which each group received one treatment. This single

treatment should have helped to control for multiple-treatment interference.

Control of extraneous variables (Gay 1981, 220; Wiersma 1991, 93)

Teacher. Control of this extraneous variable was attempted by holding the

condition constant for each group. The same teacher provided instruction to the

procedural group, G,, and to the object-oriented group, G 2 . The other teacher

supervised the laboratory activity of each group. Each group was rotated

through instruction for one class period and through the computer laboratory for

the successive class period.

Ability level. Students were randomly assigned to the two groups. If the groups

were not essentially the same on the dependent variables then posttest scores

will be analysed using analysis of covariance (Gay , 229). Gay (1981, 229)

makes the point that there is no real advantage to random assignment of

matched pairs to control for such variables as gender and ability. The variables

are better controlled using other procedures such as analysis of covariance.

Gender of student. Students were randomly assigned to two groups. Analysis

of covariance will be used if each group was not essentially the same on this

extraneous variable.

Learning materials. Each group received similar learning conditions, similar

materials, and teaching presented in a similar manner at similar times.

TechnoJock toolkits for each of the procedural (TechnoJock's Turbo Toolkit

1989) and object-oriented (Technojock's Object Toolkit 1991) environments

were chosen because of the similarity of the language and user interface

appearance.

School. Reduced to a constant because students of only one school were

included.

44

Data gathering instruments

Learning style profile

The learning style profile was produced by the National Association of Secondary

School Principals (NASSP) (Keefe, Monk, Letteri, Languis, Dunn 1989).

Learning style was defined by Keefe and Monk (1990, 1) as

the composite of characteristic cognitive, affective, and psychological

factors that serve as relatively stable indicators of how a learner perceives,

interacts with, and responds to the learning environment. It is

demonstrated in that pattern of behaviour and performance by which an

individual approaches educational experiences. Its basis lies in the

structure of neural organisation and personality which both moulds and is

moulded by human development and the learning experiences of home,

school, and society.

The learning style profile (LSP) contains 126 items measuring 24 subscales.

Instrument validity is supported by the assertion that due attention has been

given to face and content validity (Keefe and Monk 1990, 3). Construct validity

of the LSP was established by the production of position papers and the

extensive use of factor analysis to produce '24 relatively independent scales that

assess elements of learning style' (Keefe and Monk 1990, 4). Concurrent

validity was established for a number of the subscales (Keefe and Monk 1990,

4) by significant correlation of the LSP Analytic Skill subscale with the Group

Embedded Figures Test (Witkin, Oltman, Raskin and Karp 1971); the LSP

Perceptual Response subscales with the Edmund Learning Style Identification

Exercise (Reinert 1980); the majority of the LSP Preference subscales with the

Dunn, Dunn, and Price Learning Styles Inventory (Dunn, Dunn, and Price 1974).

A case for concurrent validity of the LSP Simultaneous Processing Skill subscale

is also proposed by comparison with the Kaufman Assessment Battery for

Children (Kaufman and Kaufman 1983).

45

The LSP subscales relevant to the research question are the cognitive skill

subscales (analytic, spatial, discrimination, categorisation, sequential processing,

simultaneous processing and memory) and the Persistence orientation subscale.

The instrument, containing some low reliability measures, may be stabilised by

using group measures rather than individual measures (Cook and Campbell 1979,

43). For individual students the instrument has a diagnostic purpose and is

better supplemented with more comprehensive style inventories (Keefe and Monk

1990, 6).

Keefe and Monk (1990, 12) suggest that, with the exception of categorisation

skill and persistence orientation, analysis of the cognitive skills be based on the

use of three ordinal groupings. Groupings of low, less than one standard

deviation below the mean; average, within one standard deviation above and

below the mean; and high, more than one standard deviation below the mean.

Categorisation skill and persistence orientation are essentially ordinal but could

be treated as interval because of the large number of levels. The LSP technical

manual (Keefe and Monk 1 988) provides norms for Year twelve students.

Analytic skill. The LSP items 25 to 29 comprise the analytic skill subscale and

these items are similar to items found in the Group Embedded Figures Test

(Witkin, Oltman, Raskin and Karp 1971). The items typically ask to select a

correct form which is hidden within a complex figure. The internal consistency

reliability (Cronbach's alpha) is reported as 0.56 with a ten day test-retest

reliability of 0.54 (Keefe and Monk 1990, 3).

Responses to the five items are scored as correct or incorrect. The analytic skill

measure is essentially ordinal ranging from analytic, a score of 5, to non-analytic,

a score of 0.

Spatial skill. The LSP items 36 to 40 comprise the spatial skill subscale. The

items typically ask for the number of squares in a figure or to mentally fold and

46

rotate a sheet of paper. The internal consistency reliability (Cronbach's alpha) is

reported as 0.60 with a ten day test-retest reliability of 0.77 (Keefe and Monk

1990, 3).

Responses to the five items are scored as correct or incorrect. The spatial skill

measure is essentially ordinal ranging from strong spatial skills, a score of 5, to

weak spatial skills, a score of 0.

Discrimination skill. The LSP items 7 to 11 comprise the discrimination skill

subscale. The items typically ask to compare the size of the sample circle with

the size of other circles around it, without measuring the circles. The internal

consistency reliability (Cronbach's alpha) is reported as 0.51 with a ten day test-

retest reliability of 0.53 (Keefe and Monk 1990, 3).

Responses to the five items are scored as correct or incorrect. The

discrimination skill measure is essentially ordinal ranging from strong

discrimination skills, a score of 5, to weak discrimination skills, a score of 0.

Categorisation skill. The LSP items 17 to 24 comprise the categorisation skill

subscale. The following item is typical: About 300 new comic books have been

written each year for the last 30 years. What do you think is the largest number

of comics to be written in any one year during this time?

A. 380 comics	 C. 870 comics

B. 495 comics	 D. 620 comics

This item is scored as A = 0, B = 1, C = 3 and D = 2. The eight items thus

produce a categorisation skill score ranging from 0, weak or broad categorisation

skill, to 24, strong or narrow categorisation skill. The internal consistency

reliability (Cronbach's alpha) is reported as 0.74 (Keefe and Monk 1990, 3).

47

Sequential processing skill. The LSP items 1 to 6 comprise the sequential

processing skill subscale. The items compare two puzzles, made up of a number

of shapes, and ask for the one shape that is missing from each puzzle. The

internal consistency reliability (Cronbach's alpha) is reported as 0.72 with a ten

day test-retest reliability of 0.54 (Keefe and Monk 1990, 3).

Responses to the five items are scored as correct or incorrect. The sequential

processing skill measure is essentially ordinal ranging from strong sequential

processing skills, a score of 6, to weak sequential processing skills, a score of 0.

