This is the second part of our study on the competition model where the coefficient functions are strictly positive over the underlying spatial region Ω except b(x), which vanishes in a nontrivial subdomain of Ω, and is positive in the rest of Ω. In part I, we mainly discussed the existence of two kinds of steady-state solutions of this system, namely, the classical steady-states and the generalized steady-states. Here we use these solutions to determine the dynamics of the model. We do this with the help of the perturbed model where b(x) is replaced by b(x)+ε, which itself is a classical competition model. This approach also reveals the interesting relationship between the steady-state solutions (both classical and generalized) of the above system and that of the perturbed system. |
|