<i>L<sup>P</sup></i> Curvature and the Cauchy-Riemann equation near an isolated singular point

Author(s)
Harris, A
Tonegawa, Y
Publication Date
2001
Abstract
Let <i>X</i> be a complex <i>n</i>-dimensional reduced analytic space with isolated singular point <i>x</i><sub>0</sub>,and with a strongly plurisubharmonic function <i>p</i> : <i>X</i> --> [0;∞) such that <i>p</i>(<i>x</i><sub>0</sub>) = 0.A smooth Kähler form on <i>X</i> {<i>x</i><sub>0</sub>} is then defined by i <i>p</i>.The associated metric is assumed to have <i>L</i><sup>n</sup><sub>loc</sub>-curvature, toadmit the Sobolev inequality and to have suitable volume growth near <i>x</i><sub>0</sub>.Let <i>E</i> --> <i>X</i> {<i>x</i><sub>0</sub>} be a Hermitian-holomorphic vector bundle, and ξ a smooth (0,1)-form with coefficients in <i>E</i>.The main result of this article states that if ξ and the curvature of <i>E</i> are both <i>L</i><sup>n</sup><sub>loc</sub>,then the equation ∂<i>u</i> = ξ has a smooth solution on a punctured neighbourhood of <i>x</i><sub>0</sub>.Applications of this theorem to problems of holomorphic extension, and in particular a result of Kohn-Rossi type for sections over a <i>CR</i>-hypersurface, are discussed in the final section.
Citation
Nagoya Mathematical Journal, v.164, p. 35-51
ISSN
0027-7630
Link
Publisher
Nagoya Daigaku, Daigakuin Tagensurikagaku Kenkyuka
Title
<i>L<sup>P</sup></i> Curvature and the Cauchy-Riemann equation near an isolated singular point
Type of document
Journal Article
Entity Type
Publication

Files:

NameSizeformatDescriptionLink