Simultaneous processing skill. The LSP items 12 to 16 comprise the

simultaneous processing skill subscale. The items show a complicated

geometrical shape and ask which one of four shapes actually comes from the

given shape. The internal consistency reliability (Cronbach's alpha) is reported as

0.86 (Keefe and Monk 1990, 3).

Responses to the five items are scored as correct or incorrect. The simultaneous

processing skill measure is essentially ordinal ranging from strong simultaneous

processing skills, a score of 5, to weak simultaneous processing skills, a score of

0.

Memory skill. The LSP items 109, 110, 112, 114, 116, 118, 119, 120, 121,

123, 124 and 126 comprise the memory skill subscale. The items typically

present a picture and then after turning a page, ask whether the next picture is

the same or different. The internal consistency reliability (Cronbach's alpha) is

reported as 0.62 with a ten day test-retest reliability of 0.58 (Keefe and Monk

1990, 3).

Responses to the twelve items are scored as correct or incorrect. The memory

skill measure is essentially ordinal ranging from strong memory skills, a score of

12, to weak memory skills, a score of 0.

48

Persistence orientation. The LSP items 68, 74, 84 and 91 comprise the

persistence orientation subscale. The items are illustrated by (Keefe, Monk,

Letteri, Languis and Dunn 1989, 16):

68.	 The harder the problem, the more likely I am to give up.

A. Always B. Usually C. Sometimes D. Rarely E. Never

This item is scored A = 5, B = 4, C = 3, D = 2 and E = 1. The four items

thus produce a persistence orientation score ranging from 4, high persistence

orientation, to 20, low persistence orientation. The internal consistency

reliability (Cronbach's alpha) is reported as 0.67 with a ten day test-retest

reliability of 0.65 (Keefe and Monk 1990, 3).

Attitude to(wards) programming scale

One of the research questions contained within this study is: Will students

exhibit a better attitude to programming by been able to produce applications

with sophisticated user interfaces? Measurement of the dependent variable,

attitude, therefore required the development of an attitude to(wards)

programming scale. It was decided to use a maximum of three constructs, these

being the liking of programming, difficulty of programming, and usefulness of

programming. These three constructs are linked to the research question and

have been successfully constructed within a general computing environment

(Sutton 1991; Kay 1993). The attitude to(wards) programming instrument is

shown in Appendix E.

Design of the pilot instrument was essentially a balance between the number of

items and instrument reliability. Increasing the number of items increases the

reliability, but at the expense of having a longer test (Nunnally 1967, 223;

Carmines and Zeller 1979, 45; Henerson, Morris, and Fitz-Gibbon 1987, 152).

Reducing the number of items, and thus the test length, generally reduces the

49

reliability, Henerson, Morris, and Fitz-Gibbon (1987, 154) indicate that for

attitude measurement a reliability of above 0.7 is desirable. While reliabilities

below 0.7 are tolerated, this affects the confidence of decisions arising from the

measurements. Carmines and Zeller (1979, 51) believe that if a scale is to be

widely used then reliability should not be below 0.8.

Henerson, Morris, and Fitz-Gibbon (1987, 133) describe instrument reliability as

being essentially a question of whether the instrument yields consistent results,

that each administration of the instrument yields essentially the same results.

Henerson, Morris, and Fitz-Gibbon (1987, 134) then appends the statement that

demonstrating reliability does not prove validity. The question of validity of this

instrument has been previously addressed. Henerson, Morris, and Fitz-Gibbon

(1987, 1 34) indicate that an instrument demonstrated to be valid is likely to be

reliable given the assumptions of the attitude itself being stable and that the

respondents' answers have not being influenced by other unforseen factors.

Reliability, the extent to which an instrument produces consistent results, is

affected by a number of factors. Henerson, Morris, and Fitz-Gibbon (1987, 147)

indicate that the following sources of unpredictable errors should be considered:

Temporary differences among respondents. These changes may be

caused by illness, tiredness, emotional disturbances and affect the mood

or attentiveness of the respondent (Henerson, Morris, and Fitz-Gibbon

1987, 147).

Differences in the administration of the instrument. The differences may

range from varying directions to respondents, test conditions and

interfering distractions such as outside noise (Henerson, Morris, and Fitz-

Gibbon 1987, 147).

50

Variations in the interpretation of results and errors in calculating scores

(Henerson, Morris, and Fitz-Gibbon 1987, 147)

Random responses as respondents guess or mark responses without trying

to understand items (Henerson, Morris, and Fitz-Gibbon 1987, 147).

The literature describes a number of methods of demonstrating reliability. Within

the context of the current attitude to(wards) programming instrument, the test-

retest reliability method would appear to be the most appropriate (Henerson,

Morris, and Fitz-Gibbon 1987, 148.)

Ebel and Frisbie (1986, 76) indicate that the difficulties with test-retest and

equivalent-forms of reliability coefficients have led to the contemplation of other

methods of assessing reliability such as a method of internal analysis. A

variation of the split half method, a method of internal analysis, is a statistical

approach which is the average correlation obtained by calculating correlations for

all possible split-half combinations. Such an average correlation coefficient is

the coefficient alpha (Ebel and Frisbie 1986, 78) which is applicable for 'attitude

scales that provide responses such as strongly agree and strongly disagree with

intermediate response options'. The liking programming subscale, items 1 to 10,

has an alpha of 0.95, the programming difficulty subscale, items 11 to 17, has

an alpha of 0.91, and the programming usefulness subscale has an alpha of

0.88.

Henerson, Morris, and Fitz-Gibbon (1987, 133) describe instrument validity as

being essentially a question of 'whether the instrument is giving the true story'.

This definition is in close agreement with that proposed by Carmines and Zeller

(1979, 12), that the validity of an instrument is established if it does what it is

intended to do. Nunnally (1967, 76) and Henerson, Morris, and Fitz-Gibbon

(1987, 146) suggest that in order that acceptable results be obtained from an

instrument, it is necessary to demonstrate construct, content, or concurrent

validity.

51

Construct validity is an appraisal of how well the instrument measures what it is

said to measure (Henerson, Morris, and Fitz-Gibbon 1987, 146). Carmines and

Zeller (1979, 23) maintain that the first step in construct validation is

establishing a theoretical framework from which the constructs were

conceptualised. This first step of validation has been previously outlined. The

theoretical validation of the construct is then supported by investigation of the

hypothesis and replication of these and similar studies (Carmines and Zeller

1979, 24; Henerson, Morris, and Fitz-Gibbon 1987, 146). While the theoretical

validation of the constructs has been previously established, the hypothesis

testing justification of the construct validation has yet to be addressed.

