The metric dimension of the circulant graph C(n,±{1,2,3,4})

Title
The metric dimension of the circulant graph C(n,±{1,2,3,4})
Publication Date
2017-10
Author(s)
Grigorious, Cyriac
Kalinowski, Thomas
( author )
OrcID: https://orcid.org/0000-0002-8444-6848
Email: tkalinow@une.edu.au
UNE Id une-id:tkalinow
Ryan, Joe
Stephen, Sudeep
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Centre for Discrete Mathematics & Computing
Place of publication
Australia
UNE publication id
une:1959.11/26783
Abstract
Let 𝐺 = (𝑉,𝐸) be a connected graph and let 𝑑(𝑢,𝑣) denote the distance between vertices 𝑢,𝑣∈𝑉. A metric basis for 𝐺 is a set 𝐵⊆𝑉 of minimum cardinality such that no two vertices of 𝐺 have the same distances to all points of 𝐵. The cardinality of a metric basis of 𝐺 is called the metric dimension of 𝐺, denoted by dim(𝐺). In this paper we determine the metric dimension of the circulant graphs 𝐶(𝑛,±{1,2,3,4}) for all values of 𝑛.
Link
Citation
Australasian Journal of Combinatorics, 69(3), p. 417-441
ISSN
2202-3518
1034-4942
Start page
417
End page
441
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International

Files:

NameSizeformatDescriptionLink