Incremental Network Design with Minimum Spanning Trees

Author(s)
Engel, Konrad
Kalinowski, Thomas
Savelsbergh, Martin W P
Publication Date
2017-02
Abstract
Given an edge-weighted graph G = (V,E) and a set E<sub>0</sub>⊂E , the incremental network design problem with minimum spanning trees asks for a sequence of edges e′ <sub>1</sub> , … , e ′ <sub>T</sub> ∈ E ∖ E <sub>0 </sub> minimizing ∑ <sup>T</sup> <sub> t = 1</sub> w ( X <sub>t</sub> ) where w(X<sub>t</sub>) is the weight of a minimum spanning tree X<sub>t</sub> for the subgraph (V,E<sub>0</sub>∪ { e ′ <sub>1</sub> , … , e ′ <sub>T</sub> } ) and T=|E∖ E 0 |. We prove that this problem can be solved by a greedy algorithm.
Citation
Journal of Graph Algorithms and Applications, 21(4), p. 417-432
ISSN
1526-1719
Link
Publisher
Brown University, Department of Computer Science
Title
Incremental Network Design with Minimum Spanning Trees
Type of document
Journal Article
Entity Type
Publication

Files:

NameSizeformatDescriptionLink