The difficulty in establishing content validation of the attitude to(wards)

programming scale is in first agreeing that liking programming, programming

difficulty and programming usefulness are concepts relevant to the domain

content of attitude towards programming (Carmines and Zeller 1979,21). The

literature does suggest that these constructs have been used in attitude towards

computers scales but their exact definitions have not been described. Secondly,

content validity is an assessment of how the items of the attitude scale

appropriately reflect the components of the constructs (Carmines and Zeller

1979, 22; Henerson, Morris, and Fitz-Gibbon 1987, 146). This aspect of

content validation is essentially an appeal to an appraisal of the adequacy of the

match of the items to their construct.

Henerson, Morris, and Fitz-Gibbon (1987, 146) distinguish between concurrent

validity and predictive validity in that concurrent validity is supported when the

attitude measure is highly correlated with the results of another associated

measure. Predictive validity is established when the results of the instrument

correlates with another valid measure of the behaviour that the instrument aims

to measure. Nunnally (1967, 77) contends that the distinction between

predictive and concurrent validity does not imply different validation procedures

52

because in each case the attitude instrument is correlated with a criterion

measure. It does not matter when the data is obtained.

The criterion measure in this case is achievement on the programming end-of-

unit test held just prior to the administration of the fifty-three item attitude

towards programming pool. The final attitude instrument, and in particular the

programming difficulty items, would be expected to correlate with achievement.

The Pearson product-moment correlation is, unfortunately, unable to be used

because the respondents to the attitude to(wards) programming scale remain

anonymous and thus it is not possible to match the attitude scores with the

achievement scores. One possible indication of concurrent validity is to test the

'goodness of fit' between the attitude score distribution and the achievement

score distribution (Hays and Winkler 1975, 822). The null hypothesis that there

is no difference in the two distributions is not rejected. This does provide some

concurrent validity to the attitude towards programming scale.

Henerson, Morris, and Fitz-Gibbon (1987, 135) propose that the validity of an

instrument is established by anticipating arguments that may be used to question

the results of the instrument.

Rebuttal of arguments that may be used to question results and

threaten validity (Henerson, Morris, and Fitz-Gibbon 1987, 145) are summarised

by :

response bias. The strong emphasis and demonstration that anonymity

will be maintained has hopefully allowed respondents to express their true

feelings and beliefs;

lack of comprehension. The effort in interviewing potential respondents

has hopefully produced item statements which respondents understand

and recognise;

53

administration. All respondents were treated in the same manner and

under the same circumstances.

too few items. The final instrument of twenty-four items resulting from a

purification of an initial fifty-three items has hopefully been demonstrated

to be sufficient.

The derivation of the final instrument from theory-based constructs and item

analysis leads to the hypothesis that there are three factors involved. From an

hypothesis perspective, Nunnally (1967, 342) suggests the use of the multiple-

group method, otherwise known as the group-centroid method, of testing for the

presence of the hypothesised three factors. The factor analysis produced the

factor loadings shown in table 6.

Factor A Factor B Factor C

Item 1 0.88 0.67 0.61
Item 2 0.84 0.55 0.58
Item 3 0.79 0.35 0.75
Item 4 0.80 0.50 0.57
Item 5 0.82 0.48 0.58
Item 6 0.74 0.38 0.39
Item 7 0.78 0.35 0.50
Item 8 0.86 0.74 0.53
Item 9 0.86 0.64 0.68
Item 10 0.86 0.57 0.51

Item 11 0.43 0.78 0.14
Item 12 0.65 0.84 0.37
Item 13 0.33 0.65 0.22
Item 14 0.40 0.79 0.19
Item 15 0.50 0.71 0.52
Item 16 0.48 0.65 0.46
Item 17 0.55 0.84 0.31

Item 18 0.42 0.35 0.68
Item 19 0.70 0.41 0.78
Item 20 0.43 0.20 0.67
Item 21 0.40 0.28 0.68
Item 22 0.44 0.20 0.70
Item 23 0.45 0.30 0.71
Item 24 0.64 0.38 0.81

Table 6.	 Factor loadings on the hypothesised three attitude factors. Multiple-
group method (Nunnally 1967,344).

54

Programming achievement test

This study compares the attitudes and achievement in procedural programming

and object-oriented programming in relation to cognitive skills of Year twelve

students. The programming environment involves the attaching of sophisticated

user interfaces to students' applications.

Explicit instruction, within this study, involves the provision of templates and the

modelling of solution strategies. Language templates are briefly defined as

programming plans (Soloway and Ehrlich 1984). This approach, as opposed to

unguided discovery classes, is supported by a number of sources (Doyle 1983;

Eylon and Helfman 1985; Dalbey and Linn 1985; Linn, Sloane and Clancy 1987).

The two groups of students are presented with a full solution to 'school athletics

records' incorporating the use of a procedural or object-oriented toolkit to

produce an acceptable interface. Students within each group receive instruction,

observe, analyse and modify the solution. Modification of 'school athletics

records' to develop a solution to 'overdue library books' is explicitly

demonstrated.

The achievement tests for both groups, procedural and object-oriented, involves

the development of a solution to a 'property rentals' application and is included

in Appendix D. The format is a one and a half hour pencil and paper test.

Students are permitted the use a full printed solution to the 'school athletics

records' application together with a summary of the appropriate toolkit library

functions.

The achievement test assesses three programming component skills contained

within Shneiderman's syntactic and semantic model of programming competence

(Shneiderman, 1980, cited in Foreman 1988, 6). Knowledge of syntax, the

ability to design and generate code (program composition) and the ability to

55

restructure a program by adding and changing code (program modification) are

inherent within the achievement test (Foreman 1988, 8).

The following scoring system was adopted:

Each syntax error was circled and the number of errors totalled, providing

a score ranging from ten (no syntax errors) to zero (10 or more syntax

errors).

The student's solution required modification to four major components.

The score ranging from a maximum of twenty (all modifications correctly

made) to a minimum of zero. The method of scoring for each major

component is indicated below.

MenuChoice: Seven modifications were required. A maximum score of

five was given with one subtracted for each incorrect modification and a

minimum of zero recorded.

CreateFile: Twenty-one modifications were required. A maximum score of

five was given with one subtracted for each incorrect modification and a

minimum of zero recorded.

AlterRecord: Eleven modifications were required. A maximum score of

five was given with one subtracted for each incorrect modification and a

minimum of zero recorded.

ShowRecords: Nine modifications were required. A maximum score of

five was given with one subtracted for each incorrect modification and a

minimum of zero recorded.

