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Abstract
Declining cotton yields led to doubts about the long term viability of irrigated cotton growing

in the lower Macquarie Valley, N.S.W., only 10 years after the industry was established. Soil

limitations to cotton growth were implicated as the main reason for the yield decline in the absence of

insect and disease outbreaks. Following unsuccessful screening for soil chemical deficiencies, soil

physical conditions were studied. A series of experiments have since shown that poor soil physical

conditions in Macquarie Valley vertisols can be improved by using crops to dry the soil, deep tillage and

gypsum.

The next step, which this project addresses, is to study soil management systems which minimize

degradation of soil physical conditions. Aims of this project were to:

i) Assess the viability of the permanent bed system for irrigated cotton production in which the

hills on which cotton is grown are left in the same place for a number of years. This was done by

comparing soil physical properties and cotton growth on areas prepared using conventional seedbed

preparation in which the hills are knocked down and reformed each year with areas of cotton under

permanent beds.

ii) Study cotton growth in response to a range of soil physical conditions created by different tillage

systems, and the relationship between cotton growth and some measures of soil physical condition.

From these relationships, we should gain a clearer picture of how deep tillage ameliorates poor soil

structure, and also how it can cause the yield depression observed in some prior experiments.

Combine information from this project with other, similar, projects, to establish guidelines to

predict which soil management practices are best suited to a given situation.

The main part of the project was a field experiment, monitored over two and a half years. Three

tillage treatments, ripping to 0 .45 m, chisel ploughing to 0 .25 m, and a permanent bed system were

imposed in a randomized complete block design with three blocks (replicates) at the start of the trial in

May, 1984. Cotton, wheat, and maize crops were grown over the next two years, then deep tillage

treatments were reimposed prior to a second cotton crop.

Soil swelling, and neutron moisture meter and gamma density meter calibrations

Because of the importance of swelling to the physical behaviour of vertisols and weaknesses in

the current methods of accounting for swelling, an experiment was undertaken to examine the nature of

swelling in the field, and its relation ship to swelling in the laboratory. Field shrinkage measured at 02

and 0. 3 m using swelling pins was much less than expected from extrapolation from laboratory results.

Field shrinkage measurements indicate that the errors introduced to water content measurement by

ignoring swelling are no greater than those introduced by sources such as relocation error in placement

of the neutron moisture meter source in the access tube. Consequently, little accuracy (3 .5% error only)

would be lost at this site by ignoring swelling in neutron moisture meter calibrations. Errors in the

measurement of soil water and air filled porosity introduced by swelling increase with depth, especially

beyond the depths monitored closely in this experiment. However, the importance of these errors is

reduced by the decreasing range of water content measured with increasing depth.

As the neutron moisture meter was widely used in measurement of soil water in the current

study, a neutron moisture meter was calibrated at the experimental site. The use of corrections for

changes in density did not improve the precision of the neutron moisture meter calibration, and led to
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only a small increase in accuracy. The use of shrinkage models was only beneficial when applied to

specific situations such as the determination of air filled porosity. It was thus recommended that the

calibration of neutron count rate ratio on volumetric water content be used to predict soil water content

in preference to calibrations using shrinkage models.

Prediction of air filled porosity was improved by the use of the 3-dimensional shrinkage model.
The simplest means of determining air filled porosity corrected for 3-dimensional shrinkage Is'Ea3D) was

from the gravimetric water content calibration rather than a separate ea3D calibration, and should be

used.

A gamma density meter was also calibrated at the experimental site. The gamma density meter

was a poor predictor of soil field bulk density. The neutron moisture meter provided a more precise

density calibration, and should be sufficiently accurate if measurements are taken at each field site to

check the calibration.

Crop growth and soil physical conditions in the 1984/85 cotton season

In the 1984/85 season, no yield penalty was suffered by planting cotton into permanent beds

formed by direct listing compared to the two alternative seedbed preparation methods where beds were

knocked down and reformed.

The few statistically significant differences between treatments detected in this season

differences indicated better soil conditions in the ripped than direct listed plots. However, under the

prevailing climatic and management regimes, cotton plants did not appear to exploit the more favourable

soil conditions in the ripped plots.

Improvements in methods of evaluating soil conditions over those used in the 1984/85 season

were needed to quantify differences between tillage treatments. To estimate the degree and duration of

waterlogging, increased emphasis should be given to conditions soon after irrigation.

Effectiveness of sampling techniques used in the first cotton season was tested using

geostatistical techniques and classical statistics. The geostatistical analysis showed small variability

across the field, which means that neutron moisture meter access tubes need not be any further apart than

the separation distance used in the analysis (26 m) while, because of the strong correlation of volumetric

water content between depths, readings should be separated by at least 0.2 m depth. Classical statistics

showed that only one neutron moisture meter reading need be taken per depth unless very high precision

is required. Subject to the constraints imposed by the design of this experiment, the sensitivity of

penetration resistance in detecting treatment differences would be increased by making insertions much

further than 1 m apart, whilst remaining sufficiently close to access tubes to obtain associated moisture

measurements.

