
II 0 0 II II 0
71900156634

SOIL CARBON FRACTIONS AS INDICATORS OF

SUSTAINABILITY OF COTTON CROPPING SYSTEMS

By

ABDUL RAHMAN CONTEH

Bachelor of Science in Education (Chemistry) (University of Sierra Leone)

Master of Science in Agriculture (Soil Science) (University of New England)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE

UNIVERSITY OF NEW ENGLAND

JUNE 1998



DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and

is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been

acknowledged in this thesis.

ii



ACKNOWLEDGMENTS

The study reported in this thesis was made possible through funds provided by the Cotton Research

and Development Corporation (CRDC) and the Australian Centre for International Agricultural

Research (ACIAR). I am very grateful to these organisations, and also to the Cooperative Research

Centre for Sustainable Cotton Production (CRC-SCP) for providing the much needed coordination

that made this study possible.

I extend my sincere thanks to my principal supervisor, Associate Professor Graeme Blair, and

co-supervisors, Dr Rod Lefroy and Associate Professor Donald MacLeod, whose dedicated and

enthusiastic support had always been beyond the call of duty.

I wish to thank all members of the technical staff of the Department of Agronomy and Soil Science for

their assistance in soil sampling, glasshouse experiments, and laboratory analyses. I would like to

thank especially Michael Crestani for assisting with soil sampling and field experiments; Leanne Lisle,

Judy Kenny, and Jacqui Hogan for their skilled laboratory support; Michael Faint for the use of the

glasshouse; Gary Cluley for the use of the autoclave; Dr Kathy King for soil respiration

measurements; Jan Skemstad for the NM R analyses; Dr Anthony Whitbread for his constant support

and assistance with light fraction measurements; and Duncan Mackay for his excellent computer

skills. I also received enormous support from staff of the Australian Cotton Research Institute,

especially Drs Ian Rochester and Nilantha Hulugalle. I am very grateful to Jack Cooper for providing

the land management information from the CRC farming systems experiment at Auscott-Warren.

My thanks are also extended to all my postgraduate colleagues, who had always acted as a morale

booster in times of stress. Finally, I wish to thank my partner, Mary Juma, whom I owe more than just

a holiday trip around the world!

iii



ABSTRACT

The cracking clay soils on which cotton is typically grown are prone to compaction, which can

lead to a reduction in soil aeration, infiltration of water, and a condition where roots are unable to

penetrate the dense layer of the soil. This in turn reduces yields and farm income, and in the longer

term, will result in a reduction in soil quality and land value. Increasing public and grower concern

about soil and environmental quality in relation to long-term sustainable cotton production has

emphasised the need to develop and implement management strategies that maintain and protect

soil resources.

The development of sustainable cotton cropping systems requires the identification,

monitoring and management of those soil properties whose variability significantly influence the

stability and resilience of the soil resource. Since sustainability is a systems issue, the sustainability

of a cropping system can be appropriately assessed through the use of indicators, which are partial

indices that estimate some aspect of the broader concept. The selection of such indicators can be

achieved through a step-wise approach; by identifying a set of attributes that constitute components

of a sustainable cropping system, and then develop techniques for monitoring these attributes. The

organic matter content of a soil is a key indicator of a sustainable cropping system because of its

influence on the physical, chemical and biological health of a soil. Because organic matter in soil

exists in a wide diversity of forms with considerable variability in decomposition rates, the success of

any organic matter management strategy will depend to a large extent on methods that can detect

and monitor short-term changes in soil organic matter quantity and quality.

The primary concern of the work described in this thesis was to examine the potential value

of a simple measurement of labile and non-labile carbon fractions to provide a sensitive monitoring

indicator of organic matter changes under cotton cropping systems. The labile carbon is obtained by

oxidation with a 333 mM KMnO4 solution and the non-labile carbon obtained as the difference

between the total and labile carbon. Based on the relative contents of labile and non-labile carbon in

a cropped soil and a reference soil, a carbon management index is calculated. The study

commenced with a general survey of the fertility status of soils used for cotton production. The

specific objectives of the survey were to examine the soil test values in the main soils used for cotton

production and compare these values between cropped and reference sites. Changes in soil organic

matter due to cotton production were examined using the carbon fractionation procedure based on

ease of oxidation. The relationships between the carbon fractions obtained by ease of oxidation and

other common measurements of soil organic matter were also examined. The carbon fractionation

procedure was then used to follow soil organic matter changes under different cotton stubble

management systems and cotton rotation sequences.

