Generation time and the maximum growth rate for populations with age-specific fecundities and unknown juvenile survival

Title
Generation time and the maximum growth rate for populations with age-specific fecundities and unknown juvenile survival
Publication Date
2010
Author(s)
Dillingham, Peter
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Elsevier BV
Place of publication
Netherlands
DOI
10.1016/j.ecolmodel.2009.12.008
UNE publication id
une:13873
Abstract
In age-classified population models where all parameters are known, the generation time and growth rate are calculated in a straightforward manner. For many populations, some parameters, such as juvenile survival, are difficult to estimate accurately. In a simplified population model where fecundity and survival are constant from the onset of breeding, it is known that generation time may be calculated given only adult survival, age at first reproduction, and the population growth rate. However, the assumption of constant fecundity from the onset of breeding does not hold for many populations. An extended population model allows calculation of generation time with the additional knowledge of the ratio of age-specific fecundities compared to a maximum fecundity rate. When these relative fecundities are unknown, an ad hoc adjustment to the simplified model performs well. When the study population is in an ideal environment, the optimal generation time and maximum growth rate are linked, and both may be approximated knowing only adult survival, age at first reproduction, and the relative fecundities. The maximum growth rate has important conservation implications, and calculating it correctly is therefore important. Improper use of the simplified population model to calculate the maximum growth rate, combined with a simple decision rule, leads to an average overharvest of 36%, and >60% for three of six bird species studied, compared to the full population model. By comparison, using the approximation from the extended or adjusted models results in average overharvests of only 8% (extended model) and 5% (adjusted model), and <50% for all six species (either model).
Link
Citation
Ecological Modelling, 221(6), p. 895-899
ISSN
1872-7026
0304-3800
Start page
895
End page
899

Files:

NameSizeformatDescriptionLink