The student's solution required the composition of a

'ShowVacantProperty' component. Each logic error was crossed,

providing a score ranging from ten (no logic errors) to zero (more than ten

logical errors).

56

Ethical considerations

The intention to manipulate and control the treatment of human participants in

this study necessitates some attention to ethical concerns. Tuckman (1978,

15), Gay (1981, 63), Wiersma (1991, 297) and Maxwell (1992, 9) outline a

number of ethical concerns involved in the process of research, and the following

statements are responses to these considerations.

Initial permission to conduct the study within the school and to use students as

subjects was granted by the Principal. The Principal has been informed of all

activities throughout the study, to the extent that copies of the research

proposal, lesson plans, student activities, measuring instruments, data analysis

and the thesis have been furnished.

A counterbalanced instructional design, in which each group received all

treatments, but in a different order, was deliberately selected so that no student

was disadvantaged or felt that some form of instruction had been missed.

No data was collected without students' permission. All students were informed

of the general purpose of the study, the instruments to be used, and were

provided with feedback upon request. Students' individual data was treated as

strictly confidential and was protected in the following manner:

Student responses to the Learning Style Profile and Attitude Towards

Programming instruments were identified by a code, with an elected

student holding access to the code/student identification;

Data was presented in group statistics. Access to individual data will be

provided only to the supervisor of this study and to the Principal of the

school. The thesis contains only group statistics .

57

Assumptions and limitations

Major assumptions of this study are that the constructs measured by the

instruments provide sufficient basis to answer the research questions, and that

the students are honest and conscientious in completing the instruments.

Delimitations are that the study is limited to the students enrolled in Year 12

Information Processing and Technology at Stanthorpe State High School in

1995.

Limitations of the study are that all instruments are self-report pencil and paper

measures; the Information Processing and Technology (IPT) students are not a

representative sample of students from the school's population in that IPT

students chose to study IPT from a selection of other subjects; and the collection

of learning style information is restricted to the use of the Learning Style Profile.

CHAPTER 4

Analysis of data

Introduction

The research question essentially involves a comparison of procedural

programming achievement and object-oriented programming achievement. The

comparison is made on the basis of variables selected within a framework of

school learning as proposed by Bloom (1976).

Independent variables

Instructional treatment: a nominal variable based on instruction in the creation of

a graphical user interface within either

a) a procedural programming environment, or

b) an object oriented programming environment.

Cognitive skills: a composite variable measured by the Learning Style Profile and

transformed by factor analysis to a two factor interval scale. Subsequent

analysis requiring conversion to a two-point ordinal variable.

Dependent variables

Achievement, measured on an arbitrary interval scale, in three areas of

programming competence:

knowledge of syntax

program modification

program composition

58

59

Attitude to(wards) programming, measured on an arbitrary interval scale by

pretest/posttest, in three areas:

liking programming

programming difficulty

programming usefulness

Overview of analyses
The analyses essentially involve:

A test of difference of achievement, in the three areas of programming

competence, in each instructional treatment.

A correlational analysis of learning style factors and programming

achievement subscores within each of the treatment environments.

Three ANOVAs with each of the three achievement scores as dependent

measure and with the treatment groups (two level) and factor scores (each

of the two factors in two levels) as independent measures. Lack of

correlation across the three achievement scores formed the justification for

not using a MANOVA.

An ANCOVA with pretest attitude to(wards) programming as covariate,

posttest attitude to(wards) programming as dependent variable, treatment

groups (two level) and factor scores (each factor in two levels) as

independent variables.

Descriptive statistics

Learning style instrument

Assumptions of normality, required for subsequent statistical analysis, of the

learning style profile subscales are generally supported by stem-and-leaf plots

60

and measures of kurtosis and skewness shown in Table 7. The analytical skill

data, simultaneous processing skill data, and sequential processing skill data

casts considerable doubt about assumptions of normality.

Procedural	 Object-oriented
Memory
Procedural	 Object--oriented

0 0 0 0 3
1	 0 55 0	 4445
2	 0 2 7776666	 0	 666777777

33	 0 99999888888	 0	 8888999
4444444	 0	 4444444444444 100	 1	 0

555555555555 0	 555555555 2	 1 22

4.04	 Mean	 4.13 7.96 Mean	 7.21
1.37	 Std Dev	 1.12 1.81	 Std Dev	 2.32
2.75 Kurtosis	 8.06 -0.20 Kurtosis	 0.08

-1.75	 Skewness	 -2.52 0.26 Skewness	 0.27

Categorical skill
Procedural	 Object-oriented

Discrimination skill
Procedural	 Object-oriented

322 0 1 0 0 0
65444 0 666 11 0

999877 0 7778888899 2222 0 222
2110 1 0112 333333 0 3333333

54433 1 344 4444444 0 44444444
7 1 89 5555 0 55555

2 4

8.71 Mean 10.17
4.38 Std Dev 4.96

-1.04 Kurtosis 1.74
0.09 Skewness 1.10

3.17 Mean	 3.50
1.37 Std Dev	 1.22

-0.24 Kurtosis 1.51
-0.55 Skewness -0.95

Analytical skill skill

Sequential processing skill
Procedural	 Object-oriented

0 3
4 0

5555 0
6666666666666666666 0 66666666666666666666666

5.75 Mean	 5.88
0.53 Std Dev	 0.61
4.14 Kurtosis 24.00

-2.13 Skewness -4.90

Spatial skill
Procedural	 Object-oriented

22 C) 2
333 C)

4444444444 C) 44444444444444
555555555 C) 5555555

4.08 Mean	 4.13
0.93 Std Dev	 0.74
0.22 Kurtosis 1.76

-0.89 Skewness -0.91

Simultaneous processing skill
Procedural	 Object-oriented

Persistence
Procedural	 Object-oriented

2 0 78 0 699
3 0 3 221100 1 0012
4 0 4444 5555544443 1 33444444445

555555535555555555555 0 5555555555555555555 986666 1 66667
2 0

4.75 Mean	 4.75
0.74 Std Dev 0.53
9.37 Kurtosis 4.14

-3.11 Skewness -2.13

13.58 Mean	 13.38
2.96 Std Dev	 3.05
-0.00 Kurtosis 0.68
-0.51 Skewness -0.41

Learning style profile: Stem-and-leaf displays, kurtosis, and
skewness of responses of the forty-eight Year 12 IPT students to
each of the eight cognitive skill variables.

Table 7.

61

A comparison of sample size, means and standard deviations of the Year twelve

IPT students with American Year twelve normative data is shown in Table 8.

The Year twelve normative data is provided in the learning style profile technical

manual (Keefe and Monk 1988). The reliability indices are essentially of the

same magnitude with the exception of spatial skill.

