Degenerate hypersurfaces with a two-parametric family of automorphisms

Title
Degenerate hypersurfaces with a two-parametric family of automorphisms
Publication Date
2009
Author(s)
Ezhov, Vladimir
Kolář, Martin
Schmalz, Gerd
( author )
OrcID: https://orcid.org/0000-0002-6141-9329
Email: schmalz@une.edu.au
UNE Id une-id:schmalz
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Taylor & Francis
Place of publication
United Kingdom
DOI
10.1080/17476930902760443
UNE publication id
une:4042
Abstract
We give a complete classification of Levi-degenerate hypersurfaces of finite type in ℂ² with two-dimensional symmetry groups. Our analysis is based on the classification of two-dimensional Lie algebras and an explicit description of isotropy groups for such hypersurfaces, which follows from the construction of Chern–Moser type normal forms at points of finite type, developed in [M. Kolář, 'Normal forms for hypersurfaces of finite type in ℂ²', Math. Res. Lett. 12 (2005), pp. 897–910].
Link
Citation
Complex Variables and Elliptic Equations, 54(3-4), p. 283-291
ISSN
1747-6941
1747-6933
Start page
283
End page
291

Files:

NameSizeformatDescriptionLink