A subset S of initially infected vertices of a graph G is called zero forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbor, infects this neighbor. The zero forcing number of G is the minimum cardinality of a zero forcing set in G. We study the zero forcing number of various classes of graphs, including graphs of large girth, H-free graphs for a fixed bipartite graph H, and random and pseudorandom graphs. |
|