Subscale

Year 12 IPT US Year 12

n mean sd alpha n mean sd alpha

1	 Analytical skill 48 4.08 1.23 .65 893 2.97 1.52 .56
2 Spatial skill 48 4.10	 .83 .12 899 3.04 1.45 .60
3 Discrimination skill 48 3.33 1.29 .46 902 2.96 1.50 .51
4 Categorization skill 48 9.44 4.69 .72 902 2.96 1.50 .74
5 Sequential processing skill 48 5.81	 .57 .53 902 5.27 1.20 .72
6 Memory skill 48 7.58 2.09 .45 874 6.13 2.67 .62
7 Simultaneous Processing skill 48 4.75	 .64 .52

11 Persistence orientation 48 13.48 2.97 .79 889 12.79 2.68 .67

Table 8.	 Learning style profile: subscale means, standard deviations and
Cronbach's alphas of Year twelve IPT students and Year twelve
American students.

There are significant differences in the means of the two populations (t-statistic,

0.05 significance) as illustrated in Table 9. The explanation is that the Year 12

IPT student group is an above-average, self-selected group of students. This

above average grouping is supported by the QCS data of Table 5 (page 42).

Violations of the assumption of normality have only trivial effects on the level of

significance and power of the t-test (Glass and Stanley 1970, 297).

Subscale t-statistic p

1	 Analytical skill +6.01 0.00
2 Spatial skill +8.21 0.00
3 Discrimination skill +1.92 0.06
4 Categorization skill +9.55 0.00
5 Sequential processing skill +5.90 0.00
6 Memory skill +4.61 0.00
7 Simultaneous Processing skill

11 Persistence orientation +1.58 0.11

Table 9.	 Differences in the learning style profile means of Year 12 IPT
students and Year 12 American normative data.

62

The NASSP considered eight cognitive skill variables necesary to build a picture

of the demands of learning. The wealth of this information, together with the

somewhat vague nature of the collected data, clouds an ability to understand the

cognitive demands of each treatment. Researchers such as Fowler (1980),

Brumby (1982), and Riding and Buckle (1990) have suggested that a number of

types of cognitive skills are actually different conceptualisations of each other. It

therefore appeared appropriate to undertake exploratory factor analysis in order

to reduce the number of cognitive skill variables to a more manageable number

(Amick and Walberg 1975, 115). The two factor model exhibited promise and

after deleting items which showed low correlation to both factors, the two factor

solution of Table 10 was accepted. The two factors accounted for 33 percent

of the total variance.

Cognitive Skill Factor A Factor B h2

Analytical Item 25 0.62 0.39
Item 26 0.39 0.17
Item 27 0.81 0.67
Item 28 0.58 0.37
Item 29 0.50 0.29

Sequential Processing Item 1 0.39 0.21
Item 2 0.37 0.15
Item 6 0.74 0.57

Discrimination Item 9 0.59 0.40

Spatial Item 39 0.42 0.17
Item 40 0.55 0.45 0.51

Categorisation Item 18 0.46 0.22

Simultaneous Processing Item 12 0.70 0.49
Item 13 0.72 0.52

Persistence Item 74 0.65 0.43
Item 84 0.41 0.17
Item 91 0.30 0.41 0.26

Memory Item 112 0.50 0.25
Item 114 0.38 0.15
Item 116 0.35 0.14

Table 10.	 Varimax factor loadings of the eight NASSP cognitive skill variables
on two factors. Loadings less than 0.30 have been extracted.
Communalities (h 2) are also indicated.

63

A factor score for each of the forty-eight students was arrived at by multiplying

each item score by each factor score coefficient and then summing the products

(Hedderson 1991, 179). The distribution of student factor scores is illustrated in

Table 11.

Factor A
Procedural Object-oriented

Factor B
Procedural Object-oriented

00 0 0 1
1 1 74 1
2 9 2 5

5 3 69 8 3 6
987431 4 5789 751 4 114457
876541 5 0111223666 88776643311 5 001222344579

21111110 6 0011122 4322221 6 129

47.50 Mean	 52.50
54.98 Median	 52.94
19.33 Std Dev	 8.55
2.68 Kurtosis 1.15

-1.86 Skewness -1.08
0.23 (p=0.00) K-S 0.12 (p>0.2)

52.15 Mean	 47.85
56.56 Median 52.02
13.21 Std Dev 16.60
3.57 Kurtosis 10.25

-1.92 Skewness -2.77
0.18 (p=0.04) K-S 0.19 (p=0.03)

Table 11.	 Two factor cognitive skill profile: Stem-and-leaf displays, kurtosis,
and skewness of scores of the forty-eight Year 12 IPT students.
Standardised to a mean of 50 and a standard deviation of 15.

The cognitive skill factor distributions demonstrate kurtosis and skewness indices

which suggest non-normal distributions. The computed values of the

Kolmogorov-Smirnov (K-S) test statistic which assesses normality (Jobson 1991,

61), are significant at the 0.05 level in most instances supporting concern about

non-normality of the data. The K-S statistics are shown in Table 11.

Jobson (1991, 56) suggests that transformations should be applied to small

samples distributions which have outlier and skewness/kurtosis problems. The

purpose of the transformation being to transform the scale of measurement using

a nonlinear transformation to obtain a distribution shape that is more normal-like.

The transformed data, using a Box-Cox X. power transformation (X = 4) to

remove skewness, is shown in Table 12 (Jobson 1991, 68).

64

Factor A
Procedural Object-oriented

Factor B
Procedural Object-oriented

544 2 9 76 2 59
9973 3 35 85 3 478
8432 4 02356777999 8720 4 0013668889

85431 5 445 776644100 5 012359
43333222 6 0223355 9644442 6 34

49.25 Mean	 50.75
52.47 Median	 49.52
13.64 Std Dev 10.35
-0.93 Kurtosis -0.68
-0.55 Skewness -0.24

0.13 (p>0.2) K-S 0.12 (p>0.2)

52.16 Mean	 47.84
54.69 Median	 48.40
11.96 Std Dev 11.89
-0.23 Kurtosis 1.49
-0.68 Skewness 0.65

0.08 (p>0.2) K-S 0.12 (p>0.2)

Table 12.	 Two factor cognitive skill profile: skewness removed by a Box-Cox
transformation and standardised to a mean of 50 and standard
deviation of 15.

Attitude to(wards) programming scale

Descriptive statistics of the pretests and posttests of the attitude to(wards)

programming subscales are listed in Table 13. Assumptions of normality of the

attitude to(wards) programming data, an assumption required for following

statistical analysis, are illustrated to some extent by the shape of the stem-and-

leaf plots and supported by the Kolmogorov-Smirnov (K-S) test statistic for

assessing normality (Jobson 1991, 61).