iv



The results from the soil survey showed that most of the soils used for cotton production in

Australia are alkaline in reaction, with a considerable variability in soil test values. The ranges

observed for most soil tests indicated adequate chemical fertility in these soils, but no significant

relationships were found between soil test levels and nutrient responses under glasshouse conditions.

The large number of significant responses to P and S under glasshouse conditions, inspite of the

adequate soil test levels, suggests the need for future field studies to examine the role of these

nutrients in cotton cropping systems.

The 333 mM KMnO4 carbon fractionation procedure showed that cultivation of soils has led to

a decrease in the organic carbon status of the cracking clay soils used in cotton production. The

effect of cultivation was more pronounced in the labile carbon (C L) and the carbon management index

(CMI) than in the total carbon (C T) and non-labile carbon (C NL ). The effect of cultivation on the ratio

of CL to CNL (LI) was not as clear, since both increases and decreases were observed as a result of

cultivation. The role of aggregates in the protection of soil organic matter from rapid decomposition

was also demonstrated. It was shown that there was a higher concentration of both CT and C L in the

microaggregates (< 250 pm) than in the macroaggregates (> 250 pm) indicating that the rates of

decomposition of both CT and C L were higher in the macroaggregates than in the microaggregates.

However, in all the aggregate sizes, the relative losses of CL were higher than the relative losses of

CT. These observations also support the hypothesis that the KMnO4-oxidisable carbon (C L) is a

measure of labile carbon in soil and can be used for monitoring short-term changes in organic matter

under different cropping systems. The CMI generally declined during cultivation, with the exception

of a few soils, and since the CMI incorporates the changes taking place in CT, CL and CNL, the use of

this index can provide very useful results in the monitoring of organic matter status of soils.

Since organic carbon in soils has been determined by a wide range of procedures, the carbon

fractions obtained by ease of oxidation were compared with other common measurements of soil

organic carbon. It was shown that CL determined by ease of oxidation was significantly related to

fulvic acid, soil polysaccharides and soil microbial biomass carbon. From 13C NMR studies, it

appears that the KMnO4 oxidisable carbon mostly comprised of soil carbohydrates and some

unidentified aromatic compounds. The association between C L and fulvic acid, carbohydrates and

microbial biomass carbon indicates that the term labile is appropriate for KMnO 4 oxidisable carbon,

and that the un-oxidisable CNL is related to soil humin and non-labile polysaccharides. Therefore, the

partitioning of soil carbon into CL and CNL as shown in this study will allow the separation of active and

less active soil carbon to be used for monitoring carbon dynamics of agricultural systems.

The carbon fractions obtained by ease of oxidation were then used to monitor organic matter

changes under different stubble management systems and cotton rotation sequences in the field.



The results showed that management of cotton stubble significantly affects the organic matter status

of Vertisols. Incorporation of stubble increased both the total carbon concentration and the Carbon

Management Index while burning reduced the Carbon Management Index. Most of the increases in

soil organic matter observed in a 3-year period were due to increases in the amount of light fraction.

With regards to crop rotation options, it appeared that rotating cotton with wheat is a more sustainable

option with regards to long-term improvement of soil quality than continuous cotton or legumes alone.

The inclusion of legumes in the rotation sequence appeared to produce mainly short-term benefits,

probably as a result of their rapid decomposition rates. However, since observations were only made

for a relatively short time, subsequent monitoring of the organic carbon changes was recommended

for a conclusive evaluation of the role of different rotation sequences on soil organic carbon status. In

general, ,t can be concluded that for sustainable management of soil organic matter in Vertisols under

cotton production, as much of the stubble produced in the system be returned to the soil rather than

removed.

Since the continuity of supply of carbon in soil depends on both the total pool size and the

decomposability, the carbon management index (CM!) can be considered to be a useful indicator of

sustainable cropping systems.
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