Evaluation of methods for measurement of soil physical properties in vertisols

The few differences in soil properties detected in the 1984/85 season suggested a need to test

whether differences in soil properties affecting cotton growth could be better identified by using

additional indicators or better use of current indicators. Two studies, the first of which aimed to asses the

effect of wheel passage at different water contents on soil structure, were undertaken between harvest of

the 1984/85 cotton crop and planting of the 1986/87 crop. In the first study, penetration resistance, but
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not field bulk density, proved to be a useful indicator of structural degradation in response to picker and

header wheelings. The small response of bulk density was attributed to aggregate deformation rather than

volume change being the main form of structural degradation in vertisols.

The critical subsurface soil water content for structural degradation in response to header or

picker wheeling in this soil lies between 0 . 14 and 0.21 kg kg- 1 . This is drier than 0 .23 kg kg- 1 , the

lower plastic limit of the soil.

In the second study, a number of indicators of soil physical condition were used to monitor

changes in soil physical condition over a 12 day period after irrigation of a cotton crop planted to

evaluate three rotation practices-safflower and wheat crops, and a bare fallow in which weeds were

controlled by disc ploughing. The indicators of soil physical condition used were: measurement of air

filled porosity and oxygen flux density in core samples; measurement of an in situ water retention curve

with tensiometers; assessing pore continuity with a dye infiltration technique; penetration resistance as

an indicator of soil strength; and water content.

Apart from water content, all indicators of soil structure used in this study were able to

differentiate between fallow, wheat and safflower treatments to a depth of 0 .25 m. Of the techniques

used, a combination of core sampling to measure air filled porosity together with the penetrometer was

best able to define structural conditions relevant to root growth down the profile. This conclusion was

supported by the greater sensitivity of penetration resistance than bulk density measurement as an

indicator of structural degradation caused by wheel passage. The dye infiltration technique provided

consistent data, but was more laborious. Tensiometers provided a useful adjunct to other methods of

characterizing soil physical properties, although their value is limited by large demands on time, and

sensitivity to installation and maintenance.

Suspicions of extended periods of waterlogging following irrigation in the 1984/85 season were

confirmed by the results of this experiment. However, the observed waterlogging did not appear to

markedly restrict water uptake.

It was concluded that techniques to measure aeration status described here would be used in the

1986/87 growing season. Tensiometers would also be installed despite their drawbacks, as they would

enable the determination of hydraulic gradients, hence give information on the direction of water flow in

the soil. Rhodamine dye infiltration has provided information on the effects of structural degradation on

water flow, and would be used on a limited scale.

Crop growth and soil physical conditions 1985 to 1986/87 cotton season

Selective measurements taken during the wheat crop grown between the two cotton crops. All

tillage treatments had similarly low wheat yields, which were attributed to moisture deficit and nitrogen

deficiency stress. Due to the lack of data and the absence of comparative treatments, no partitioning of

the yield depression between these two factors was possible.

Permanent beds established using direct listing were the highest yielding plots in the 1986/87

season. There is little doubt that this form of permanent beds is viable for at least four years after the

beds are established, provided the direct listing is carried out under a favourable moisture regime.

Waterlogging, and not high soil strength, was the main soil physical constraint to cotton

growth in this experiment. Yield depression in the ripped areas was attributed to a longer duration of

waterlogging compared to chiselled or direct listed areas.
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The measures of physical properties used in the 1986/87 season were able to account for the

yield differences between tillage treatments. The next step in differentiating the physical properties of

vertisols subjected to a range of tillage treatments is to assess the plant available water capacity of these

soils. The practice of watering the whole experiment when one plot shows signs of water deficit stress

needs to be abandoned in favour of separating the experiment into at least two groups for irrigation

scheduling.

Conclusions

The project has shown that permanent beds formed by direct listing are a viable means of

cotton production. Other research has shown that good soil structure, essential to the longevity of

permanent beds, can be maintained by avoiding traffic on wet soil, and utilizing the ability of plants to

ameliorate structural degradation as they crack the soil by drying it.

Deep tillage increases soil porosity and disrupts the continuity of impermeable layers near the

soil surface. Deep tillage will improve cotton production if it disrupts these layers, and subsequent

management protects the porosity created by deep tillage, and utilizes the improved plant available water

content of the deep tilled soil. As no impermeable layers were present near the soil surface in the present

experiment, deep tillage did not improve cotton production.

Waterlogging is the main soil physical limitation to cotton production in vertisols.

Measurement of soil physical differences between imposed treatments in irrigated vertisols must include

an assessment of the degree and duration of waterlogging in the treatments. In addition, the non-limiting

water range of treatments should be fully assessed, by measuring the extent to which plants can dry soil

before soil strength restricts root extension or water potential reduces water supply to the level where

plants suffer water deficit stress.
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