65

Pretest	 Posttest

Liking programming
Procedural	 Object-oriented

1	 3
Procedural

8 1
Object-oriented
3

98766544443 2 24568899 988750 2 1235699
988443310 3 00134456 9887644433210 3 00024678888

5420 4 005566 2000 4 0168
5 0 5 0

31.71 Mean 33.29 32.75 Mean 33.08
30.50 Median 32.00 33.50 Median 33.00

6.98 Std Dev 8.96 6.31 Std Dev 8.99
-1.03 Kurtosis -0.14 0.10 Kurtosis -0.11

0.48 Skewness 0.03 -0.69 Skewness -0.11
0.13	 (p>0.2)	 K-S	 0.10	 (p>0.2) 0.08	 (p>0.2) K-S	 0.09	 (p>0.2)

Programming difficulty
Procedural	 Object-oriented

0	 7 Procedural Object-oriented
4433331 1 344 0 7

999865 1 55556789 4 1 4
43322110 2 000124 99887666 1 55667789

755 2 678 422111000 2 01122344
3 013 77755 2 66

0 3 0123

18.75 Mean	 20.00
19.00 Median	 19.50
4.67 Std Dev 6.53

-1.23 Kurtosis -0.40
-0.03 Skewness 0.36

0.14 (p>0.2) K-S 0.13 (p>0.2)

21.04 Mean	 21.21
20.50 Median	 21.00
4.18 Std Dev	 6.37

-0.52 Kurtosis -0.07
0.41 Skewness 0.11

0.13 (p>0.2) K-S 0.08 (p>0.2)

Programming usefulness
Procedural

1 1
Object-oriented
2 Procedural	 Object-oriented

97 1 689 1 2
44222 2 1123

98777776665 2 55667889999 21 2 22234
22100 3 02223 99888888777666665555 2 555677888899

10 3 001333

25.46 Mean	 25.50
26.50 Median	 26.50
4.90 Std Dev	 5.51
2.12 Kurtosis 0.06

-1.22 Skewness -0.77
0.09 (p>0.2) K-S 0.09 (p>0.2)

26.71 Mean	 26.67
27.00 Median	 27.50
2.27 Std Dev	 4.61
1.03 Kurtosis 3.23

-0.65 Skewness -1.25
0.12 (p>0.2) K-S 0.08 (p>0.2)

Table 13.	 Descriptive statistics, including stem-and-leaf display, of
measurements obtained using the attitude to(wards) programming
instrument (forty-eight responses).

The reliability, alpha correlation coefficients, of the attitude to(wards)

programming scale is listed in Table 14. The coefficients suggest that the

instrument yielded consistent results and that each administration of the

instrument yielded essentially the same results.

Subscale Pilot Pretest Posttest

Liking programming 0.95 (46) 0.93 (48) 0.93 (48)

Programming difficulty 0.91 (46) 0.89 (48) 0.87 (48)

Programming usefulness 0.88 (46) 0.88 (48) 0.82 (48)

Table 14.	 Reliability indices (Cronbach's alpha) and student numbers for the
attitude to(wards) programming subscales.

66

67

Programming achievement instrument

Descriptive statistics of the programming achievement test are shown in Table

1 5. Data for program modification, a measure of the ability to change code and

add to code, supports assumptions of normality as does program composition

data, a measure of the ability to design and generate code. The knowledge of

syntax measurement data demonstrates a distribution which is not normal.

Analytical conclusions about student syntax knowledge will need to be

approached with caution.

Knowledge of syntax (S)
Procedural	 Object-oriented

Program modification (M)
Procedural	 Object-oriented

1 0 0 0
5 0 55 0 4

66 0 6 97 0 77999
7 0 777 21 1 222

8888 0 8 55543 1 334444
99 0 99 87777766666 1 667788885

0000000000000 1 00000000000000000 9 1

8.54 Mean 9.29 13.46 Mean 13.29
2.23 Std Dev 1.27 4.88 Std Dev 4.07
4.71 Kurtosis 1.10 1.30 Kurtosis -0.44

-2.02 Skewness -1.58 -1.41 Skewness -0.62
0.26 (p=0.00) K-S 0.29 (p=0.00) 0.17 (p=0.07) K-S 0.12 (p=0.20)

Program composition (C)
Procedural Object-oriented

000 0 0
322 0 3
55 0 4455

7776666 0 666677
998888888 0 888889999

1 000

5.67 Mean	 6.88
2.93 Std Dev	 2.49
-0.39 Kurtosis	 0.97
-0.93 Skewness -0.95

0.13 (p>0.20) K-S 0.10 (p>0.20)

Table 15.	 Descriptive statistics, including stem-and-leaf display, of
measurements obtained using the programming achievement
instrument (forty-eight responses).

68

Analytical procedures

Statistical hypothesis 1

Hypothesis: Student achievement in adding a sophisticated user interface within

a familiar procedural programming environment will be significantly

greater than student achievement in adding a sophisticated user

interface within a relatively unfamiliar object-oriented environment.

Null A:

Null B:

Null C:

The mean achievement of knowledge of syntax within a procedural

programming environment, p i , is equal to the mean achievement of

knowledge of syntax within an object-oriented programming

environment, p 2 •	 H.: P1 = P2•

The mean achievement of program modification within a procedural

programming environment, p i , is equal to the mean achievement of

of program modification within an object-oriented programming

environment, p 2 •	 H . : P1 = P2•

The mean achievement of program composition within a procedural

programming environment, p i , is equal to the mean achievement of

program composition within an object-oriented programming

environment, p 2 .	 H . : P1 = P2•

Descriptive statistics of the programming achievement test are shown in Table

15.

The Student's t statistic for independent samples provides an appropriate basis

upon which to accept or reject the null hypotheses It. critica1,0.05,46dLonetail = 1.68).

Glass and Stanley (1970, 297) claim that violations of the assumption of

normality, as suggested by the knowledge of syntax data, have only trivial

69

effects on the level of significance and power of the t-test. Because n 1 and n2

are equal within this study, violations of the assumption of homogeneous

variances are unimportant (Glass and Stanley 1970, 297).

The null hypotheses of no difference of achievement means is accepted for each

area of programming competence. The t statistics and p-values are shown in

Table 16.

Knowledge of syntax	 Program modification	 Program composition

t critical	 —	 1.68
	

tcritical	 =	 1.68
	

tcritical	 =	 1.68

tcalculated = - 1.43
	

tcalculated = 0.13
	

tcalculated = 1.54

Table 16. Student's t statistics comparing achievement means of each
instructional treatment if,-0.05,46dtone-tail)

Statistical hypothesis 2

Hypothesis There is a significant interaction between instructional treatment

and learning style factors with respect to achievement in each of

the areas of programming competence.

