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Abstract

Natural pastures, which are dominated by native plant species, occupy an extensive proportion of

Australia (432 M ha, or 56% of the continental landmass). Traditional grazing methods (continuous

set-stocking) can lead to low levels of herbage mass, litter mass and ground cover, which in turn

leads to high surface runoff, high soil evaporation, and poor pasture growth. A key component of

designing a sustainable grazing system for thcse pastures includes a sound knowledge of the impact

of that system on the hydrological balance.

A grazing management experiment was establiished at Springmount near Barraba on the North-West

Slopes to study the effect of five grazing treatments on pasture characteristics while monitoring the

associated impact on selected components of the hydrological balance. The grazing treatments

included: continuous grazing (4 and 6 sheep/11a), continuous grazing with subterranean clover and

fertiliser applied (8 sheep/ha), and rotational grazing (4 sheep/ha) with pastures grazed for four

weeks and rested for four weeks (two paddock rotation) or rested for 12 weeks (four paddock

rotation). The continuous grazing treatments had significantly lower mean levels of herbage mass

(1500-1800 kg DM/ha), litter mass (1)0-110 kg DM/ha) and ground cover (70-73%) compared with

either rotational grazing or over-sowing with subterranean clover (3000-3500 kg DM/ha, 210-260 kg

DM/ha, and 83-90% for herbage mass, litter mass and ground cover, respectively).

The frequency and magnitude of surface runoff events increased with rainfall amount and intensity

and as ground cover declined. Runoff was higher on plots that were continuously grazed (142 mm,

or 6% of rainfall) compared with those that NA ere grazed rotationally (8 mm, or 0.3% of rainfall).

Daily actual evapotranspiration values ranged from 0.2 to 7.6 mm/d, in winter and summer,

respectively, and the maximum bare soil evaporation rate was 3.9 mm/d. Analysis of the data

indicated that when soils were wet, high litter mass (3000 kg DM/ha) may reduce evaporation by up

to 1.04 mm/d compared with no litter. althour,h at Springmount, the maximum litter was only

780 kg DM/ha.

A neutron moisture meter indicated that profile wetting events were rare and mean plant available

water was low (35-56 mm). There were few significant differences between grazing treatments and

these were restricted to the surface so l layer 0-30 cm) where root density and evaporation effects

were greatest and deeper in the profile (150-170 cm) where soil physical characteristics were

different.



Simulation modelling indicated that deep draivage events were episodic with a frequency of 12

events in 31 years, and that grazing management had little effect on the magnitude of these events.

However, modelling indicated that canopy interception of rainfall was an important and substantial

component of the hydrological balance, particularly for those pastures that had higher herbage mass.

Rotational grazing treatments intercepted up to 131 mm of rainfall (or 20% of annual rainfall)

compared with just 14 mm for those grazed ci ,ntinuously.

Grazing management may be used to maintain herbage mass between 2000 and 3000 kg DM/ha with

litter mass > 1000 kg DM/ha and ground cover > 70%, and so offer the greatest productive and

sustainable use of annual rainfall. For such a pasture, loss of water through surface runoff, soil

evaporation, and deep drainage may be minimised, while transpiration and canopy interception may

be high. Such a pasture may also provide ideal conditions for soil biological activity and so soil

health and sustainability. 	
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