Author(s) |
Griggs, Jerrold R
Hartmann, Sven
Kalinowski, Thomas
Leck, Uwe
Roberts, Ian T
|
Publication Date |
2021-10
|
Abstract |
Building on classical theorems of Sperner and Kruskal-Katona, we investigate antichains <i>F</i> in the Boolean lattice <i>Bn</i> of all subsets of [<i>n</i>]:={1,2,…,<i>n</i>}, where <i>F</i> is flat, meaning that it contains sets of at most two consecutive sizes, say <i>F</i>=<i>A</i>∪<i>B</i>, where <i>A</i> contains only <i>k</i>-subsets, while <i>B</i> contains only (<i>k</i> − 1)-subsets. Moreover, we assume <i>A</i> consists of the first <i>m k</i>-subsets in squashed (colexicographic) order, while <i>B</i> consists of all (<i>k</i> − 1)-subsets not contained in the subsets in <i>A</i>. Given reals <i>α</i>,<i>β</i> > 0, we say the weight of <i>F</i> is <i>α</i>⋅|<i>A</i>|+<i>β</i>⋅|<i>B</i>|. We characterize the minimum weight antichains <i>F</i> for any given <i>n</i>,<i>k</i>,<i>α</i>,<i>β</i>, and we do the same when in addition <i>F</i> is a maximal antichain. We can then derive asymptotic results on both the minimum size and the minimum Lubell function.
|
Citation |
Order, 38(3), p. 441-453
|
ISSN |
1572-9273
0167-8094
|
Link | |
Publisher |
Springer Netherlands
|
Title |
Minimum Weight Flat Antichains of Subsets
|
Type of document |
Journal Article
|
Entity Type |
Publication
|
Name | Size | format | Description | Link |
---|