Null A: There is no relationship between programming achievement within a

procedural programming environment, as measured by achievement

scores, and each of the cognitive skill factors.

Correlational analysis, t0.05,n-2,upper-tall• H o : P = 0•

Null B:	 There is no relationship between programming achievement within

an object-oriented programming environment, as measured by

achievement scores, and each of the cognitive skill factors.

Correlational analysis, t0.05,n-2,upper-tail• H o : P = 0•

70

Null C: The differences in programming achievement, measured by each of

the achievement scores, of students with varying cognitive skills

(low, high) are independent of the programming environment

(procedural programming, object-oriented programming). ANOVA

2x2 (a = 0.05).

Correlational analysis was chosen to test null hypothesis A and null hypothesis B

based on the need to initially assess the degree to which the two variables,

programming achievement and cognitive skill, are related rather than how the

two variables are linearly related.

The Pearson correlation coefficients, together with probabilities, are listed in

Table 17. Within a procedural programming environment the null hypothesis is

rejected for the relationship between syntax achievement and factor B, and for

the relationship between composition achievement and factor A. Significant

relationships exist between each of the three achievement scores and factor B

within an object-oriented programming environment.

Cognitive Skills Syntax Modification Composition
Procedural programming
Factor A -0.00 (p =0.49) 0.32 (p =0.06) 0.41 (p =0.02)Factor B 0.36 (p = 0.04) 0.30 (p = 0.07) 0.05 (p =0.40)

Object-oriented programming
Factor A 0.04 (p =0.43) -0.04 (p =0.42) 0.01 (p =0.48)
Factor B 0.38 (p =0.04) 0.63 (p = 0.00) 0.66 (p =0.00)

Table 17.	 Pearson coefficients of correlation measuring the strength of the
linear relationship between each of the cognitive skill factors and
student programming achievement within each of the programming
environments.

It would be useful to follow the correlation analysis with a regression analysis to

determine the extent to which the previously established significant relationships

contribute to explanations of variance in student achievement. The coefficient of

71

multiple determination, R 2 , is the ratio of the explained variance to the total

variance and gives an indication of the contribution of cognitive factors to

student programming achievement. R 2 and the F-statistic, measuring overall

goodness of fit of the regression, are listed in Table 18.

The regression analysis indicates that cognitive factor B significantly contributes

to program modification achievement and program composition achievement

within an object-oriented programming environment. Cognitive factor A explains

seventeen percent of the variation in program composition achievement within a

procedural programming environment.

Cognitive Factors Syntax Modification Composition

Procedural
Factor A R2 = 0.17

F =4.50 (p =0.05)
Factor B R2 = 0.13

F =3.36 (p =0.08)

Object-oriented
Factor A

Factor B R2 = 0.14 R2 = 0.39 R2 = 0.44
F=3.60 (p =0.07) F=14.29 (p =0.00) F =17.18 (p =0.00)

Table 18.	 Linear regression analysis quantifying the contribution of cognitive
skill factors to programming achievement.

The model used to test null hypothesis C was a two-way analysis of variance.

This model is appropriate because the hypothesis wishes to investigate the

relationship between the dependent achievement variables (knowledge of syntax,

program modification, and program composition), and two independent

qualitative variables. The qualitative variables are cognitive skill factors (low,

high) and programming environment (procedural programming, object-oriented

programming). Figure 7 is a plot of the group means.

oop.

proced.

(a)

9.6
9.4
9.2

9
8.8
8.6
8.4
8.2

8
7.8
7.6

A

oop.

proced.

(b)

A
(high)(low)

72

(high)
A

(low)

(d)(c)

A
(high)

oop.

proced.

oop.

proced.

16
14
12
10I

8
6
4
2
0

B
(low)

16
14
12
10

8
6
4
2
0

(e) (f)

(high)

8
7
6
5
4
3
2
1
0

A
(low)

oop.

proced.
oop.

proced.

A
(high)

7
6
5
4
3
2
1
0

B
(low)

Figure 7.	 Plots of mean programming achievement (syntax (a) and (b), program
modification (c) and (d), and program composition (e) and (f)) in
cognitive factors A and B (low , high).

73

The ANOVA analysis, summarised in Table 1 9, indicates that the null hypothesis

of no interaction is to be accepted in all cases. Student achievement, with

relation to cognitive skills, is independent of the programming environment. In

the absence of interaction it is interesting to note that the main effects of

programming environment is negligible and that the main effects of the individual

cognitive skills are similar in significance to the correlational analysis of

hypothesis 1 .

Source
	

F	 p-value

Table 19.

Knowledge of syntax
Cognitive skill Factor A	 0.69	 0.41
Programming environment	 1.80	 0.19
Interaction	 0.02	 0.90

Cognitive skill Factor B 	 6.97	 0.01
Programming environment	 5.17	 0.03
Interaction	 1.27	 0.27

Program modification
Cognitive skill Factor A	 1.85	 0.18
Programming environment	 0.00	 0.99
Interaction	 1.27	 0.27

Cognitive skill Factor B	 8.33	 0.01
Programming environment	 0.53	 0.47
Interaction	 0.21	 0.65

Program composition
Cognitive skill Factor A 	 1.84	 0.18
Programming environment 	 2.73	 0.11
Interaction	 0.41	 0.53

Cognitive skill Factor B 	 1.58	 0.22
Programming environment	 3.27	 0.08
Interaction	 0.52	 0.47

Two-way ANOVA of student programming achievement. One factor
being cognitive skill (factor A, factor B) and the other factor being
programming environment (procedural , object-oriented).

33.5

33

32.5

32

31.5

31

30.5

pret

est

27

26.5

26

25.5

25

24.5

pret

est

21.5

21

20.5
20

19.5

19

18.5

18

17.5

pret

est

post

test

(c)

post

test

post

test

oop.

proced.

(a)

oop.

a proced.

- oop.

- proced.

(b)

74

Statistical hypothesis 3

Hypothesis There is no significant overall relationship between attitude changes

on any of the three scales and the instructional treatment.

Null:	 The difference between the mean pretest attitude scores and the

mean posttest attitude scores are independent of the programming

environment (procedural programming or object-oriented

programming). ANOVA 2x2 (24 replications, a	 0.05).

An analysis of variance was used to test for factor interaction. The two levels of

instructional treatment (procedural programming and object-oriented

programming) combined with two levels of attitude measures (pretest and

posttest) established an analysis by means of a balanced two-way factorial

model with twenty-four replications. Figure 8 is a plot of the group means,

Figure 8.	 Plots of mean attitude (pretest, posttest) of programming
environment in liking programming (a), programming difficulty (b),
and programming usefulness (c).

The testing of the null hypothesis was carried out using the F-statistic

= 3.92). The null hypothesis of no interaction between attitude(Fcritical,0.05,1,92

to(wards) programming and the programming environment is accepted (F calculated

for each of the three attitude scales. Table 20 summarises the< Fcritical)

analysis.

Source df SS MS F p-value

Liking programming
Instructional treatment
Interaction
Error

1
1
1

92

4.17
22.04

9.37
5738.25

4.17
22.04

9.37
62.37

0.07
0.35
0.15

0.80
0.55
0.70

Programming difficulty 1 73.50 73.50 2.40 0.13
Instructional treatment 1 12.04 12.04 0.39 0.53
Interaction 1 7.04 7.04 0.23 0.63
Error 92 2815.42 30.60

Programming usefulness 1 35.04 35.04 1.73 0.19
Instructional treatment 1 0.00 0.00 0.00 1.00
Interaction 1 0.04 0.04 0.00 0.96
Error 92 1858.25 20.20

Table 20.	 Two-way ANOVA of student attitude to(wards) programming. The
factors programming liking, difficulty, and usefulness each at two
levels (pretest, posttest) and the factor programming environment at
two levels (procedural, object-oriented).

The absence of factor interaction leads to a consideration of main effects. From

the values of the F-statistics in each case it may be concluded that there are no

significant differences among the attitude means (Fcritica1,1,92 = 3.92) nor among

the programming environment means (Fcritica1,1,92 = 3.92) at the 0.05 level.

75

76

Statistical hypothesis 4

Hypothesis There is a significant interaction between instructional treatment

and cognitive skill factors with respect to attitude changes on any

of the three scales.

Null:	 There is no interaction between cognitive skill factors (two factors

each categorised as low, high) and instructional treatment

(procedural programming and object-oriented programming) in their

effects on attitude. ANOCOVA 2x2 (a = 0.05).

One way to examine the question of whether the treatment affects attitude is to

control for pretest attitudes by including the pretest attitudes as a covariate.

An ANOCOVA, analysis of covariance, is necessary to analyse the effects of the

treatment on student attitudes to(wards) programming because of the absence

of an attitudes control group in the experimental design. An ANOCOVA, analysis

of covariance, removes the effects of the predictor variable, attitude pretests, on

the dependent variable, attitude posttests, through regression methods. An

ANOVA is then performed on the corrected posttest attitude scores to analyse

the effects of the instructional treatment on attitudes to(wards) programming.

A plot of the posttest attitude means, adjusted for the pretest attitude covariate

is displayed in Figure 9 and the ANOCOVA is summarised in Table 21. There is

no significant interaction. The main effects of instructional treatment and

cognitive skill factors on attitude changes are also insignificant.

- oop.

o proced.

(a)

	22 	

21.5

21

20.5

20

	

19.5 	
B

(low)

- oop.

proced.

(b)

35

34

33

32

31

30

A
(high) (high)

oop.

- proced.

oop.

a proced.

(d)(c)

A
(high) (high)

22.5

22

21.5

21
20.5

20

19.5

19

B
(low))

21.8
21.6
21.4
21.2

21
20.8
20.6
20.4
20.2

20
19.8

A
(low)

40.•■••••••••......"....■•••••••

- oop.

proced.

(e)

27 2

27

26.8

26.6

26.4

26.2

26
B

(low)

- oop.

- proced.

(f)

(high)

77

Figure 9.	 Plots of mean posttest attitude, adjusted for the pretest attitude
covariate, (liking programming (a) and (b), programming difficulty
(c) and (d), and programming usefulness (e) and (f)) in cognitive
skill factors A and B (low, high).

78

Source	 SS	 DF	 MS	 F	 Sig. Of F

Liking pogramming
Within cells	 853.36	 43	 19.84
Regression	 1873.52	 1	 1873.52	 94.41
Constant	 90.03	 1	 90.03	 4.54
Instructional treatment	 12.20	 1	 12.20	 0.61
Cognitive Skill Factor A 	 2.48	 1	 2.48	 0.13
Interaction	 56.66	 1	 56.66	 2.86
Within cells	 838.22	 43	 19.49
Regression	 1792.55	 1	 1792.55	 91.96
Constant	 151.73	 1	 151.73	 7.78
Instructional treatment	 10.28	 1	 10.28	 0.53
Cognitive Skill Factor B 	 0.23	 1	 0.23	 0.01
Interaction	 72.93	 1	 72.93	 3.74

Programming difficulty
Within cells	 280.11	 43	 6.51
Regression	 988.07	 1	 988.07	 151.68
Constant	 85.95	 1	 85.95	 13.19
Instructional treatment	 8.43	 1	 8.43	 1.29
Cognitive Skill Factor A 	 1.035	 1	 1.35	 0.21
Interaction	 0.46	 1	 0.46	 0.07
Within cells	 266.42	 43	 6.20
Regression	 1048.25	 1	 1048.25	 169.19
Constant	 89.21	 1	 89.21	 14.40
Instructional treatment	 7.25	 1	 7.25	 1.17
Cognitive Skill Factor B 	 1.63	 1	 1.63	 0.26
Interaction	 13.58	 1	 13.58	 2.19

Programming usefulness
Within cells	 382.67	 43	 8.90
Regression	 214.97	 1	 214.97	 24.16	 0.00
Constant	 455.40	 1	 455.40	 51.17	 0.00
Instructional treatment	 0.01	 1	 0.01	 0.00	 0.97
Cognitive Skill Factor A 	 15.10	 1	 15.10	 1.70	 0.20
Interaction	 0.72	 1	 0.72	 0.08	 0.78
Within cells	 395.75	 43	 9.20
Regression	 209.74	 1	 209.74	 22.79	 0.00
Constant	 480.75	 1	 480.75	 52.24	 0.00
Instructional treatment	 0.42	 1	 0.42	 0.05	 0.83
Cognitive Skill Factor A 	 2.06	 1	 2.06	 0.22	 0.64
Interaction	 0.64	 1	 0.64	 0.07	 0.79

0.00
0.04
0.44
0.73
0.10

0.00
0.01
0.47
0.91
0.06

0.00
0.00
0.26
0.65
0.79

0.00
0.00
0.29
0.61
0.15

Table 21. Two-way ANOCOVA analysis of student posttest attitude to(wards)
programming with pretest attitude as covariate. One factor being
instructional treatment (procedural, object-oriented) and the other
factor being cognitive skill (factor A, factor B).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

